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Review: The Relational Calculus

What we have learned so far:

• There are many ways to describe databases:
{ named perspective, unnamed perspective, interpretations, ground fracts,
(hyper)graphs

• There are many ways to describe query languages:
{ relational algebra, domain independent FO queries,
safe-range FO queries, actice domain FO queries,
Codd’s tuple calculus
{ either under named or under unnamed perspetive

All of these are largely equivalent: The Relational Calculus

Next question: How hard is it to answer such queries?
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How to Measure Complexity of Queries?

• Complexity classes often for decision problems (yes/no answer)
{ database queries return many results (no decision problem)

• The size of a query result can be very large
{ it would not be fair to measure this as “complexity”

• In practice, database instances are much larger than queries
{ can we take this into account?
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Query Answering as Decision Problem

We consider the following decision problems:

• Boolean query entailment: given a Boolean query q and a database instance I,
does I |= q hold?

• Query of tuple problem: given an n-ary query q, a database instance I and a tuple
〈c1, . . . , cn〉, does 〈c1, . . . , cn〉 ∈ M[q](I) hold?

• Query emptiness problem: given a query q and a database instance I, does
M[q](I) , ∅ hold?

{ Computationally equivalent problems (exercise)
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The Size of the Input

Combined Complexity
Input: Boolean query q and database instance I
Output: Does I |= q hold?

{ estimates complexity in terms of overall input size
{ “2KB query/2TB database” = “2TB query/2KB database”

{ study worst-case complexity of algorithms for fixed queries:

Data Complexity
Input: database instance I
Output: Does I |= q hold? (for fixed q)

{ we can also fix the database and vary the query:

Query Complexity
Input: Boolean query q
Output: Does I |= q hold? (for fixed I)
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Review: Computation and Complexity Theory

Markus Krötzsch, 17th Apr 2018 Database Theory slide 6 of 29



The Turing Machine (1)

Computation is usually modelled with Turing Machines (TMs)
{ “algorithm” = “something implemented on a TM”

A TM is an automaton with (unlimited) working memory:

• It has a finite set of states Q

• Q includes a start state qstart and an accept state qacc

• The memory is a tape with numbered cells 0, 1, 2, . . .

• Each tape cell holds one symbol from the set of tape symbols Γ

• There is a special symbol � for empty tape cells

• The TM has a transition relation ∆ ⊆ (Q × Γ) × (Q × Γ × {l, r, s})
• ∆ might be a partial function (Q × Γ)→ (Q × Γ × {l, r, s})
{ deterministic TM (DTM); otherwise nondeterministic TM

There are many different but equivalent ways of defining TMs.
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The Turing Machine (2)

TMs operate step-by-step:

• At every moment, the TM is in one state q ∈ Q with its read/write head at a certain tape position p ∈ N,
and the tape has a certain contents σ0σ1σ2 · · · with all σi ∈ Γ

{ current configuration of the TM

• The TM starts in state qstart and at tape position 0.

• Transition 〈q,σ, q′,σ′, d〉 ∈ ∆ means:
if in state q and the tape symbol at its current position is σ,
then change to state q′, write symbol σ′ to tape, move head by d (left/right/stay)

• If there is more than one possible transition, the TM picks one nondeterministically

• The TM halts when there is no possible transition for the current configuration (possibly never)

A computation path (or run) of a TM is a sequence of configurations that can be
obtained by some choice of transition.
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Languages Accepted by TMs
The (nondeterministic) TM accepts an input σ1 · · ·σn ∈ (Γ \ {�})∗ if, when started on the
tape σ1 · · ·σn�� · · · ,
(1) the TM halts on every computation path and
(2) there is at least one computation path that halts in the accepting state qacc ∈ Q.

accept: reject: reject (not halting):
qstartσ1 · · ·σn

qacc

qstartσ1 · · ·σn

,qacc

qstartσ1 · · ·σn
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Solving Computation Problems with TMs

A decision problem is a language L of words over Σ = Γ \ {�}

{ the set of all inputs for which the answer is “yes”

A TM decides a decision problem L if it accepts exactly the words in L

TMs take time (number of steps) and space (number of cells):

• Time(f (n)): Problems that can be decided by a DTM in O(f (n)) steps, where f is a
function of the input length n

• Space(f (n)): Problems that can be decided by a DTM using O(f (n)) tape cells,
where f is a function of the input length n

• NTime(f (n)): Problems that can be decided by a TM in at most O(f (n)) steps on
any of its computation paths

• NSpace(f (n)): Problems that can be decided by a TM using at most O(f (n)) tape
cells on any of its computation paths
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Some Common Complexity Classes

P = PTime =
⋃
k≥1

Time(nk) NP =
⋃
k≥1

NTime(nk)

Exp = ExpTime =
⋃
k≥1

Time(2nk
) NExp = NExpTime =

⋃
k≥1

NTime(2nk
)

