

COMPLEXITY THEORY

Lecture 21: Probabilistic Turing Machines

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach Knowledge-Based Systems

TU Dresden, 8th Jan 2024

word recent versions of inis slide deck might be available. For the most current version of this course, see https://iccl.inf.tu-dresden.de/web/Complexity_Theory/

Randomness in Computation

Random number generators are an important tool in programming

- Many known algorithms use randomness
- DTMs are fully deterministic without random choices
- NTMs have choices, but are not governed by probabilities

Could a Turing machine benefit from having access to (truly) random numbers?

Example: Finding the Median

It is of interest to select the k-th smallest element of a set of numbers.

For example, the median of a set of numbers $\{a_1,\ldots,a_n\}$ is the $\lceil \frac{n}{2} \rceil$ -th smallest number.

(Note: we restrict to odd n and disallow repeated numbers for simplicity)

The following simple algorithm selects the *k*-th smallest element:

```
01 SELECTKTHELEMENT (k, a_1, \ldots, a_n):
     pick some p \in \{1, ..., n\} // select pivot element
02
03
     c := number of elements a_i such that a_i \leq a_p
04
     if c == k:
05
        return a_p
     else if c > k:
06
07
        L := list of all a_i with a_i < a_n
80
        return SELECTKTHELEMENT(k, L)
     else if c < k:
09
10
        L := list of all a_i with a_i > a_p
        return SELECTKTHELEMENT (k-c,L)
11
```

Example: Finding the Median – Analysis (1)

```
01 SELECTKTHELEMENT (k, a_1, \ldots, a_n):
     pick some p \in \{1, ..., n\} // select pivot element
     c := number of elements <math>a_i such that a_i \le a_p
     if c == k:
04
05
        return a_n
     else if c > k:
06
        L := list of all a_i with a_i < a_n
        return SELECTKTHELEMENT (k.L)
80
    else if c < k:
09
10
        L := list of all a_i with a_i > a_p
11
        return SELECTKTHELEMENT (k-c,L)
```

What is the runtime of this algorithm?

- Lines 03, 07, and 10 run in *O*(*n*)
- The considered set shrinks by at least one element per iteration: O(n) iterations
- \sim In the worst case, the algorithm requires quadratic time So it would be faster to sort the list in $O(n \log n)$ and look up the k-th smallest element directly!

Example: Finding the Median – Analysis (2)

```
01 SELECTKTHELEMENT (k, a_1, \ldots, a_n):
      pick some p \in \{1, ..., n\} // select pivot element
     c := number of elements a_i such that a_i \le a_n
     if c == k:
04
05
        return a_n
     else if c > k:
06
        L := list of all a_i with a_i < a_n
        return SELECTKTHELEMENT (k.L)
80
     else if c < k:
09
10
        L := list of all a_i with a_i > a_p
11
        return SELECTKTHELEMENT (k-c,L)
```

However, what if we pick pivot elements at random with uniform probability?

- then it is extremely unlikely that the worst case occurs
- one can show that the expected runtime is linear [Arora & Barak, Section 7.2.1]
- worse than linear runtimes can occur, but the total probability of such runs is 0

The algorithm runs in almost certain linear time.

Probabilistic Turing Machines

How can we incorporate the power of true randomness into Turing machine definition?

Definition 21.1: A probabilistic Turing machine (PTM) is a Turing machine with two deterministic transition functions, δ_0 and δ_1 .

A run of a PTM is a TM run that uses either of the two transitions in each step.

- PTMs therefore are very similar to NTMs with (at most) two options per step
- We think of transitions as being selected randomly, with equal probability of 0.5: the PTM flips a fair coin in each step
- A DTM is a special PTM where both transition functions are the same

Example 21.2: The task of picking a random pivot element $p \in \{1, ..., n\}$ with uniform probability can be achieved by a PTM:

- (1) Perform ℓ coin flips, where ℓ is the least number with $2^{\ell} \geq n$
- (2) Each outcome $\{1,\ldots,n\}$ corresponds to one combination of the ℓ flips
- (3) For any other combination (if $n \neq 2^{\ell}$): goto (1) Note that the probability of infinite repetition is 0.

The Language of a PTM

Under which condition should we say "w is accepted by the PTM \mathcal{M} "?

Some options: w is accepted by the PTM \mathcal{M} if . . .

- (1) it is possible that it will halt and accept
- (2) it is more likely than not that it will halt and accept
- (3) it is more likely than, say, 0.75 that it will halt and accept
- (4) it is certain that it will halt and accept (probability 1)

Main question: Which definition is needed to obtain practical algorithms?

- (1) corresponds to the usual acceptance condition for NTMs.
- (4) corresponds to the usual acceptance condition for "co-NTMs".
- (2) is similarly difficult to check (majority vote over all runs).
- (3) could be useful for determining w ∈ L(M) with high probability, but how would we know if w ∉ L(M)?

