
COMPLEXITY THEORY

Lecture 21: Probabilistic Turing Machines

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach

Knowledge-Based Systems

TU Dresden, 8th Jan 2024

More recent versions of this slide deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en

https://iccl.inf.tu-dresden.de/web/Complexity_Theory_(WS2023)
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en
https://iccl.inf.tu-dresden.de/web/Stephan_Mennicke
https://iccl.inf.tu-dresden.de/web/Lukas Gerlach
https://iccl.inf.tu-dresden.de/web/Complexity_Theory/en


Randomness in Computation

Random number generators are an important tool in programming

• Many known algorithms use randomness

• DTMs are fully deterministic without random choices

• NTMs have choices, but are not governed by probabilities

Could a Turing machine benefit from having access to (truly) random numbers?

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 8th Jan 2024 Complexity Theory slide 2 of 25



Example: Finding the Median
It is of interest to select the k-th smallest element of a set of numbers.

For example, the median of a set of numbers {a1, . . . , an} is the ⌈ n
2 ⌉-th smallest number.

(Note: we restrict to odd n and disallow repeated numbers for simplicity)

The following simple algorithm selects the k-th smallest element:

01 selectKthElement(k, a1,...,an) :

02 pick some p ∈ {1, . . . , n} // select pivot element
03 c := number of elements ai such that ai ≤ ap

04 if c == k :
05 return ap

06 else if c > k :
07 L := list of all ai with ai < ap

08 return selectKthElement(k,L)
09 else if c < k :
10 L := list of all ai with ai > ap

11 return selectKthElement(k − c,L)

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 8th Jan 2024 Complexity Theory slide 3 of 25



Example: Finding the Median – Analysis (1)

01 selectKthElement(k, a1,...,an) :

02 pick some p ∈ {1, . . . , n} // select pivot element
03 c := number of elements ai such that ai ≤ ap

04 if c == k :
05 return ap

06 else if c > k :
07 L := list of all ai with ai < ap

08 return selectKthElement(k,L)
09 else if c < k :
10 L := list of all ai with ai > ap

11 return selectKthElement(k − c,L)

What is the runtime of this algorithm?

• Lines 03, 07, and 10 run in O(n)
• The considered set shrinks by at least one element per iteration: O(n) iterations

{ In the worst case, the algorithm requires quadratic time
So it would be faster to sort the list in O(n log n) and
look up the k-th smallest element directly!

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 8th Jan 2024 Complexity Theory slide 4 of 25



Example: Finding the Median – Analysis (2)

01 selectKthElement(k, a1,...,an) :

02 pick some p ∈ {1, . . . , n} // select pivot element
03 c := number of elements ai such that ai ≤ ap

04 if c == k :
05 return ap

06 else if c > k :
07 L := list of all ai with ai < ap

08 return selectKthElement(k,L)
09 else if c < k :
10 L := list of all ai with ai > ap

11 return selectKthElement(k − c,L)

However, what if we pick pivot elements at random with uniform probability?

• then it is extremely unlikely that the worst case occurs

• one can show that the expected runtime is linear [Arora & Barak, Section 7.2.1]

• worse than linear runtimes can occur, but the total probability of such runs is 0

The algorithm runs in almost certain linear time.
A refined implementation that works with repeated numbers is Quickselect.

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 8th Jan 2024 Complexity Theory slide 5 of 25

https://en.wikipedia.org/wiki/Quickselect


Probabilistic Turing Machines

How can we incorporate the power of true randomness into Turing machine definition?

Definition 21.1: A probabilistic Turing machine (PTM) is a Turing machine with
two deterministic transition functions, δ0 and δ1.
A run of a PTM is a TM run that uses either of the two transitions in each step.

• PTMs therefore are very similar to NTMs with (at most) two options per step

• We think of transitions as being selected randomly, with equal probability of 0.5:
the PTM flips a fair coin in each step

• A DTM is a special PTM where both transition functions are the same

Example 21.2: The task of picking a random pivot element p ∈ {1, . . . , n} with
uniform probability can be achieved by a PTM:

(1) Perform ℓ coin flips, where ℓ is the least number with 2ℓ ≥ n

(2) Each outcome {1, . . . , n} corresponds to one combination of the ℓ flips

(3) For any other combination (if n , 2ℓ): goto (1) Note that the probability of infinite repetition is 0.

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 8th Jan 2024 Complexity Theory slide 6 of 25



The Language of a PTM

Under which condition should we say “w is accepted by the PTMM”?

Some options: w is accepted by the PTMM if . . .

