
A Framework for Reasoning about Dynamic Axioms in Description Logics

Bartosz Bednarczyk1,2 , Stéphane Demri3 , Alessio Mansutti3
1Computational Logic Group, TU Dresden

2Institute of Computer Science, University of Wrocław
3LSV, CNRS, ENS Paris-Saclay, Université Paris-Saclay

Abstract
Description logics are well-known logical for-
malisms for knowledge representation. We propose
to enrich knowledge bases (KBs) with dynamic
axioms that specify how the satisfaction of state-
ments from the KBs evolves when the interpre-
tation is decomposed or recomposed, providing a
natural means to predict the evolution of interpre-
tations. Our dynamic axioms borrow logical con-
nectives from separation logics, well-known speci-
fication languages to verify programs with dynamic
data structures. In the paper, we focus on ALC
and EL augmented with dynamic axioms, or to their
subclass of positive dynamic axioms. The knowl-
edge base consistency problem in the presence of
dynamic axioms is investigated, leading to interest-
ing complexity results, among which the problem
for EL with positive dynamic axioms is tractable,
whereas EL with dynamic axioms is undecidable.

1 Introduction
Nowadays, more and more digital information is stored but
to make use of such data, it is common to employ logical for-
malisms to reason about knowledge and data. Description log-
ics (DLs) [Baader et al., 2017] are among such formalisms that
are intensively developed. In practical applications, the emerg-
ing data is changing rapidly. Hence, updating the knowledge
bases (KBs) [Liu et al., 2006] in an efficient way is crucial
for DLs in order to cope with real-life scenarios. Some effort
was put to incorporate updates in DLs, e.g. in [Liu et al., 2006;
De Giacomo et al., 2006; Drescher et al., 2009] or in [De Gia-
como et al., 2017] for OBDA systems. Most of the cited works
considered updates of the data layer (ABox) only, whereas we
advocate that the logical rules used for reasoning may change
too. Moreover, reasoning on updated ABoxes may require
enriching the underlying DL language with new constructs,
making unclear whether the existing DL reasoners can handle
such new languages [De Giacomo et al., 2006]. Thus, there is
still a need for novel DLs managing the updates on KBs.

In a broader perspective, the ability to specify in logi-
cal terms what are the effects of updating the models, is
quite ubiquitous in computer science, with examples rang-
ing from epistemic logics to specification languages for for-

mal verification of programs. Prominent examples are logics
of public announcements [Plaza, 1989] and separation log-
ics [Reynolds, 2002]. The industrial success of separation
logics, see e.g. [Distefano et al., 2019], is partly due to its
ability to reason in a modular way on disjoint parts of the
memory (by the means of the separating conjunction ∗ and
the separating implication −∗). Roughly speaking, the opera-
tor ∗ decomposes the memory into two disjoint pieces and
evaluates formulae on each piece separately. The operator −∗
asserts the behaviour of a heap after extending it with a new
part satisfying certain properties. Though introduced in com-
pletely different contexts, some efforts on relating separation
logics with DLs can be found in [Georgieva and Maier, 2005;
Calvanese et al., 2014]. Many other logics concerning up-
dates exist, e.g. sabotage and one-agent refinement modal log-
ics [van Benthem, 2005; Bozzelli et al., 2013].

Motivations. Motivated by a lack of frameworks to specify
evolution of interpretations in DLs, we would like to develop
such formalisms by involving well-studied connectives from
separation logics [Reynolds, 2002]. By contrast to the men-
tioned works on ABox updates, our framework aims at speci-
fying how the satisfaction of GCIs or assertions evolves when
the current interpretation is modified. Such an approach may
benefit when ontologies are enriched by GCIs and assertions,
either manually by the users or by automatic means. Herein,
we plan to settle the foundations for such a framework.

Our contribution. We enrich KBs with dynamic axioms
involving connectives from separation logics, that specify how
the satisfaction of statements from the KBs evolves when the
interpretation is decomposed or recomposed.

We introduce the notion of dynamic axioms (DAs) in KBs,
endowing the set of interpretations with a binary composition
operator ⊕, specifying that J = I1 ⊕ I2 holds when J can
be decomposed into I1 and I2. In this work, the operator ⊕
affects roles only, namely it decomposes each role into two dis-
joint pieces while keeping domains and the interpretation of
concept names within the obtained interpretations unchanged.
Our DAs feature dynamic connectives ∗ and −~, respectively
to decompose an interpretation and to augment it with a new
disjoint interpretation. We distinguish the case of positive (i.e.
negation-free) DAs. Throughout the paper, we study the KB
consistency problem in the new setting.

For a logic L, we write LD (resp. LD+) to denote its ex-

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1681

tension with DAs (resp. positive DAs). We show that con-
sistency for ALCD+ KBs remains EXPT IME-complete by
a translation into a known extension of ALC. Moreover, the
consistency forALCD KBs is proved undecidable by a reduc-
tion from the concept satisfiability of ALC extended by role-
value maps. Surprisingly we show that undecidability trans-
fers to ELD. It is done by encoding concept negations within
DAs. On the positive side, ELD+ is shown to be tractable,
which makes it promising to implement.

