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The Class PSpace

We defined PSpace as:
PSpace =

⋃
d≥1

DSpace(nd)

and we observed that

P ⊆ NP ⊆ PSpace = NPSpace ⊆ ExpTime.

We can also define a corresponding notion of PSpace-hardness:

Definition 10.1:

• A language H is PSpace-hard, if L ≤p H for every language L ∈ PSpace.

• A language C is PSpace-complete, if C is PSpace-hard and C ∈ PSpace.
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Quantified Boolean Formulae (QBF)

A QBF is a formula of the following form:

Q1X1. Q2X2. · · · Q̀X`.ϕ[X1, . . . , X`]

where Qi ∈ {∃,∀} are quantifiers, Xi are propositional logic variables, and ϕ is a
propositional logic formula with variables X1, . . . , X` and constants > (true) and ⊥ (false)

Semantics:

• Propositional formulae without variables (only constants > and ⊥) are evaluated as
usual

• ∃X.ϕ[X] is true if either ϕ[X/>] or ϕ[X/⊥] are true

• ∀X.ϕ[X] is true if both ϕ[X/>] and ϕ[X/⊥] are true

(where ϕ[X/>] is “ϕ with X replaced by >, and similar for ⊥)
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Deciding QBF Validity

True QBF

Input: A quantified Boolean formula ϕ.

Problem: Is ϕ true (valid)?

Observation: We can assume that the quantified formula is in CNF or 3-CNF
(same transformations possible as for propositional logic formulae)

Consider a propositional logic formula ϕ with variables X1, . . . , X`:

Example 10.2: The QBF ∃X1. · · · ∃X`.ϕ is true if and only if ϕ is satisfiable.

Example 10.3: The QBF ∀X1. · · · ∀X`.ϕ is true if and only if ϕ is a tautology.
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The Power of QBF

Theorem 10.4: True QBF is PSpace-complete.

Proof:

(1) True QBF ∈ PSpace:
Give an algorithm that runs in polynomial space.

(2) True QBF is PSpace-hard:
Proof by reduction from the word problem for polynomially space-bounded TMs.

�
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Solving True QBF in PSpace

01 TrueQBF(ϕ) {

02 if ϕ has no quantifiers :

03 return “evaluation of ϕ”

04 else if ϕ = ∃X.ψ :

05 return (TrueQBF(ψ[X/>]) OR TrueQBF(ψ[X/⊥]))
06 else if ϕ = ∀X.ψ :

07 return (TrueQBF(ψ[X/>]) AND TrueQBF(ψ[X/⊥]))
08 }

• Evaluation in line 03 can be done in polynomial space

• Recursions in lines 05 and 07 can be executed one after the other, reusing space

• Maximum depth of recursion = number of variables (linear)

• Store one variable assignment per recursive call

{ polynomial space algorithm
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PSpace-Hardness of True QBF

Express TM computation in logic, similar to Cook-Levin

Given:
• a polynomial p

• a p-space bounded 1-tape NTMM = (Q, Σ, Γ, δ, q0, qaccept)
• a word w

Intended reduction
Define a QBF ϕp,M,w such that
ϕp,M,w is true if and only ifM accepts w in space p(|w|).

Note
We show the reduction for NTMs, which is more than needed, but makes little difference
in logic and allows us to reuse our previous formulae from Cook-Levin
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Review: Encoding Configurations

Use propositional variables for describing configurations:
Qq for each q ∈ Q means “M is in state q ∈ Q”

Pi for each 0 ≤ i < p(n) means “the head is at Position i”

Sa,i for each a ∈ Γ and 0 ≤ i < p(n) means “tape cell i contains Symbol a”

Represent configuration (q, p, a0 . . . ap(n))
by assigning truth values to variables from the set