(1) it is possible that it will halt and accept

(2) it is more likely than not that it will halt and accept

(3) it is more likely than, say, 0.75 that it will halt and accept

(4) it is certain that it will halt and accept (probability 1)

Main question: Which definition is needed to obtain practical algorithms?

• (1) corresponds to the usual acceptance condition for NTMs.

• (4) corresponds to the usual acceptance condition for “co-NTMs”.

• (2) is similarly difficult to check (majority vote over all runs).

• (3) could be useful for determining w ∈ L(M) with high probability, but how would
we know if w < L(M)?

{ Definitions do not seem to capture practical & efficient probabilistic algorithms yet

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 8th Jan 2024 Complexity Theory slide 7 of 25



Random numbers as witnesses
Towards efficient probabilistic algorithms, we can restrict to PTMs where any run is
guaranteed to be of polynomial length.

A useful alternative view on such PTMs is as follows:

Definition 21.3 (Polytime PTM, alternative definition): A polynomially time-
bounded PTM is a polynomially time-bounded deterministic TM that receives in-
puts of the form w#r, where w ∈ Σ∗ is an input word, and r ∈ {0, 1}∗ is a sequence
of random numbers of length polynomial in |w|. If w#r is accepted, we may call r
a witness for w.

Note the similarity to the notion of polynomial verifiers used for NP.

The prior definition is closely related to the alternative version:
• Every run of a PTM corresponds to a sequence of results of coin flips
• Polytime PTMs only perform a polynomially bounded number of coin flips
• A DTM can simulate the same computation when given the outcome of the coin

flips as part of the input

(Note: the polynomial bound comes from a fixed polynomial for the given TM, of course)
Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 8th Jan 2024 Complexity Theory slide 8 of 25



PP: Polynomial Probabilistic Time

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 8th Jan 2024 Complexity Theory slide 9 of 25



Polynomial Probabilistic Time

The challenge of defining practical algorithms is illustrated by a basic class of PTM
languages based on polynomial time bounds:

Definition 21.4: A language L is in Polynomial Probabilistic Time (PP) if there is
a PTM M such that:

• there is a polynomial function f such that M will always halt after f (|w|) steps
on all input words w,

• if w ∈ L, then Pr [M accepts w] > 1
2 ,

• if w < L, then Pr [M accepts w] ≤ 1
2 .

Alternative view: We could also say thatM is a polynomially time-bounded PTM that
accepts any word that is accepted in the majority of runs (or: the majority of witnesses)
{ PP is sometimes called Majority-P (which would indeed be a better name)

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 8th Jan 2024 Complexity Theory slide 10 of 25



PP is hard (1)

It turns out that PP is far from capturing the idea of “practically efficient”:

Theorem 21.5: NP ⊆ PP

Proof: Since DTMs are special cases of PTMs, L1 ∈ PP and L2 ≤m L1 imply L2 ∈ PP. It
therefore suffices to show that some NP-complete problem is in PP.

The following PP algorithmM solves Sat on input formula φ:

(1) Randomly guess an assignment for φ.

(2) If the assignment satisfies φ, accept.

(3) If the assignment does not satisfy φ, randomly accept or reject with equal
probability.

Therefore:

• if φ is unsatisfiable, Pr
[
M accepts φ

]
= 1

2 : the input is rejected;

• if φ is satisfiable, Pr
[
M accepts φ

]
> 1

2 : the input is accepted. □

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 8th Jan 2024 Complexity Theory slide 11 of 25



Complementing PP (1)

Theorem 21.6: PP is closed under complement.

Proof: Let L ∈ PP be accepted by PTMM, time-bounded by the polynomial p(n). We
therefore know:

• If w ∈ L, then Pr [M accepts w] > 1
2

• If w < L, then Pr [M accepts w] ≤ 1
2

We first ensure that, in the second case, no word is accepted with probability 1
2 .

We construct an PTMM′ that first executesM, and then:

• ifM rejects: M′ rejects

• ifM accepts: M′ flips coins for p(n) + 1 steps, rejects if they all of these coins are
heads, and accepts otherwise.

This gives us Pr [M′ accepts w] = Pr [M accepts w] − ( 1
2 )p(n)+1 for all w ∈ Σ∗.

We will show thatM′ still describes the language L.

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 8th Jan 2024 Complexity Theory slide 12 of 25



Complementing PP (2)

Theorem 21.7: PP is closed under complement.

Proof (continued): Pr [M′ accepts w] = Pr [M accepts w] − ( 1
2 )p(n)+1. We claim:

• If w ∈ L, then Pr [M′ accepts w] > 1
2

• If w < L, then Pr [M′ accepts w] < 1
2

The second inequality is clear (we subtract a non-zero number from ≤ 1
2 ).