2 A Framework with Dynamic Axioms
Basic DLs. We recall standard ingredients of the description
logics (DLs) ALC and EL [Baader et al., 2017], and then
we present our new framework for reasoning about dynamic
axioms. We fix countably infinite mutually disjoint sets of
individual names NI, concept names NC, and role names NR.
The complex concepts of ALC are built from the grammar:

C,C ′ := > | A | ¬C | C u C ′ | ∃r.C,
where A ∈ NC is a concept name and r ∈ NR is a role
name. The semantics ofALC concepts is defined via interpre-
tations I = (∆I , ·I) composed of a non-empty set ∆I called
the domain of I and a function ·I mapping individual names
to elements of ∆I , concept names to subsets of ∆I , and role
names to subsets of ∆I ×∆I . This mapping is extended to
complex concepts, according to the clauses below:

>I def
= ∆I , (¬C)I

def
= ∆I \ CI , (C1 u C2)I

def
= CI1 ∩ CI2 ,

(∃r.C)I
def
= {d ∈ ∆I | ∃ e s.t. e ∈ CI , (d, e) ∈ rI}.

We use ⊥ def
= ¬>, ∀r.C def

= ¬∃r.¬C, C tC ′ def
= ¬(¬C u ¬C ′).

An assertion is an expression of the form C(a), r(a, b)
for a, b ∈ NI, C a complex concept and r ∈ NR. A gen-
eral concept inclusion (GCI) has the form C1 v C2. A state-
ment is either a GCI, a concept assertion C(a) or a role asser-
tion r(a, b). The satisfaction of a statement is recalled below.

I |= C1 v C2
def⇔ CI1 ⊆ CI2 ,

I |= C(a)
def⇔ aI ∈ CI , I |= r(a, b)

def⇔ (aI , bI) ∈ rI .
An ALC knowledge base K = (T ,A) consists of a finite
set A (called ABox) of assertions and a finite set T (called
TBox) of GCIs. An interpretation I satisfies the KBK=(T ,A)
(or I is a model of K, written: I |= K) if it satisfies all state-
ments of A and T . A knowledge base K is called consistent
if it has a model. EL is defined as the restriction of ALC to
the concept constructor u, to the existential restriction ∃, to >
and to the concept names. Definitions of EL knowledge bases
are lifted from ALC knowledge bases in an obvious way.
Reasoning with DBoxes. We introduce axioms specifying
properties of updated interpretations. We enrich the set of in-
terpretations I with a composition operator ⊕, i.e. a partial
function ⊕ : I× I→ I satisfying two natural properties:
(com) ⊕ is commutative, i.e. if I ⊕J is defined, then J ⊕I

is defined and equal to I ⊕ J .
(assoc) ⊕ is associative, i.e. if I ⊕ (J ⊕ H) is defined,

then (I ⊕ J)⊕H is defined and equal to I ⊕ (J ⊕H).
The function ⊕ is conceived as an operator to update dynam-
ically the interpretations. For instance, when J = I1 ⊕ I2
holds, we say that adding I2 to the interpretation I1 leads to

the new interpretation J , or alternatively, J can be decom-
posed into I1 and I2. In order to illustrate our approach, in
this paper, only a specific composition operator is considered.

Whereas ALC KBs provide global constraints about the in-
terpretations, we introduce dynamic boxes D (DBoxes) that
specify how the satisfaction of statements evolve when the
current interpretation is augmented or decomposed in the
sense of the operator ⊕. For instance, I may not satisfy the
GCI (∃r.> v ∃s.>) but there is an additional interpreta-
tion J such that I ⊕ J is defined and satisfies ∃r.> v ∃s.>.
Typically, J contains new pairs of domain elements for the
role s. Below, we define dynamic boxes as finite sets of dy-
namic axioms and the above situation can be specified by

¬(∃r.> v ∃s.>) u (>−~ (∃r.> v ∃s.>)).
The operator −~ in U1 −~ U2 states that there is an interpre-
tation satisfying U1 and whose composition with the current
interpretation is defined so that the resulting (augmented) in-
terpretation satisfies U2. Similarly, we consider the operator ∗
so that U1 ∗U2 holds true when I can be decomposed into J1
and J2 (i.e. I = J1⊕J2), J1 satisfies U1 and J2 satisfies U2.

The set of positive dynamic axioms (PDAs) is defined by
U,V := > | C(a) | r(a, b) | CvD

| U t V | U u V | U ∗ V | U−~ V.
Consequently, positive dynamic axioms are built from GCIs,
assertions and are closed under u, t and under the dynamic
connectives ∗ and−~ (no negation). If the underlying DL is re-
stricted to a subset of concept constructors (as for instance EL
excludes t), the set of positive dynamic axioms is restricted
accordingly. In full generality, dynamic axioms (DAs) are de-
fined as Boolean combinations of positive dynamic axioms:

U, V ::= U | ¬U | U t V | U u V .
A (resp. positive) dynamic box (DBox) D is defined as a finite
set of (resp. positive) dynamic axioms. Note that negation ¬
does not occur in the scope of ∗ and−~ and can therefore occur
only on the top of positive dynamic axioms.

We define the satisfaction relation |= between an interpre-
tation and a dynamic axiom in the usual way for assertions,
GCIs and for Boolean connectives. Here are the left clauses.
I |= U1 ∗ U2 iff there are I1, I2 s.t. I = I1 ⊕ I2,

I1 |= U1 and I2 |= U2

I |= U1 −~ U2 iff there is I ′ s.t. I ⊕ I ′ is defined,
I ′ |= U1 and I ⊕ I ′ |= U2.

The dynamic connectives ∗ and −~ are exactly those used
in separation logic [Reynolds, 2002; Vafeiadis and Parkin-
son, 2007] where ∗ is known as the separating conjunction
and −~ is known as the septraction. A KB with dynamic ax-
ioms is a triple Kda = (T ,A,D) where (T ,A) forms a KB
and D is a DBox. Similarly to the case of classical KBs, we
write I |= Kda (and say that I is a model ofKda) if for all the
statements α from (T ∪ A ∪ D), we have I |= α. A KB Kda
is said to be consistent if it has a model. Thus, the consistency
problem is defined also for the dynamic setting.