→ Definitions do not seem to capture practical & efficient probabilistic algorithms yet

Random numbers as witnesses

Towards efficient probabilistic algorithms, we can restrict to PTMs where any run is guaranteed to be of polynomial length.

A useful alternative view on such PTMs is as follows:

Definition 21.3 (Polytime PTM, alternative definition): A polynomially time-bounded PTM is a polynomially time-bounded deterministic TM that receives inputs of the form w#r, where $w\in \Sigma^*$ is an input word, and $r\in \{0,1\}^*$ is a sequence of random numbers of length polynomial in |w|. If w#r is accepted, we may call r a witness for w.

Note the similarity to the notion of polynomial verifiers used for NP.

The prior definition is closely related to the alternative version:

- Every run of a PTM corresponds to a sequence of results of coin flips
- Polytime PTMs only perform a polynomially bounded number of coin flips
- A DTM can simulate the same computation when given the outcome of the coin flips as part of the input

(Note: the polynomial bound comes from a fixed polynomial for the given TM, of course)

PP: Polynomial Probabilistic Time

Polynomial Probabilistic Time

The challenge of defining practical algorithms is illustrated by a basic class of PTM languages based on polynomial time bounds:

Definition 21.4: A language L is in Polynomial Probabilistic Time (PP) if there is a PTM $\mathcal M$ such that:

- there is a polynomial function f such that \mathcal{M} will always halt after f(|w|) steps on all input words w,
- if $w \in \mathbf{L}$, then $\Pr[\mathcal{M} \text{ accepts } w] > \frac{1}{2}$,
- if $w \notin \mathbf{L}$, then $\Pr[\mathcal{M} \text{ accepts } w] \leq \frac{1}{2}$.

Alternative view: We could also say that \mathcal{M} is a polynomially time-bounded PTM that accepts any word that is accepted in the majority of runs (or: the majority of witnesses) \rightarrow PP is sometimes called Majority-P (which would indeed be a better name)

PP is hard (1)

It turns out that PP is far from capturing the idea of "practically efficient":

Theorem 21.5: NP ⊆ PP

Proof: Since DTMs are special cases of PTMs, $L_1 \in PP$ and $L_2 \leq_m L_1$ imply $L_2 \in PP$. It therefore suffices to show that some NP-complete problem is in PP.

The following PP algorithm \mathcal{M} solves **SAT** on input formula φ :

- (1) Randomly guess an assignment for φ .
- (2) If the assignment satisfies φ , accept.
- (3) If the assignment does not satisfy φ , randomly accept or reject with equal probability.

Therefore:

- if φ is unsatisfiable, $\Pr[\mathcal{M} \text{ accepts } \varphi] = \frac{1}{2}$: the input is rejected;
- if φ is satisfiable, $\Pr[\mathcal{M} \text{ accepts } \varphi] > \frac{1}{2}$: the input is accepted.

Complementing PP (1)

Theorem 21.6: PP is closed under complement.

Proof: Let $L \in PP$ be accepted by PTM \mathcal{M} , time-bounded by the polynomial p(n). We therefore know:

- If $w \in \mathbf{L}$, then $\Pr[\mathcal{M} \text{ accepts } w] > \frac{1}{2}$
- If $w \notin \mathbf{L}$, then $\Pr[\mathcal{M} \text{ accepts } w] \leq \frac{1}{2}$

We first ensure that, in the second case, no word is accepted with probability $\frac{1}{2}$.

We construct an PTM \mathcal{M}' that first executes \mathcal{M} , and then:

- if \mathcal{M} rejects: \mathcal{M}' rejects
- if \mathcal{M} accepts: \mathcal{M}' flips coins for p(n)+1 steps, rejects if they all of these coins are heads, and accepts otherwise.

This gives us $\Pr[\mathcal{M}' \text{ accepts } w] = \Pr[\mathcal{M} \text{ accepts } w] - (\frac{1}{2})^{p(n)+1} \text{ for all } w \in \Sigma^*.$

We will show that \mathcal{M}' still describes the language \mathbf{L} .

Complementing PP (2)

Theorem 21.7: PP is closed under complement.

Proof (continued): $\Pr[\mathcal{M}' \text{ accepts } w] = \Pr[\mathcal{M} \text{ accepts } w] - (\frac{1}{2})^{p(n)+1}$. We claim:

- If $w \in \mathbf{L}$, then $\Pr[\mathcal{M}' \text{ accepts } w] > \frac{1}{2}$
- If $w \notin \mathbf{L}$, then $\Pr[\mathcal{M}' \text{ accepts } w] < \frac{1}{2}$

The second inequality is clear (we subtract a non-zero number from $\leq \frac{1}{2}$).