C := {Qq, Pi, Sa,i | q ∈ Q, a ∈ Γ, 0 ≤ i < p(n)}

using the truth assignment β defined as

β(Qs) :=

1 s = q

0 s , q
β(Pi) :=

1 i = p

0 i , p
β(Sa,i) :=

1 a = ai

0 a , ai

Markus Krötzsch, 13th Nov 2018 Complexity Theory slide 9 of 34



Review: Validating Configurations

We define a formula Conf(C) for a set of configuration variables

C = {Qq, Pi, Sa,i | q ∈ Q, a ∈ Γ, 0 ≤ i < p(n)}

as follows:

Conf(C) := “the assignment is a valid configuration”:∨
q∈Q

(
Qq ∧

∧
q′,q

¬Qq′
)

“TM in exactly one state q ∈ Q”

∧
∨

p<p(n)

(
Pp ∧

∧
p′,p

¬Pp′
)

“head in exactly one position p < p(n)”

∧
∧

0≤i<p(n)

∨
a∈Γ

(
Sa,i ∧

∧
b,a∈Γ

¬Sb,i

)
“exactly one a ∈ Γ in each cell”
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Review: Validating Configurations

For an assignment β defined on variables in C define

conf(C, β) :=

(q, p, w0 . . .wp(n)) |
β(Qq) = 1,
β(Pp) = 1,
β(Swi,i) = 1 for all 0 ≤ i < p(n)


Note: β may be defined on other variables besides those in C.

Lemma 10.5: If β satisfies Conf(C) then |conf(C, β)| = 1.
We can therefore write conf(C, β) = (q, p, w) to simplify notation.

Observations:

• conf(C, β) is a potential configuration ofM, but it may not be reachable from the
start configuration ofM on input w.

• Conversely, every configuration (q, p, w1 . . .wp(n)) induces a satisfying assignment β
or which conf(C, β) = (q, p, w1 . . .wp(n)).

Markus Krötzsch, 13th Nov 2018 Complexity Theory slide 11 of 34



Review: Transitions Between Configurations

Consider the following formula Next(C, C
′
) defined as

Conf(C) ∧ Conf(C
′
) ∧ NoChange(C, C

′
) ∧ Change(C, C

′
).

NoChange :=
∨

0≤p<p(n)

(
Pp ∧

∧
i,p,a∈Γ

(
Sa,i → S′a,i

))
Change :=

∨
0≤p<p(n)

(
Pp ∧

∨
q∈Q
a∈Γ

(
Qq ∧ Sa,p ∧

∨
(q′,b,D)∈δ(q,a)

(Q′q′ ∧ S′b,p ∧ P′D(p))
))

where D(p) is the position reached by moving in direction D from p.

Lemma 10.6: For any assignment β defined on C ∪ C
′
:

β satisfies Next(C, C
′
) if and only if conf(C, β) `M conf(C

′
, β)
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Review: Start and End

Defined so far:
• Conf(C): C describes a potential configuration

• Next(C, C
′
): conf(C, β) `M conf(C

′
, β)

Start configuration: Let w = w0 · · ·wn−1 ∈ Σ∗ be the input word

StartM,w(C) := Conf(C) ∧ Qq0 ∧ P0 ∧
∧n−1

i=0 Swi,i ∧
∧p(n)−1

i=n S�,i

Then an assignment β satisfies StartM,w(C) if and only if C represents the start
configuration ofM on input w.

Accepting stop configuration:

Acc-Conf(C) := Conf(C) ∧ Qqaccept

Then an assignment β satisfies Acc-Conf(C) if and only if C represents an accepting
configuration ofM.
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Simulating Polynomial Space Computations
For Cook-Levin, we used one set of configuration variables for every computating step:
polynomially time{ polynomially many variables

Problem: For polynomial space, we have 2O(p(n)) possible steps . . .

What would Savitch do?

