# Foundations of Constraint Programming Tutorial 3 (on November 23rd) 

Lukas Schweizer

WS 2016/17

## Exercise 3.1:

Apply the Domain Reduction Rules from Slide 5 (Lecture 3) to the following CSPs until you reach a successful, failed or stabilising CSP. At each step give the rule you have used.
a) $\langle x=y, y=z, x \neq w, w \neq z ; x \in\{a, b, c\}, y \in\{a, c, d\}, z \in\{c, d, e\}, w=c\rangle$
b) $\langle x \neq w, w<y, w<z, y<z ; x \in[4 . .8], y \in[2 . .6], z \in[3 . .6], w \in[4 . .9]\rangle$

## Exercise 3.2:

Take the following set of linear equations:

$$
\begin{array}{r}
a+b+c=0 \\
4 a+2 b+c=1 \\
9 a+3 b+c=3
\end{array}
$$

a) Apply Gauss-Jordan Elimination to compute a most general unifier (mgu) for this set of equations.
b) Apply Gaussian Elimination to compute an mgu for this set of equations.