The first inequality follows since the probability of any run ofM on inputs of length n is
an integer multiple of ( 1

2 )p(n). The same holds for sums of probabilities of runs, hence, if
w ∈ L, then Pr [M accepts w] ≥ 1

2 + ( 1
2 )p(n). The claim follows since ( 1

2 )p(n) > ( 1
2 )p(n)+1.

To finish the proof, we construct the complementM′ ofM′ by exchanging accepting
and non-accepting states inM′. Then:
• If w ∈ L, then Pr

[
M′ accepts w

]
< 1

2

• If w < L, then Pr
[
M′ accepts w

]
> 1

2

as required. □

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 8th Jan 2024 Complexity Theory slide 13 of 25



PP is hard (2)

Since NP ⊆ PP (Theorem 21.5), we also get:

Corollary 21.8: coNP ⊆ PP

PP therefore appears to be strictly harder than NP or coNP.

The following strong result also hints in this direction:

Theorem 21.9: PH ⊆ PPP

Note: The proof is based on a non-trivial result known as Toda’s Theorem, which is about complexity classes where one can count satisfying
assignments of propositional formulae (“#Sat”), together with the insight that this count can be computed in polynomial time using a PP oracle.

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 8th Jan 2024 Complexity Theory slide 14 of 25



An upper bound for PP

We can also find a suitable upper bound for PP:

Theorem 21.10: PP ⊆ PSpace

Proof: Consider a PTMM that runs in time bounded by the polynomial p(n).

We can decide ifM accepts input w as follows:

(1) for each word r ∈ {0, 1}p(|w|):

(2) decide ifM has an accepting run on w for the sequence r of random numbers;

(3) accept if the total number of accepting runs is greater than 2p(|w|)−1, else reject.

This algorithm runs in polynomial space, as each iteration only needs to store r and the
tape of the simulated polynomial TM computation. □

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 8th Jan 2024 Complexity Theory slide 15 of 25



Complete problems for PP

We can define PP-hardness and PP-completeness using polynomial many-one
reductions as before.

Using the similarity with NP, it is not hard to find a PP-complete problem:

MajSat

Input: A propositional logic formula φ.

Problem: Is φ satisfied by more than half of its assignments?

It is not hard to reduce the question whether a PTMs accepts an input to MajSat:

• Describe the behaviour of the PTM in logic, as in the proof of the Cook-Levin
Theorem

• Each satisfying assignment then corresponds to one run

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 8th Jan 2024 Complexity Theory slide 16 of 25



BPP: A practical probabilistic class

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 8th Jan 2024 Complexity Theory slide 17 of 25



How to use PTMs in practice

A practical idea for using PTMs:

• The output of a PTM on a single (random) run is governed by probabilities

• We can repeat the run many times to be more certain about the result

Problem: The acceptance probability for words in languages in PP can be arbitrarily
close to 1

2 :

• It is enough if 2m−1 + 1 runs accept out of 2m runs overall

• So one would need an exponential number of repetitions to become reasonably
certain

{ Not a meaningful way of doing probabilistic computing

We would rather like PTMs to accept with a fixed probability that does not converge to 1
2 .

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 8th Jan 2024 Complexity Theory slide 18 of 25



A practical probabilistic class
The following way of deciding languages is based on a more easily detectable difference
in acceptance probabilities:

Definition 21.11: A language L is in Bounded-Error Polynomial Probabilistic Time
(BPP) if there is a PTM M such that:

• there is a polynomial function f such that M will always halt after f (|w|) steps
on all input words w,

• if w ∈ L, then Pr [M accepts w] ≥ 2
3 ,

• if w < L, then Pr [M accepts w] ≤ 1
3 .

In other words: Languages in BPP are decided by polynomially time-bounded PTMs
with error probability ≤ 1

3 .

Note that the bound on the error probability is uniform across all inputs:
• For any given input, the probability for a correct answer is at least 2

3
• It would be weaker to require that the probability of a correct answer is at least 2

3
over the space of all possible inputs (this would allow worse probabilities on some inputs)

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 8th Jan 2024 Complexity Theory slide 19 of 25



Better error bounds

Intuition suggests: If we run an PTM for a BPP language multiple times, then we can
increase our certainty of a particular outcome.

Approach:

• Given input w, run M for k times

• Accept if the majority of these runs accepts, and reject otherwise.

Which outcome do we expect when repeating a random experiment k times?

• The probability of a single correct answer is p ≥ 2
3

• We therefore expect a percentage p of runs to return the correct result

What is the probability that we see some significant deviation from this expectation?

• It is still possible that only less than half of the runs return the correct result anyway

• How likely is this, depending on the number of repetitions k?