Below, we introduce the interpretation composition that is
used throughout the paper. We write I = I1 + I2 when-
ever three interpretations I , I1 and I2 share the same domain,
agree on the interpretation of the individual names and con-
cept names, and for all r ∈ NR, we have rI = rI1] rI2 ,

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1682

where] denotes disjoint union. Naturally, other operators
could be investigated depending on the application domain.
Example 1. Let us consider a simple KB Kda = (T ,A,D)
describing basketball teams and (possibly injured) basketball
players. Let us assume that T contains the GCIs
∃has injury.Injury v Player, ∃is drafted.Team v Player,

∃has injury.Injury u ∃is drafted.Team v ⊥,
essentially stating that no injured player can be drafted by a
team. For the data layer, we suppose that the ABox contains
has injury(“Zion”, “knee”). We can infer in a natural way
that there is an evolution where the player “Zion” is drafted
by the team “Pelicans” by asking for the consistency of Kda
in the case where D contains the dynamic axiom
> ∗ (>−~ is drafted(“Zion”, “Pelicans”) u

d
α∈T α).

Notably, an interpretation I satisfying Kda can be decom-
posed into I ′ + J where I ′ |= has injury(“Zion”, “knee”).
Then, J (the interpretation where “Zion” is not injured)
is augmented so that is drafted(“Zion”, “Pelicans”) holds,
leading to the satisfaction of the dynamic axiom above. The
PDA

d
α∈T α is added to guarantee that J satisfies the TBox.

Given a description logic L (in particular specifying a set
of concepts and a set of roles), we write LD+ to denote its
extension with positive dynamic axioms based on the concepts
and roles from L, the concept constructors from L and based
on (I,+). Similarly, we write LD to denote its extension with
dynamic axioms and based on (I,+). We write CONS(L) to
denote the knowledge base consistency problem for L. In the
rest of the paper, we investigate the decidability status or the
computational complexity of the knowledge base consistency
problem for the logics ELD+, ELD, ALCD+ and ALCD.

3 A Toolkit for Positive Dynamic Axioms
In this section, we provide developments about the consistency
of positive dynamic axioms U that are helpful to characterise
the complexity of CONS(ALCD+) and CONS(ELD+). Be-
low, L is either ALCD+ or ELD+. The culminating result is
forthcoming Lemma 1 that states how the consistency of U
can be expressed as the existence of a family of interpretations
satisfying disjointness constraints.
Axioms as finite trees. Positive dynamic axioms can be
represented as labelled finite binary trees using the standard
tree encoding for terms. We recall that a binary tree Tree,
which may contain nodes with (only) one child, is a non-
empty subset of {1, 2}∗ such that, for all n ∈ {1, 2}∗ and i ∈
{1, 2}, n · i ∈ Tree implies n ∈ Tree and, n · 2 ∈ Tree im-
plies n · 1 ∈ Tree. The elements of Tree are called nodes.
The root of Tree is ε, i.e. the empty word. A (positive) dy-
namic axiom U can be represented by a labelled finite binary
tree fU : TreeU → sub(U), where
• sub(U) is the set of subaxioms of U, defined as usually.

For instance, for U = r(a, b)u(r(a, b)−~D(b)), we have
sub(U) = {r(a, b), r(a, b)−~D(b), D(b),U}.
• TreeU is the tree satisfying the following constraints:

– fU(ε) = U; if fU(n) is atomic, then n is a leaf,
– if fU(n) = U1⊗U2 for some binary⊗, then n·1 and

n·2 are in TreeU with fU(n·1)=U1 and fU(n·2)=U2.

Nodes associated with interpretations. Some nodes of
TreeU will be associated with interpretations and constraints
between those interpretations should be satisfied (see also
the definition of DisjU below as well as Lemma 1). We
write IntU to denote the smallest subset of TreeU such that
ε ∈ IntU and n · 1, n · 2 ∈ IntU, for n having fU(n) of the
form either U1 −~ U2 or U1 ∗ U2. For example, with U? =
(U1−~U2)u(U′1−~U′2), we have IntU? ⊇ {ε, 1·1, 1·2, 2·1, 2·2}.
Informally speaking, the nodes in IntU correspond to subax-
ioms of U that require the introduction of different interpre-
tations. Thus, elements of IntU are implicitly associated with
interpretations that relate them, as formally described below
with the definition of DisjU. Given n ∈ TreeU, we write i(n) to
denote the maximal prefix of n that is in IntU. With U? above,
we have i(1) = ε and i(2) = ε but i(1·1) = 1·1.

Disjointness axioms. We define the set of disjointness ax-
ioms DisjU using the nodes from IntU. As stated above,
each element of IntU is associated with an interpretation. Be-
cause of this, these elements must satisfy expressions of the
form n = n1 + n2, that reflect constraints between the corre-
sponding interpretations. We overload the symbol ‘+’ but we
hope that this does not lead to any confusion. The set DisjU is
the smallest set of disjointness axioms of the form n = n1+n2
with n, n1, n2 ∈ IntU such that

• if fU(n) = U1 ∗ U2 then i(n) = (n·1)+(n·2) ∈ DisjU,
• if fU(n) = U1 −~ U2 then (n·2) = (n·1)+i(n) ∈ DisjU,
• if n = n1 + n2 ∈ DisjU then n = n2 + n1 ∈ DisjU.