Define a formula CanYieldi(C1, C2) to state that C2 is reachable from C1 in at most 2i

steps:

CanYield0(C1, C2) := (C1 = C2) ∨ Next(C1, C2)

CanYieldi+1(C1, C2) := ∃C.Conf(C) ∧ CanYieldi(C1, C) ∧ CanYieldi(C, C2)

But what is C1 = C2 supposed to mean here? It is short for:∧
q∈Q

Q1
q ↔ Q2

q ∧
∧

0≤i<p(n)

P1
i ↔ P2

i ∧
∧

a∈Γ,0≤i<p(n)

S1
a,i ↔ S2

a,i
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Putting Everything Together

We define the formula ϕp,M,w as follows:

ϕp,M,w := ∃C1.∃C2.StartM,w(C1) ∧ Acc-Conf(C2) ∧ CanYielddp(n)(C1, C2)

where we select d to be the least number such thatM has less than 2dp(n) configurations
in space p(n).

Lemma 10.7: ϕp,M,w is satisfiable if and only if M accepts w in space p(|w|).
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Did we do it?

Note: we used only existential quantifiers when defining ϕp,M,w:

CanYield0(C1, C2) := (C1 = C2) ∨ Next(C1, C2)

CanYieldi+1(C1, C2) := ∃C.Conf(C) ∧ CanYieldi(C1, C) ∧ CanYieldi(C, C2)

ϕp,M,w := ∃C1.∃C2.StartM,w(C1) ∧ Acc-Conf(C2) ∧ CanYielddp(n)(C1, C2)

Now that’s quite interesting . . .

• With only (non-negated) ∃ quantifiers, True QBF coincides with Sat

• Sat is in NP

• So we showed that the word problem for PSpace NTMs to be in NP

So we found that NP = PSpace!

Strangely, most textbooks claim that this is not known to be true . . .
Are we up for the next Turing Award, or did we make a mistake?
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Size

How big is ϕp,M,w?

CanYield0(C1, C2) := (C1 = C2) ∨ Next(C1, C2)

CanYieldi+1(C1, C2) := ∃C.Conf(C) ∧ CanYieldi(C1, C) ∧ CanYieldi(C, C2)

ϕp,M,w := ∃C1.∃C2.StartM,w(C1) ∧ Acc-Conf(C2) ∧ CanYielddp(n)(C1, C2)

Size of CanYieldi+1 is more than twice the size of CanYieldi

{ Size of ϕp,M,w is in 2O(p(n)). Oops.

A correct reduction: We redefine CanYield by setting

CanYieldi+1(C1, C2) :=

∃C.Conf(C) ∧

∀Z1.∀Z2.
(
((Z1 = C1 ∧ Z2 = C) ∨ (Z1 = C ∧ Z2 = C2))→ CanYieldi(Z1, Z2)

)
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Size

Let’s analyse the size more carefully this time:

CanYieldi+1(C1, C2) :=

∃C.Conf(C) ∧

∀Z1.∀Z2.
(
((Z1 = C1 ∧ Z2 = C) ∨ (Z1 = C ∧ Z2 = C2))→ CanYieldi(Z1, Z2)

)
• CanYieldi+1(C1, C2) extends CanYieldi(C1, C2) by parts that are linear in the size of

configurations{ growth in O(p(n))
• Maximum index i used in ϕp,M,w is dp(n), that is in O(p(n))
• Therefore: ϕp,M,w has size O(p2(n)) – and thus can be computed in polynomial time

Exercise:
Why can we just use dp(n) in the reduction? Don’t we have to compute it somehow?
Maybe even in polynomial time?
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The Power of QBF

Theorem 10.4: True QBF is PSpace-complete.

Proof:

(1) True QBF ∈ PSpace:
Give an algorithm that runs in polynomial space.

(2) True QBF is PSpace-hard:
Proof by reduction from the word problem for polynomially space-bounded TMs.

�
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A More Common Logical Problem in PSpace

Recall standard first-order logic:

• Instead of propositional variables, we have atoms (predicates with constants and
variables)

• Instead of propositional evaluations we have first-order structures (or
interpretations)

• First-order quantifiers can be used on variables

• Sentences are formulae where all variables are quantified

• A sentence can be satisfied or not by a given first-order structure

FOL Model Checking

Input: A first-order sentence ϕ and a finite first-order
structure I.