2Exp = 2ExpTime =
⋃
k≥1

Time(22nk

) N2Exp = N2ExpTime =
⋃
k≥1

NTime(22nk

)

ETime =
⋃
k≥1

Time(2nk)

L = LogSpace = Space(log n) NL = NLogSpace = NSpace(log n)

PSpace =
⋃
k≥1

Space(nk)

ExpSpace =
⋃
k≥1

Space(2nk
)
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NP

NP = Problems for which a possible solution can be verified in P:

• for every w ∈ L, there is a certificate cw ∈ Σ∗, such that

• the length of cw is polynomial in the length of w, and

• the language {w##cw | w ∈ L} is in P

Equivalent to definition with nondeterministic TMs:

• ⇒ nondeterministically guess certificate; then run verifier DTM

• ⇐ use accepting polynomial run as certificate; verify TM steps
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NP Examples

Examples:

• Sudoku solvability (certificate: filled-out grid)

• Composite (non-prime) number (certificate: factorization)

• Prime number (certificate: see Wikipedia “Primality certificate”)

• Propositional logic satisfiability (certificate: satisfying assignment)

• Graph colourability (certificate: coloured graph)
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NP and coNP

Note: Definition of NP is not symmetric

• there does not seem to be any polynomial certificate for Sudoku unsolvability or
logic unsatisfiability

• converse of an NP problem is coNP

• similar for NExpTime and N2ExpTime

Other classes are symmetric:

• Deterministic classes (coP = P etc.)

• Space classes mentioned above (esp. coNL = NL)
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Reductions

Observation: some problems can be reduced to others

Example: 3-colouring can be reduced to propositional satisfiability

Encoding colours in propositions:

• ri means "‘vertex i is red"’

• gi means "‘vertex i is green"’

• bi means "‘vertex i is blue"’

Colouring conditions on vertices: (r1 ∧ ¬g1 ∧ ¬b1) ∨ (¬r1 ∧ g1 ∧ ¬b1) ∨ (¬r1 ∧ ¬g1 ∧ b1)
(and so on for all vertices)

Colouring conditions for edges:
¬(r1 ∧ r2) ∧ ¬(g1 ∧ g2) ∧ ¬(b1 ∧ b2) (and so on for all edges)

Satisfying truth assignment⇔ valid colouring
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Defining Reductions

Definition 3.1: Consider languages L1,L2 ⊆ Σ∗. A computable function f : Σ∗ →

Σ∗ is a many-one reduction from L1 to L2 if:

w ∈ L1 if and only if f (w) ∈ L2

{ we can solve problem L1 by reducing it to problem L2

{ only useful if the reduction is much easier than solving L1 directly
{ polynomial many-one reductions
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The Structure of NP

Idea: polynomial many-one reductions define an order on problems
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NP-Hardness und NP-Completeness

Stephen Cook

Leonid Levin

Richard Karp

Theorem 3.2 (Cook 1971; Levin 1973): All problems in NP can be polynomi-
ally many-one reduced to the propositional satisfiability problem (SAT).

• NP has a maximal class that contains a practically relevant problem

• If SAT can be solved in P, all problems in NP can

• Karp discovered 21 further such problems shortly after (1972)

• Thousands such problems have been discovered since . . .

Definition 3.3: A language is

• NP-hard if every language in NP is polynomially many-one reducible to it

• NP-complete if it is NP-hard and in NP
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Comparing Complexity Classes

Is any NP-complete problem in P?

• If yes, then P = NP

• Nobody knows{ biggest open problem in computer science

• Similar situations for many complexity classes

Some things that are known:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace ⊆ ExpTime ⊆ NExpTime

• None of these is known to be strict

• But we know that P ( ExpTime and NL ( PSpace

• Moreover PSpace = NPSpace (by Savitch’s Theorem)

(see TU Dresden course complexity theory for many more details)
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Comparing Tractable Problems

Polynomial-time many-one reductions work well for (presumably) super-polynomial
problems{ what to use for P and below?

Definition 3.4: A LogSpace transducer is a deterministic TM with three tapes:

• a read-only input tape

• a read/write working tape of size O(log n)

• a write-only, write-once output tape

Such a TM needs a slightly different form of transitions:

• transition function input: state, input tape symbol, working tape symbol

• transition function output: state, working tape write symbol, input tape move,
working tape move, output tape symbol or � to not write anything to the output
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The Power of LogSpace

LogSpace transducers can still do a few things:

• store a constant number of counters and increment/decrement the counters

• store a constant number of pointers to the input tape, and locate/read items that
start at this address from the input tape

• access/process/compare items from the input tape bit by bit

Example 3.5: Adding and subtracting binary numbers, detecting palindromes,
comparing lists, searching items in a list, sorting lists, . . . can all be done in L.
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Joining Two Tables in LogSpace