As the dynamic connectives ∗ and −~ have an existential
flavour, satisfaction of U on an interpretation implies the
existence of several interpretations constrained by composi-
tions. The set of constraints between all these interpretations
is represented by the set DisjU of disjointness axioms of the
form n = n1 + n2. For instance, with U? above, we have
DisjU? ⊇ {1·2 = ε+ 1·1, 2·2 = ε+ 2·1, 1·2 = 1·1 + ε}.

More precisely, the sets DisjU and IntU are related as follows.
A map g : IntU → I is said to be a complete witness for U iff
for all n ∈ IntU, we have g(n) |= fU(n) and if n = n1 + n2 is
in DisjU, then g(n) = g(n1) + g(n2). When g is a complete
witness, g(ε) |= U. Not only g(ε) is a model for U but g
determines completely how interpretations are decomposed
or recomposed to guarantee the satisfaction of g(ε) |= U.

Lemma 1. Let U be a positive dynamic axiom in L. U is
consistent iff there is a complete witness for U.

Note that the lemma can be applied to ELD+ andALCD+.
The “only if” part is obvious, since g(ε) |= U. For the “if” di-
rection, the proof is by induction on the number of occurrences
of either ∗ or −~ in U. Actually, we can show that if I |= U,
then there is a complete witness for U with g(ε) = I . When U
is ∗/−~-free, IntU = {ε} and DisjU is empty, which obviously
leads to the conclusion. Otherwise, we perform a standard
case analysis, the details are omitted.

4 Reasoning on ALC with Dynamic Axioms
We study the effect of adding dynamic boxes to ALC, result-
ing in description logics ALCD+ and ALCD.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1683

4.1 Positive Dynamic Axioms for ALC
Below, we show that the consistency problem for ALCD+

is EXPT IME-complete, knowing that EXPT IME-hardness
is inherited from ALC. The upper bound EXPT IME is ob-
tained by internalising CONS(ALCD+) within the descrip-
tion logic ALCObself

reg (a.k.a. ZO) for which knowledge base
consistency is known to be in EXPT IME [Calvanese et al.,
2009, Theorem 3.11]. The DL ZO extends ALC in many di-
rections, but for our purposes, we recall the features that are
essential for our reduction. ZO contains the universal role T
(i.e. TI = ∆I ×∆I), nominals {o} (i.e. {o}I is a singleton),
and complex roles of the form r, ((r1∪r2)\r), (r \ (r1∪r2))
and (r1 ∩ r2). For instance, expressing rI = rI1] rI2 can be
done with the following set of GCIs [r = r1] r2] in ZO:

{> v ∀(r1 ∩ r2).⊥,> v ∀((r1 ∪ r2) \ r).⊥,> v ∀(r \ (r1 ∪ r2)).⊥}

Let Kda = (T ,A,D) be an ALCD+ knowledge base with
positive dynamic axioms. We write U? to denote the posi-
tive dynamic axiom

d
α∈T ∪A∪D α and R to denote the set of

role names occurring in U?. Notice that Kda and the ALCD+

knowledge base (∅, ∅, {U?}) are equiconsistent. It is time to
take advantage of Section 3, and rely on the notions of IntU?

and DisjU? therein introduced. The correctness of the construc-
tion is then guaranteed by Lemma 1. Given n ∈ IntU? , we
write Cn to denote the concept obtained from C but in which
each role name r is substituted by a new role name rn (nothing
is done on the concept names). Intuitively, given a complete
witness g for U?, the ZO interpretation of rn corresponds
to the interpretation of r in g(n), consistently with the trans-
lation τ defined below. Assertions and GCIs are translated
as usually in the presence of the universal role and nominals,
whereas, as a peculiarity, the constraints about disjointness are
stated in the target ZO TBox (see the last clause).

• τ(C(a), n)
def
= ∀T.(¬{oa} t Ci(n)),

• τ(r(a, b), n)
def
= ∀T.(¬{oa} t ∃ri(n).{ob}),

• τ(C v D, n)
def
= ∀T.(¬Ci(n) tDi(n)),

• τ(U⊗V, n)
def
= τ(U, n ·1)⊗ τ(V, n ·2) with⊗ ∈ {t,u}.

• τ(U⊗V, n)
def
= τ(U, n ·1)u τ(V, n ·2) with⊗ ∈ {∗,−~}.

In the first three cases above, we rely on the fact that for every
I = (∆I , ·I), if CI ⊆ DI then (∀T.¬C tD)I = ∆I , else
(∀T.¬C tD)I = ∅. The correctness of τ is stated below.
Lemma 2. Kda is consistent iff (T ,A) is consistent with T =⋃
{[rn = rn1]rn2] | n = n1+n2 ∈ DisjU? , r ∈ R} andA =
{τ(U?, ε)(a)}, where a is an arbitrary individual name.

In the proof, an interpretation satisfying (T ,A) can be read
as a complete witness for U and by Lemma 1 this entails the
consistency of Kda. The converse direction is proved analo-
gously. As the knowledge base in ZO is of polynomial-size
in the size of Kda, we get the EXPT IME upper bound.
Theorem 1. CONS(ALCD+) is EXPT IME-complete.

4.2 Undecidability of CONS(ALCD)
We have seen that CONS(ALCD+) is EXPT IME-complete.
By contrast, we show that adding negation at the top-level of
PDAs leads to the undecidability of CONS(ALCD).