Problem: Is ϕ satisfied by I?
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First-Order Logic is PSpace-complete

Theorem 10.8: FOL Model Checking is PSpace-complete.

Proof:

(1) FOL Model Checking ∈ PSpace:
Give algorithm that runs in polynomial space.

(2) FOL Model Checking is PSpace-hard:
Proof by reduction True QBF ≤p FOL Model Checking.

�
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Checking FOL Models in Polynomial Space (Sketch)

01 Eval(ϕ,I) {

02 switch (ϕ) :

03 case p(c1, . . . , cn) : return 〈c1, . . . , cn〉 ∈ pI

04 case ¬ψ : return NOT Eval(ψ,I)

05 case ψ1 ∧ ψ2 : return Eval(ψ1,I) AND Eval(ψ2,I)

06 case ∃x.ψ :

07 for c ∈ ∆I :

08 if Eval(ψ[x 7→ c],I) : return TRUE

09 // eventually, if no success:

10 return FALSE

11 }

• We can assume ϕ only uses ¬, ∧ and ∃ (easy to get)

• We use ∆I to denote the (finite!) domain of I

• We allow domain elements to be used like constants in the formula
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Hardness of FOL Model Checking

Given: a QBF ϕ = Q1X1. · · · Q̀X`.ψ

FOL Model Checking Problem:

• Interpretation domain ∆I := {0, 1}
• Single predicate symbol true with interpretation trueI = {〈1〉}
• FOL formula ϕ′ is obtained by replacing variables in input QBF with corresponding

first-order expressions:

Q1x1. · · · Q̀x`.ψ[X1 7→ true(x1), . . . , X` 7→ true(x`)]

Lemma 10.9: 〈I,ϕ′〉 ∈ FOL Model Checking if and only if ϕ ∈ True QBF.
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First-Order Logic is PSpace-complete

Theorem 10.8: FOL Model Checking is PSpace-complete.

Proof:

(1) FOL Model Checking ∈ PSpace:
Give algorithm that runs in polynomial space.

(2) FOL Model Checking is PSpace-hard:
Proof by reduction True QBF ≤p FOL Model Checking.

�
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FOL Model Checking: Practical Significance

Why is FOL Model Checking a relevant problem?

Correspondence with database query answering:

• Finite first-order interpretation = database

• First-order logic formula = database query

• Satisfying assignments (for non-sentences) = query results

Known correspondence:
As a query language, FOL has the same expressive power as
(basic) SQL (relational algebra).

Corollary 10.10: Answering SQL queries over a given database is PSpace-
complete.

Markus Krötzsch, 13th Nov 2018 Complexity Theory slide 25 of 34



FOL Model Checking: Practical Significance

Why is FOL Model Checking a relevant problem?

Correspondence with database query answering:

• Finite first-order interpretation = database

• First-order logic formula = database query

• Satisfying assignments (for non-sentences) = query results

Known correspondence:
As a query language, FOL has the same expressive power as
(basic) SQL (relational algebra).

Corollary 10.10: Answering SQL queries over a given database is PSpace-
complete.

Markus Krötzsch, 13th Nov 2018 Complexity Theory slide 25 of 34



Games
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Games as Computational Problems

Many single-player games relate to NP-complete problems:

• Sudoku

• Minesweeper

• Tetris

• . . .

Decision problem: Is there a solution?
(For Tetris: is it possible to clear all blocks?)

What about two-player games?

• Two players take moves in turns

• The players have different goals

• The game ends if a player wins

Decision problem: Does Player 1 have a winning strategy?
In other words: can Player 1 enforce winning, whatever Player 2 does?
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Example: The Formula Game

A contrived game, to illustrate the idea:

• Given: a propositional logic formula ϕ with consecutively numbered variables
X1, . . .X`.