Input: two relations R and S, represented as a list of tuples

• Use two pointers pR and pS pointing to tuples in R and S, respectively

• Outer loop: iterate pR over all tuples of R

• Inner loop for each position of pR: iterate pS over all tuples of S
• For each combination of pR and pS, compare the tuples:

– Use another two loops that iterate over the columns of R and S
– Compare attribute names bit by bit
– For matching attribute names, compare the respective tuple values bit by bit

• If all joined columns agree, copy the relevant parts of tuples pR and pS to the output
(bit by bit)

Output: R ./ S

{ Fixed number of pointers and counters
(making this fully formal is still a bit of work; e.g., an additional counter is needed to move the input
read head to the target of a pointer (seek))
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LogSpace reductions

LogSpace functions: The output of a LogSpace transducer is the contents of its output
tape when it halts{ a partial function Σ∗ → Σ∗

Note: the composition of two LogSpace functions is LogSpace (exercise)

Definition 3.6: A many-one reduction f from L1 to L2 is a LogSpace reduction if
it is implemented by some LogSpace transducer.

{ can be used to define hardness for classes P and NL
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From L to NL

NL: Problems whose solution can be verified in L

Example: Reachability

• Input: a directed graph G and two nodes s and t of G

• Output: accept if there is a directed path from s to t in G

Algorithm sketch:

• Store the id of the current node and a counter for the path length

• Start with s as current node

• In each step, increment the counter and move from the current node to one of its
direct successors (nondeterministic)

• When reaching t, accept

• When the step counter is larger than the total number of nodes, reject
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Beyond Logarithmic Space

Propositional satisfiability can be solved in linear space:
{ iterate over possible truth assignments and check each in turn

More generally: all problems in NP can be solved in PSpace
{ try all conceivable polynomial certificates and verify each in turn

What is a “typical” (that is, hard) problem in PSpace?
{ Simple two-player games, and other uses of alternating quantifiers
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Example: Playing “Geography”

A children’s game:

• Two players are taking turns naming cities.

• Each city must start with the last letter of the previous.

• Repetitions are not allowed.

• The first player who cannot name a new city looses.

A mathematicians’ game:

• Two players are marking nodes on a directed graph.

• Each node must be a successor of the previous one.

• Repetitions are not allowed.

• The first player who cannot mark a new node looses.

Question: given a certain graph and start node, can Player 1 enforce a win (i.e., does he
have a winning strategy)?

{ PSpace-complete problem
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Example: Quantified Boolean Formulae (QBF)

We consider formulae of the following form:

Q1X1. Q2X2. · · · QnXn.ϕ[X1, . . . , Xn]

where Qi ∈ {∃,∀} are quantifiers, Xi are propositional logic variables, and ϕ is a
propositional logic formula with variables X1, . . . , Xn and constants > (true) and ⊥ (false)

Semantics:

• Propositional formulae without variables (only constants > and ⊥) are evaluated as
usual

• ∃X1.ϕ[X1] is true if either ϕ[X1/>] or ϕ[X1/⊥] are

• ∀X1.ϕ[X1] is true if both ϕ[X1/>] and ϕ[X1/⊥] are

Question: Is a given QBF formula true?

{ PSpace-complete problem

Markus Krötzsch, 17th Apr 2018 Database Theory slide 27 of 29



Example: Quantified Boolean Formulae (QBF)

We consider formulae of the following form:

Q1X1. Q2X2. · · · QnXn.ϕ[X1, . . . , Xn]

where Qi ∈ {∃,∀} are quantifiers, Xi are propositional logic variables, and ϕ is a
propositional logic formula with variables X1, . . . , Xn and constants > (true) and ⊥ (false)

Semantics:

• Propositional formulae without variables (only constants > and ⊥) are evaluated as
usual

• ∃X1.ϕ[X1] is true if either ϕ[X1/>] or ϕ[X1/⊥] are

• ∀X1.ϕ[X1] is true if both ϕ[X1/>] and ϕ[X1/⊥] are

Question: Is a given QBF formula true?

{ PSpace-complete problem

Markus Krötzsch, 17th Apr 2018 Database Theory slide 27 of 29



A Note on Space and Time

How many different configurations does a TM have in space (f (n))?

|Q| · f (n) · |Γ|f (n)

{ No halting run can be longer than this
{ A time-bounded TM can explore all configurations in time proportional to this

Applications:

• L ⊆ P

• PSpace ⊆ ExpTime
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Summary and Outlook

The complexity of query languages can be measured in different ways

Relevant complexity classes are based on restricting space and time:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace ⊆ ExpTime

Problems are compared using many-one reductions

{ see TU Dresden course Complexity Theory for further details and deeper insights

Open questions:

• Now how hard is it to answer FO queries? (next lecture)

• We saw that joins are in LogSpace – is this tight?

• How can we study the expressiveness of query languages?
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