To start with, we consider the well-known extension
of ALC with complex role inclusion axioms (CRIAs) of the
form r1 ◦ · · · ◦ rn v s, where I |= r1 ◦ · · · ◦ rn v s
iff rI1 ◦ · · · ◦ rIn ⊆ sI . An RBox R is a finite collec-
tion of CRIAs. A concept C in ALC is satisfiable with
respect to the RBox R iff there is I such that CI 6= ∅
and for all α ∈ R, we have I |= α. Without regularity
conditions on the RBox R, as considered in [Demri, 2001;
Horrocks and Sattler, 2004], satisfiability of ALC concepts
with respect to RBoxes made of arbitrary CRIAs is undecid-
able, see e.g. [Baldoni et al., 1998]. This is precisely the prob-
lem reduced to CONS(ALCD).

In order to encode a CRIA of the form r1 ◦ · · · ◦ rn v s
into a dynamic axiom, we take advantage of auxiliary and
fresh role names t, t1, t2 interpreted by the empty relation.
Note that GCIs are atomic positive dynamic axioms and the
GCI ∃t.> v⊥ holds only in interpretations I such that tI = ∅.
To better reflect this, we use t ≡ ∅ to denote ∃t.> v⊥.

Let C be a concept in ALC written with role names oc-
curring in {s1, . . . , sm}. As a first step for the translation,
we introduce a negation-free dynamic axiom that is roughly
equivalent to ¬(C v⊥), i.e. it is satisfied only by interpreta-
tions I such that CI 6= ∅. As it is negation-free, this dynamic
axiom can be then used under the scope of −~ and ∗. In or-
der to define such a dynamic axiom, we rely on an auxiliary
role name t (not occurring in C). Then, we write 〈C 6≡t⊥〉 to
denote the (positive) dynamic axiom below:(d

r∈{s1,...,sm}(r ≡ ∅)
)
−~ (> v ∃t.C)

Informally, under the assumption that t is interpreted vacu-
ously, this formula ensures that at least one domain element
satisfies C (because the disjoint new interpretation added
through−~ can be defined so that every domain element points
to some element satisfying C, via t).

Lemma 3. Let I be an interpretation such that tI = ∅ holds.
Then CI is non-empty iff I |= 〈C 6≡t⊥〉 holds.

Let us explain now how to encode a CRIA ~r v s, where
~r = r1 ◦ · · · ◦ rn, starting with its negation. We write
V (~r, s, t1, t2) to denote the dynamic axiom below:

(
l

r∈{r1,...,rn,s}

(r≡∅))−~
(
t2 ≡ ∅ u〈∃r1· · ·∃rn∃t1.>u¬∃s.∃t1.>6≡t2⊥〉

)
Let us consider an interpretation I such that tI1 = tI2 = ∅. In-
formally, this dynamic axiom simply states that when (d, e) ∈
(r1 ◦ · · · ◦ rn)I but (d, e) 6∈ sI for some d, e, it is possible
to augment tI1 with the interpretation J such that (d, f) ∈
(r1 ◦ · · · ◦ rn ◦ t1)I+J for some f but (d, f ′) 6∈ (s ◦ t1)I+J

for all f ′. Also, observe that V (~r, s, t1, t2) uses negation
only in ALC subconcepts (see ¬∃s.∃t1.>). The negation of
V (~r, s, t1, t2) captures the concept of CRIAs as follows.

Lemma 4. Let I be s.t. tI1 = tI2 = ∅. Let ~r v s be a CRIA,
where ~r = r1 ◦ · · · ◦ rn. I |= ¬V (~r, s, t1, t2) iff I |= ~r v s.

Consequently, given an ALC concept C, an RBox R and
an individual name a, C is satisfiable with respect toR iff the
following dynamic axiom in ALCD is consistent:
C(a) u (t1 ≡ ∅) u (t2 ≡ ∅) u

d
~rv s ∈ R ¬V (~r, s, t1, t2).

Theorem 2. CONS(ALCD) is undecidable.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1684

5 Reasoning on EL with Dynamic Axioms
Below we investigate the effects of adding DAs to EL [Baader
et al., 2005], ranging from tractability to undecidability.

5.1 Positivity for EL Leads to Tractability
Since assertions and GCIs are atomic PDAs, we can restrict
ourselves to checking the consistency of a DBox. Negation is
not allowed in EL, hence any EL KB is trivially consistent.
However, the consistency problem of EL with positive DAs
is no longer trivial. The following example demonstrates a
way to obtain an inconsistent ELD+ knowledge base: U† =
r(a, b)u(r(a, b)−~(> v >)). Inconsistency happens because,
if I |= U†, then there are I ′ and I ′′ such that I ′ = I+I ′′ and
I ′′ |= r(a, b). Moreover, as I |= U†, we have I |= r(a, b),
which leads to a contradiction because I and I ′′ have dis-
joint role interpretations. Below, we show that the inconsis-
tency of PDAs can only be due to a generalisation of such
a disjointness constraint. We provide an algorithm to decide
CONS(ELD+) in polynomial time and we give technical de-
velopments for proving the correctness of our complexity char-
acterisation. The proof for the adequateness of our algorithm
reveals to be the difficult part. Let U be a PDA. In Figure 1, we
define a simple proof system (parameterised by U) that is es-
sential to characterise the consistency status of U. It takes care
of the disjointness axioms in order to conclude whether r(a, b)
holds in the interpretation g(n). The calculus can derive either
inconsistency ⊥ or expressions of the form either n : r(a, b)
or n : ¬r(a, b) where n ∈ IntU (such expressions are also
called statements below). The expression n : r(a, b) is in-
tended to state that the interpretation associated with n sat-
isfies r(a, b). We write U ` n : r(a, b) when r(a, b) can be de-
rived from the calculus with i(·) and DisjU computed from U
(similarly for n : ¬r(a, b) and ⊥).