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 8th Jan 2024 Complexity Theory slide 20 of 25



Chernoff bounds
Chernoff bounds are a general type of result for estimating the probability of a certain
deviation from the expectation when repeating a random experiment.

There are many such bounds – some more accurate, some more usable. We merely
give the following simplified special case:

Theorem 21.12: Let X1, . . . , Xk be mutually independent random variables that
can take values from {0, 1}, and let µ =

∑k
i=1 E[Xi] be the sum of their expected

values. Then, for every constant 0 < δ < 1:

Pr


∣∣∣∣∣∣∣

k∑
i=1

Xi − µ

∣∣∣∣∣∣∣ ≥ δµ
 ≤ e−δ

2µ/4

Example 21.13: Consider k = 1000 tosses of fair coins, X1, . . . , X1000, with heads
corresponding to result 1 and tails corresponding to 0. We expect µ =

∑n
i=1 E[Xi] =

500 to be the sum of these experiments. By the above bound, the probability of
seeing 600 = 500 + 0.2 · 500 or more heads is

Pr
[∣∣∣∑k

i=1 Xi − 500
∣∣∣ ≥ 100

]
≤ e−0.22·500/4 ≤ 0.0068.

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 8th Jan 2024 Complexity Theory slide 21 of 25



Much better error bounds

We can now show that even a small, input-dependent probability of finding correct
answers is enough to construct an algorithm whose certainty is exponentially close to 1:

Theorem 21.14: Consider a language L and a polynomially time-bounded
PTM M for which there is a constant c > 0 such that, for every word w ∈ Σ∗,
Pr
[
M classifies w correctly

]
≥ 1

2 + |w|
−c.

Then, for every constant d > 0, there is a polynomially time-bounded PTM M′

such that Pr
[
M′ classifies w correctly

]
≥ 1 − 2−|w|

d
.

Proof: We constructM′ as before by runningM for k times, where we set k = 8|w|2c+d.
Note that this is number of repetitions is polynomial in |w|.

To use our Chernoff bound, define k random variables Xi with Xi = 1 if the ith run ofM
returns the correct result:

• Set p to be Pr [Xi = 1] ≥ 1
2 + |w|

−c

• Then E[
∑k

i=1 Xi] = pk

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 8th Jan 2024 Complexity Theory slide 22 of 25



Much better error bounds (continued)
We can now show that even a small, input-dependent probability of finding correct
answers is enough to construct an algorithm whose certainty is exponentially close to 1:

Theorem 21.14: Consider a language L and a polynomially time-bounded PTM
M for which there is a constant c > 0 such that, for every word w ∈ Σ∗,
Pr
[
M classifies w correctly

]
≥ 1

2 + |w|
−c.

Then, for every constant d > 0, there is a polynomially time-bounded PTM M′

such that Pr
[
M′ classifies w correctly

]
≥ 1 − 2−|w|

d
.

Proof (continued): We are interested in the probability that at least half of the runs are
correct. This can be achieved by setting δ = 1

2 · |w|
−c.

Our Chernoff bound then yields:

Pr


∣∣∣∣∣∣∣

k∑
i=1

Xi − pk

∣∣∣∣∣∣∣ ≥ δpk

 ≤ e−δ
2pk/4 = e−( 1

2 ·|w|
−c)2pk/4 ≤ e−

1
4|w|2c ·

1
2 ·8|w|

2c+d

≤ e−|w|
d
≤ 2−|w|

d

(where the estimations are dropping some higher-order terms for simplification).
Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 8th Jan 2024 Complexity Theory slide 23 of 25



BPP is robust

Theorem 21.14 gives a massive improvement in certainty at only polynomial cost. As a
special case, we can apply this to BPP (where probabilities are fixed):

Corollary 21.15: Defining the class BPP with any bounded error probability < 1
2

instead of 1
3 leads to the same class of languages.

Corollary 21.16: For any language in BPP, there is a polynomial time algorithm
with exponentially low probability of error.

BPP might be better than P for describing what is “tractable in practice.”

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 8th Jan 2024 Complexity Theory slide 24 of 25



Summary and Outlook

Probabilistic TMs can be used to randomness in computation

PP defines a simple “probabilistic” class, but is too powerful in practice.

BPP provides a better definition of practical probabilistic algorithm

What’s next?

• More probabilistic classes

• Quantum Computing

• Examinations

Markus Krötzsch, Stephan Mennicke, Lukas Gerlach; 8th Jan 2024 Complexity Theory slide 25 of 25


	Probabilistic Turing Machines
	PP: Polynomial Probabilistic Time
	BPP: A practical probabilistic class