The first inequality follows since the probability of any run of \mathcal{M} on inputs of length n is an integer multiple of $(\frac{1}{2})^{p(n)}$. The same holds for sums of probabilities of runs, hence, if $w \in \mathbf{L}$, then $\Pr[\mathcal{M} \text{ accepts } w] \ge \frac{1}{2} + (\frac{1}{2})^{p(n)}$. The claim follows since $(\frac{1}{2})^{p(n)} > (\frac{1}{2})^{p(n)+1}$.

To finish the proof, we construct the complement $\overline{\mathcal{M}'}$ of \mathcal{M}' by exchanging accepting and non-accepting states in \mathcal{M}' . Then:

- If $w \in \mathbf{L}$, then $\Pr\left[\overline{\mathcal{M}'} \text{ accepts } w\right] < \frac{1}{2}$
- If $w \notin \mathbf{L}$, then $\Pr\left[\overline{\mathcal{M}'} \text{ accepts } w\right] > \frac{1}{2}$

as required.

PP is hard (2)

Since $NP \subseteq PP$ (Theorem 21.5), we also get:

Corollary 21.8: coNP ⊆ PP

PP therefore appears to be strictly harder than NP or coNP.

The following strong result also hints in this direction:

Theorem 21.9: PH ⊆ PPP

Note: The proof is based on a non-trivial result known as Toda's Theorem, which is about complexity classes where one can count satisfying assignments of propositional formulae ("#S#"), together with the insight that this count can be computed in polynomial time using a PP oracle.

An upper bound for PP

We can also find a suitable upper bound for PP:

Theorem 21.10: PP ⊆ PSpace

Proof: Consider a PTM \mathcal{M} that runs in time bounded by the polynomial p(n).

We can decide if \mathcal{M} accepts input w as follows:

- (1) for each word $r \in \{0, 1\}^{p(|w|)}$:
- (2) decide if M has an accepting run on w for the sequence r of random numbers;
- (3) accept if the total number of accepting runs is greater than $2^{p(|w|)-1}$, else reject.

This algorithm runs in polynomial space, as each iteration only needs to store r and the tape of the simulated polynomial TM computation.

Complete problems for PP

We can define PP-hardness and PP-completeness using polynomial many-one reductions as before.

Using the similarity with NP, it is not hard to find a PP-complete problem:

MAJSAT

Input: A propositional logic formula φ .

Problem: Is φ satisfied by more than half of its assignments?

It is not hard to reduce the question whether a PTMs accepts an input to MajSat:

- Describe the behaviour of the PTM in logic, as in the proof of the Cook-Levin Theorem
- Each satisfying assignment then corresponds to one run

BPP: A practical probabilistic class

How to use PTMs in practice

A practical idea for using PTMs:

- The output of a PTM on a single (random) run is governed by probabilities
- We can repeat the run many times to be more certain about the result

Problem: The acceptance probability for words in languages in PP can be arbitrarily close to $\frac{1}{2}$:

- It is enough if $2^{m-1} + 1$ runs accept out of 2^m runs overall
- So one would need an exponential number of repetitions to become reasonably certain
- → Not a meaningful way of doing probabilistic computing

We would rather like PTMs to accept with a fixed probability that does not converge to $\frac{1}{2}$.

A practical probabilistic class

The following way of deciding languages is based on a more easily detectable difference in acceptance probabilities:

Definition 21.11: A language L is in Bounded-Error Polynomial Probabilistic Time (BPP) if there is a PTM $\mathcal M$ such that:

- there is a polynomial function f such that \mathcal{M} will always halt after f(|w|) steps on all input words w,
- if $w \in \mathbf{L}$, then $\Pr[\mathcal{M} \text{ accepts } w] \ge \frac{2}{3}$,
- if $w \notin \mathbf{L}$, then $\Pr[\mathcal{M} \text{ accepts } w] \leq \frac{1}{3}$.

In other words: Languages in BPP are decided by polynomially time-bounded PTMs with error probability $\leq \frac{1}{3}$.

Note that the bound on the error probability is uniform across all inputs:

- For any given input, the probability for a correct answer is at least $\frac{2}{3}$
- It would be weaker to require that the probability of a correct answer is at least $\frac{2}{3}$ over the space of all possible inputs (this would allow worse probabilities on some inputs)

Better error bounds

Intuition suggests: If we run an PTM for a BPP language multiple times, then we can increase our certainty of a particular outcome.

Approach:

- Given input w, run \mathcal{M} for k times
- Accept if the majority of these runs accepts, and reject otherwise.

Which outcome do we expect when repeating a random experiment *k* times?

- The probability of a single correct answer is $p \ge \frac{2}{3}$
- We therefore expect a percentage p of runs to return the correct result

What is the probability that we see some significant deviation from this expectation?