Before presenting the first property of the proof system,
given a positive dynamic axiom U, we writeRA(U) to denote
the set of role assertions r(a, b) occurring in U. A complete
snapshot with respect to U is a map f : IntU × RA(U) →
{0, 1} such that for all r(a, b) ∈ RA(U),

• for all n ∈ IntU, U ` n : r(a, b) implies f(n, r(a, b))=1,
and U ` n : ¬r(a, b) implies f(n, r(a, b)) = 0,
• f(n, r(a, b)) = f(n1, r(a, b)) + f(n2, r(a, b)) ≤ 1, when-

ever n = n1 + n2 ∈ DisjU.

Roughly speaking, a complete snapshot determines which
pairs of domain elements are related by the interpretation of
role names occurring in U (assuming the unique name as-
sumption can be enforced, which will be the case). Obviously,
f(n, r(a, b)) = 1 stands for g(n) |= r(a, b) where g is a com-
plete witness. However, if r, a, and b occur in U but not the role
assertion r(a, b), then there is no need to determine whether
the interpretation associated with n satisfies r(a, b).

Lemma 5. Let U be a positive dynamic update s.t. U 6`⊥.
Then, there is a complete snapshot with respect to U.

The constructive proof of Lemma 5 consists in building
the complete snapshot by first using the statements α such
that U ` α, then to set f(ni, r(a, b)) to 1 when n = n1 + n2 ∈
DisjU, f(n, r(a, b)) = 1, neither f(n1, r(a, b)) nor f(n2, r(a, b))
is defined, and ni � n3−i. After removing these ambiguities,

n : r(a, b) n : ¬r(a, b)
⊥

fU(n) = r(a, b)

i(n) : r(a, b)

n = n1 + n2 ∈ DisjU ni : r(a, b)

n : r(a, b)

n = n1 + n2 ∈ DisjU ni : r(a, b)

n3−i : ¬r(a, b)
n = n1 + n2 ∈ DisjU n : r(a, b) ni : ¬r(a, b)

n3−i : r(a, b)

n = n1 + n2 ∈ DisjU n1 : ¬r(a, b) n2 : ¬r(a, b)
n : ¬r(a, b)

n = n1 + n2 ∈ DisjU n : ¬r(a, b)
ni : ¬r(a, b)

Figure 1: A simple proof system (i ∈ {1, 2}).

f is completed so that all the remaining values are 0. One
can check that f is well-defined (in particular, it never hap-
pens that f(n, r(a, b)) = b with b ∈ {0, 1} and then set to
f(n, r(a, b)) = (1− b)) and f is a complete snapshot.
Lemma 6 (Correctness). Let U be a PDA s.t. U ` n : r(a, b)
(resp. U ` n : ¬r(a, b)). For all complete witnesses g for U,
we have g(n) |= r(a, b) (resp. g(n) 6|= r(a, b)).

As expected, the proof is by induction on the length of the
derivation of U ` α and by taking advantage of Lemma 1.
Consequently, if U `⊥, then any knowledge base Kda =
(T ,A,D) such that U ∈ D is inconsistent. The proof system
in Figure 1 is also complete, as stated below.
Lemma 7 (Characterisation). Let Kda = (T ,A,D) be a
knowledge base with positive dynamic axioms. Kda is con-
sistent iff ⊥ cannot be derived from U =

d
α∈T ∪A∪D α.

The assertions C(a) play no role in the proof system and
therefore such assertions have no influence on the derivability
of⊥. This can be explained by the fact that any EL knowledge
base (without dynamic axioms) is consistent. Our character-
isation is simple as it is sufficient to check the derivability
of ⊥. Though one direction of the proof is immediate from
Lemma 6, the other direction requires to build safely an inter-
pretation satisfyingKda. To do so, we collect all the assertions
and GCIs occurring in U and we know that their conjunction is
consistent, say in some I satisfying the unique name assump-
tion for all the individual names occurring in U. From each do-
main element interpreting one such individual name, I is un-
ravelled from it (using standard unravelling, see e.g. [Baader
et al., 2017]) and copy a number of times polynomial in the
size of U. Unravellings and copies are performed to preserve
the initial satisfaction on I whereas the different copies are
designed so that we have enough edges between the domain
elements to apply the dynamic connectives ∗ and −~. The last
step consists in deciding how to make true the assertions from
RA(U). Lemma 5 is essential to make it in a consistent way.
Indeed, the domain elements interpreting individual names
occurring in U cannot be copied.
Theorem 3. CONS(ELD+) is in PT IME.

Given Kda = (T ,A,D), we build the equiconsistent
PDA U =

d
α∈T ∪A∪D α. The computations of TreeU, IntU

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1685

and DisjU can be done in PT IME. Determining which state-
ments are derivable from U can be also done in PT IME, by
using a saturation algorithm and observing that the number of
potential derivable statements is polynomial too.

5.2 Why Being Positive is Always Better
In this section, we show that CONS(ELD) is undecid-
able, by refining the arguments for the undecidability of
CONS(ALCD). The main difficulty is to encode concept nega-
tion with the help of dynamic axioms (not necessarily positive)
but when the concepts are restricted to those from EL. Techni-
cal developments are mainly based on those from Section 4.2.
Below, we pinpoint the main differences.