• Two players take turns in selecting values for the next variable:

– Player 1 sets X1 to true or false
– Player 2 sets X2 to true or false
– Player 1 sets X3 to true or false
– . . .

until all variables are set.

• Player 1 wins if the assignment makes ϕ true.
Otherwise, Player 2 wins.

Markus Krötzsch, 13th Nov 2018 Complexity Theory slide 28 of 34



Deciding the Formula Game

Formula Game

Input: A formula ϕ.

Problem: Does Player 1 have a winning strategy on ϕ?

Theorem 10.11: Formula Game is PSpace-complete.

Proof sketch: Formula Game is essentially the same as True QBF.

Having a winning strategy means: there is a truth value for X1, such that, for all truth values of X2,
there is a truth value of X3, . . . such that ϕ becomes true.
If we have a QBF where quantifiers do not alternate, we can add dummy quantifiers and variables
that do not change the semantics to get the same alternating form as for the Formula Game. �

Markus Krötzsch, 13th Nov 2018 Complexity Theory slide 29 of 34



Deciding the Formula Game

Formula Game

Input: A formula ϕ.

Problem: Does Player 1 have a winning strategy on ϕ?

Theorem 10.11: Formula Game is PSpace-complete.

Proof sketch: Formula Game is essentially the same as True QBF.

Having a winning strategy means: there is a truth value for X1, such that, for all truth values of X2,
there is a truth value of X3, . . . such that ϕ becomes true.
If we have a QBF where quantifiers do not alternate, we can add dummy quantifiers and variables
that do not change the semantics to get the same alternating form as for the Formula Game. �

Markus Krötzsch, 13th Nov 2018 Complexity Theory slide 29 of 34



Example: The Geography Game

A children’s game:

• Two players are taking turns naming cities.

• Each city must start with the last letter of the previous.

• Repetitions are not allowed.

• The first player who cannot name a new city looses.

A mathematicians’ game:

• Two players are marking nodes on a directed graph.

• Each node must be a successor of the previous one.

• Repetitions are not allowed.

• The first player who cannot mark a new node looses.

Decision problem (Generalised) Geography:
given a graph and start node, does Player 1 have a winning strategy?
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Geography is PSpace-complete

Theorem 10.12: Generalised Geography is PSpace-complete.

Proof:

(1) Geography ∈ PSpace:
Give algorithm that runs in polynomial space.
It is not difficult to provide a recursive algorithm similar to the one for True QBF or
FOL Model Checking.

(2) Geography is PSpace-hard:
Proof by reduction Formula Game ≤p Geography.

�
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Geography is PSpace-hard

Let ϕ with variables X1, . . . , X` be an instance of Formula Game.
Without loss of generality, we assume:

• ` is odd (Player 1 gets the first and last turn)

• ϕ is in CNF

We now build a graph that encodes Formula Game in terms of Geography

• The left-hand side of the graph is a chain of diamond structures that represent the
choices that players have when assigning truth values

• The right-hand side of the graph encodes the structure of ϕ: Player 2 may choose
a clause (trying to find one that is not true under the assignment); Player 1 may
choose a literal (trying to find one that is true under the assignment).

(see board or [Sipser, Theorem 8.14]) �
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Geography is PSpace-hard: Example

We consider the formula ∃X.∀Y.∃Z.(X ∨ Z ∨ Y) ∧ (¬Y ∨ Z) ∧ (¬Z ∨ Y)

Xs

X0 X1

Xe

Start

Player 1

Player 2

Ys

Y0 Y1

Ye

Zs

Z0 Z1

Ze

Q

X ∨ Z ∨ Y

¬Y ∨ Z

¬Z ∨ Y

X

Y

¬Y

Z

¬Z
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Summary and Outlook

True QBF is PSpace-complete

FOL Model Checking and the related problem of SQL query answering are
PSpace-complete

Some games are PSpace-complete

What’s next?

• Some more remarks on games

• Logarithmic space

• Complements of space classes
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