- It is still possible that only less than half of the runs return the correct result anyway
- How likely is this, depending on the number of repetitions k?

Chernoff bounds

Chernoff bounds are a general type of result for estimating the probability of a certain deviation from the expectation when repeating a random experiment.

There are many such bounds – some more accurate, some more usable. We merely give the following simplified special case:

Theorem 21.12: Let X_1, \ldots, X_k be mutually independent random variables that can take values from $\{0,1\}$, and let $\mu = \sum_{i=1}^k E[X_i]$ be the sum of their expected values. Then, for every constant $0 < \delta < 1$:

$$\Pr\left[\left|\sum_{i=1}^k X_i - \mu\right| \ge \delta\mu\right] \le e^{-\delta^2\mu/4}$$

Example 21.13: Consider k=1000 tosses of fair coins, X_1,\ldots,X_{1000} , with heads corresponding to result 1 and tails corresponding to 0. We expect $\mu=\sum_{i=1}^n E[X_i]=500$ to be the sum of these experiments. By the above bound, the probability of seeing $600=500+0.2\cdot 500$ or more heads is

$$\Pr\left[\left|\sum_{i=1}^{k} X_i - 500\right| \ge 100\right] \le e^{-0.2^2 \cdot 500/4} \le 0.0068.$$

Much better error bounds

We can now show that even a small, input-dependent probability of finding correct answers is enough to construct an algorithm whose certainty is exponentially close to 1:

Theorem 21.14: Consider a language ${\bf L}$ and a polynomially time-bounded PTM ${\cal M}$ for which there is a constant c>0 such that, for every word $w\in \Sigma^*$, $\Pr\left[{\cal M} \text{ classifies } w \text{ correctly}\right] \geq \frac{1}{2} + |w|^{-c}$. Then, for every constant d>0, there is a polynomially time-bounded PTM ${\cal M}'$ such that $\Pr\left[{\cal M}' \text{ classifies } w \text{ correctly}\right] \geq 1 - 2^{-|w|^d}$.

Proof: We construct \mathcal{M}' as before by running \mathcal{M} for k times, where we set $k = 8|w|^{2c+d}$. Note that this is number of repetitions is polynomial in |w|.

To use our Chernoff bound, define k random variables X_i with $X_i = 1$ if the ith run of \mathcal{M} returns the correct result:

- Set *p* to be $Pr[X_i = 1] \ge \frac{1}{2} + |w|^{-c}$
- Then $E[\sum_{i=1}^k X_i] = pk$

Much better error bounds (continued)

We can now show that even a small, input-dependent probability of finding correct answers is enough to construct an algorithm whose certainty is exponentially close to 1:

Theorem 21.14: Consider a language **L** and a polynomially time-bounded PTM \mathcal{M} for which there is a constant c>0 such that, for every word $w\in\Sigma^*$, $\Pr\left[\mathcal{M} \text{ classifies } w \text{ correctly}\right] \geq \frac{1}{2} + |w|^{-c}$.

Then, for every constant d > 0, there is a polynomially time-bounded PTM \mathcal{M}' such that $\Pr[\mathcal{M}' \text{ classifies } w \text{ correctly}] \ge 1 - 2^{-|w|^d}$.

Proof (continued): We are interested in the probability that at least half of the runs are correct. This can be achieved by setting $\delta = \frac{1}{2} \cdot |w|^{-c}$.

Our Chernoff bound then yields:

$$\Pr\left[\left|\sum_{i=1}^{k} X_{i} - pk\right| \ge \delta pk\right] \le e^{-\delta^{2}pk/4} = e^{-(\frac{1}{2} \cdot |w|^{-c})^{2}pk/4} \le e^{-\frac{1}{4|w|^{2c}} \cdot \frac{1}{2} \cdot 8|w|^{2c+d}} \le e^{-|w|^{d}} \le 2^{-|w|^{d}}$$

(where the estimations are dropping some higher-order terms for simplification).

BPP is robust

Theorem 21.14 gives a massive improvement in certainty at only polynomial cost. As a special case, we can apply this to BPP (where probabilities are fixed):

Corollary 21.15: Defining the class BPP with any bounded error probability $<\frac{1}{2}$ instead of $\frac{1}{3}$ leads to the same class of languages.

Corollary 21.16: For any language in BPP, there is a polynomial time algorithm with exponentially low probability of error.

BPP might be better than P for describing what is "tractable in practice."

Summary and Outlook

Probabilistic TMs can be used to randomness in computation

PP defines a simple "probabilistic" class, but is too powerful in practice.

BPP provides a better definition of practical probabilistic algorithm

What's next?

- More probabilistic classes
- Quantum Computing
- Examinations