We use an auxiliary vocabulary including the concept
name Emp and the role names t, t1, t2, t3 that are reserved
to define auxiliary concepts and dynamic axioms. W.l.o.g., we
assume that these names do not occur in our instances ofALC
augmented with CRIAs. Roughly speaking, in the translation,
we force Emp to behave as ⊥ from ALC. Recall that ⊥ is
not an EL concept, and it is heavily used in the undecidabil-
ity proof from Section 4.2. To provide the right semantics
of Emp, we introduce the dynamic axiom [Emp ≡t⊥] de-
fined as [Emp ≡t⊥]

def
= ¬

(
>−~ (> v ∃t.Emp)

)
.

Lemma 8. For every I, EmpI = ∅ iff I |= [Emp ≡t⊥].
So, for any arbitrary EL concept C, assuming that I |=

[Emp ≡t⊥], we have I |= C v Emp iff CI = ∅. Moreover,
Emp allows us to redefine in ELD 〈C 6≡t⊥〉 introduced for
ALCD : it is sufficient to substitute ⊥ with Emp. Indeed,
assuming that the role names occurring in C are from R, and
t 6∈ R, then the ELD PDA below
〈C 6≡t⊥〉

def
= (

d
r∈R(∃r.> v Emp))−~ (> v ∃t.C)

satisfies the following lemma (analogous to Lemma 3).
Lemma 9. Let I be an interpretation such that EmpI = ∅
and tI = ∅. We have I |= 〈C 6≡t⊥〉 iff CI 6= ∅.

The dynamic axiom V (~r, s, t1, t2) introduced in Sec-
tion 4.2 to express a CRIA ~r v s can be translated into ELD.
Again, every occurrence of ⊥ is substituted with Emp. How-
ever, this is not enough as we need to deal with the negated
concept ¬∃s.∃t1.> from V (~r, s, t1, t2) in Section 4.2. To do
so, we introduce an auxiliary role name t3 and simply state
that the first projections of (s ◦ t1)I and rI3 are disjoint, but
this is not the case for (r1◦· · ·◦rn◦t1)I and rI3 . The resulting
formula V (~r, s, t1, t2, t3) is defined as follows:

(
l

r∈{r1,...,rn,s,t3}

∃r.> v Emp)−~
(
((∃t2.> u ∃s.∃t1.>) v Emp) u
〈∃r1. . . . ∃rn.∃t1.> u ∃t2.> 6≡t3⊥〉

)
.

Lemma 10 (closely related to Lemma 4) states that this for-
mula behaves as its homonymous formula in ALCD.
Lemma 10. Let I be an interpretation s.t. EmpI = ∅ and
for every i ∈ {1, 2, 3} tIi = ∅. Let ~r v s be a CRIA, where
~r = r1 ◦ · · · ◦rn. Then, I |= ¬V (~r, s, t1, t2, t3) iff I |= ~r v s.

Now, let C be an ALC concept, R be an RBox and a be
an arbitrary individual name. Let us assume for the moment
that the assertion C(a) can be translated into an equivalent
DA τ(C(a)) of ELD (shown below). Then, by relying on the
formulae defined previously, we conclude that C is satisfiable
with respect toR iff the DA in ELD below is consistent:

τ(C(a)) u [Emp ≡t1⊥] u
d
i∈[1,3](∃ti.> v Emp)

u
d
~rvs∈R¬V (~r, s, t1, t2, t3).

It remains to explain how to replace C(a) by a DA τ(C(a)) in
ELD, while preserving the equivalence. We use the renaming
technique [Scott, 1962] and rely on the presence of GCIs in
DAs. Let D1, . . . , Dα be the subconcepts of C, say D1 = C.
We use new concept names B1, . . . , Bα not appearing in C.
The idea is to enforce a dynamic axiom Ui, for all i ∈ [1, α],
that glues the new concept names in a way that Bi is shown
equivalent to Di. Formally, these DAs are computed as fol-
lows (C1 ≡ C ′1 denotes (C1 v C ′1) u (C ′1 v C1)).
• If Di is a concept name or >, then Ui

def
= (Bi ≡ Di),

• If Di = Dj uDk then Ui
def
= (Bi ≡ (Bj uBk)),

• If Di = ∃rk.Dj then Ui
def
= (Bi ≡ ∃rk.Bj),

• Ui
def
= [> v Bi tBj]t1 u ¬

(
>−~ (> v ∃t1.(Bi uBj))

)
whenever Di = ¬Dj , where [> v Bi tBj]t1 denotes

¬
(
∃t1.> v Emp−~ (〈∃t2.> 6≡t1⊥〉u

(Bi u ∃t2.> v Emp) u (Bj u ∃t2.> v Emp))
)
.

We define τ(C(a)) as B1(a) u (
d
i∈[1,α] Ui), completing the

definition of the equiconsistent ∗-free dynamic axiom. We are
now in position to state a striking undecidability result.
Theorem 4. CONS(ELD) is undecidable (even without ∗).

6 Concluding Remarks
We introduced a framework for enriching knowledge bases
with a dynamic box (DBox) that specifies how the satisfaction
of GCIs and assertions evolves when the interpretation is mod-
ified. Its dynamic connectives ∗ and−~ are imported from sep-
aration logics. Such an incursion of separation logics in DLs is
completely new. The framework can be developed in many di-
rections but we focused on a few landmark problems. Whereas
we have shown that CONS(ALCD+) is EXPT IME-complete
and CONS(ELD+) is in PT IME, the extensions with dynamic
axioms admitting negation at the top level lead to undecidable
problems. The PT IME upper bound for CONS(ELD+) is ob-
tained using a simple algorithm thanks to a characterisation
whose proof requires a fine-tuned model-theoretical construc-
tion. Besides, we showed that the satisfiability problem for
ALC with respect to complex role inclusion axioms can be
reduced to CONS(ALCD), leading to undecidability. More
surprisingly, CONS(ELD) is undecidable too (which amounts
to encode concept negation).

Though updates for ABoxes have been already investigated,
see e.g. [Liu et al., 2006; De Giacomo et al., 2006], our frame-
work is original as it concerns updates in interpretations. In
the paper, we only considered (de)composition of roles and
the only reasoning task was about knowledge base consis-
tency. Other variants are possible (domain (de)composition,
subsumption problems, etc.) in particular related to alternative
interpretations for the composition operator.

Acknowledgements
B. Bednarczyk is supported by ERC Consolidator Grant
771779 (DeciGUT). S. Demri and A. Mansutti are supported
by the Centre National de la Recherche Scientifique (CNRS).

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1686

References
[Baader et al., 2005] F. Baader, S. Brandt, and C. Lutz. Push-

ing the EL envelope. In IJCAI’05, pages 364–369. Profes-
sional Book Center, 2005.

[Baader et al., 2017] F. Baader, I. Horrocks, C. Lutz, and
U. Sattler. An Introduction to Description Logic. Cam-
bridge University Press, 2017.

[Baldoni et al., 1998] M. Baldoni, L. Giordano, and
A. Martelli. A tableau calculus for multimodal logics and
some (un)decidability results. In TABLEAUX’98, volume
1397 of LNAI, pages 44–59. Springer, 1998.

[Bozzelli et al., 2013] L. Bozzelli, H. van Ditmarsch, and
S. Pinchinat. The complexity of one-agent refinement
modal logic. In IJCAI’13, pages 2977–2981, 2013.

[Calvanese et al., 2009] D. Calvanese, T. Eiter, and M. Ortiz.
Regular path queries in expressive description logics with
nominals. In IJCAI’09, pages 714–720, 2009.

[Calvanese et al., 2014] D. Calvanese, T. Kotek, M. Simkus,
H. Veith, and F. Zuleger. Shape and content - A database-
theoretic perspective on the analysis of data structures.
In IFM’14, volume 8739 of LNCS, pages 3–17. Springer,
2014.

[De Giacomo et al., 2006] G. De Giacomo, M. Lenzerini,
A. Poggi, and R. Rosati. On the update of description logic
ontologies at the instance level. In AAAI’06, pages 1271–
1276. AAAI Press, 2006.

[De Giacomo et al., 2017] G. De Giacomo, D. Lembo,
X. Oriol, D. Fabio Savo, and E. Teniente. Practical
Update Management in Ontology-Based Data Access.
In ISWC’17, volume 10587 of LNCS, pages 225–242.
Springer, 2017.

[Demri, 2001] S. Demri. The complexity of regularity in
grammar logics and related modal logics. JLC, 11(6):933–
960, 2001.

[Distefano et al., 2019] D. Distefano, M. Fähndrich, F. Lo-
gozzo, and P.W. O’Hearn. Scaling static analyses at Face-
book. Commun. ACM, 62(8):62–70, 2019.

[Drescher et al., 2009] C. Drescher, H. Liu, F. Baader,
S. Guhlemann, U. Petersohn, P. Steinke, and M. Thielscher.
Putting ABox updates into action. In FroCoS’09, volume
5749 of LNCS, pages 214–229. Springer, 2009.

[Georgieva and Maier, 2005] L. Georgieva and P. Maier. De-
scription logics for shape analysis. In SEFM’05, pages
321–331. IEEE Computer Society, 2005.

[Horrocks and Sattler, 2004] I. Horrocks and U. Sattler. De-
cidability of SHIQ with complex role inclusion axioms. AI,
160(1–2):79–104, 2004.

[Liu et al., 2006] H. Liu, C. Lutz, M. Milicić, and F. Wolter.
Updating Description Logic ABoxes. In KR’06, pages 46–
56. AAAI Press, 2006.

[Plaza, 1989] J. Plaza. Logics of public communication. In
ISMIS’89, Charlotte, North Carolina, USA, 1989.

[Reynolds, 2002] J.C. Reynolds. Separation logic: a logic for
shared mutable data structures. In LiCS’02, pages 55–74.
IEEE, 2002.

[Scott, 1962] D. Scott. A decision method for validity of
sentences in two variables. The Journal of Symbolic Logic,
27:377, 1962.

[Vafeiadis and Parkinson, 2007] V. Vafeiadis and M. Parkin-
son. A Marriage of Rely/Guarantee and Separation Logic.
In CONCUR’07, volume 4703 of LNCS, pages 256–271.
Springer, 2007.

[van Benthem, 2005] J. van Benthem. An Essay on Sabotage
and Obstruction. In Mechanizing Mathematical Reasoning,
Essays in Honor of Jörg Siekmann on the Occasion of his
69th Birthday, pages 268–276. Springer Verlag, 2005.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1687

	Introduction
	A Framework with Dynamic Axioms
	A Toolkit for Positive Dynamic Axioms
	Reasoning on ALC with Dynamic Axioms
	Positive Dynamic Axioms for ALC
	Undecidability of CONS(ALCD)

	Reasoning on EL with Dynamic Axioms
	Positivity for EL Leads to Tractability
	Why Being Positive is Always Better

	Concluding Remarks

