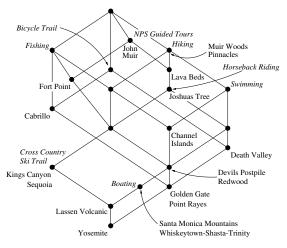
Formal Concept Analysis II Closure Systems and Implications

Sebastian Rudolph

Computational Logic Group Technische Universität Dresden

slides based on a lecture by Prof. Gerd Stumme

通 ト イヨ ト イヨト

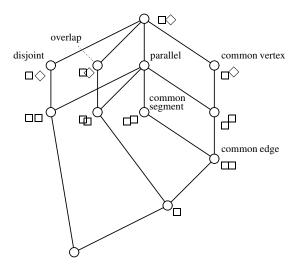

Agenda

Implications

- Implications
- Attribute Logic
- Concept Intents and Implications
- Implications and Closure Systems
- Pseudo-Intents and the Stem Base
- Computing the Stem Base With NEXT CLOSURE
- Bases of Association Rules

Implications

Def.: An *implication* $X \rightarrow Y$ *holds* in a context, if every object that has all attributes from X also has all attributes from Y.



イロト イポト イヨト イヨト

Examples:

- $\{Swimming\} \rightarrow \{Hiking\}$
- $\{Boating\} \rightarrow \{Swimming, Hiking, NPS Guided Tours, Fishing, Horseback Riding\}$
- {Bicycle Trail, NPS Guided Tours} \rightarrow {Swimming, Hiking, Horseback Riding}

Attribute Logic

We are dealing with implications over an possibly infinite set of objects!

(日) (周) (三) (三)

Concept Intents and Implications

Def.: A subset $T \subseteq M$ respects an implication $A \rightarrow B$, if $A \notin T$ or $B \subseteq T$ holds.

(We then also say that T is a *model* of $A \rightarrow B$.)

T respects a set \mathcal{L} of implications, if T respects every implication in \mathcal{L} .

Lemma: An implication $A \to B$ holds in a context, iff $B \subseteq A''$ ($\Leftrightarrow A' \subseteq B'$). It is then respected by all concept intents.

・ 国 ト ・ 国 ト ・ 国 ト …

Implications and Closure Systems

Lemma: If \mathcal{L} is a set of implications in M, then

 $Mod(\mathcal{L}) := \{ X \subseteq M \mid X \text{ respects } \mathcal{L} \}$

is a closure system on M.

The respective closure operator $X\mapsto \mathcal{L}(X)$ is constructed in the following way: For a set $X\subseteq M,$ let

$$X^{\mathcal{L}} := X \cup \bigcup \{ B \mid A \to B \in \mathcal{L}, A \subseteq X \}.$$

We form the sets $X^{\mathcal{L}}, X^{\mathcal{LL}}, X^{\mathcal{LLL}}, \ldots$ until a set

$$\mathcal{L}(X) := X^{\mathcal{L}\dots\mathcal{L}}$$

is obtained with $\mathcal{L}(X)^{\mathcal{L}} = \mathcal{L}(X)$ (i.e., a fixpoint).¹ $\mathcal{L}(X)$ is then the closure of X for the closure system $Mod(\mathcal{L})$.

Implications and Closure Systems

Def.: An implication $A \to B$ follows (semantically) from a set \mathcal{L} of implications in M if each subset of M respecting \mathcal{L} also respects $A \to B$. A family of implications is called *closed* if every implication following from \mathcal{L} is already contained in \mathcal{L} .

Lemma: A set \mathcal{L} of implications in M is closed, iff the following conditions (*Armstrong Rules*) are satisfied for all $W, X, Y, Z \subseteq M$:

$$X \to X \in \mathcal{L},$$

2 If
$$X \to Y \in \mathcal{L}$$
, then $X \cup Z \to Y \in \mathcal{L}$,

 $If X \to Y \in \mathcal{L} and Y \cup Z \to W \in \mathcal{L}, then X \cup Z \to W \in \mathcal{L}.$

Remark: You should know these rules from the database lecture!

イロン 不聞と 不良とう アン

Pseudo-Intents and the Stem Base

Def.: A set \mathcal{L} of implications of a context (G, M, I) is called *complete*, if every implication that holds in (G, M, I) follows from \mathcal{L} . A set \mathcal{L} of implications is called *non-redundant* if no implication in \mathcal{L} follows from other implications in \mathcal{L} .

Def.: $P \subseteq M$ is called *pseudo intent* of (G, M, I), if

- $P \neq P''$, and
- if $Q \subsetneq P$ is a pseudo intent, then $Q'' \subseteq P$.

Theorem: The set of implications

$$\mathcal{L} := \{ P \to P'' \mid P \text{ is pseudo intent} \}$$

is non-redundant and complete. We call $\mathcal L$ the stem base.

ヘロト 人間 とくほ とくほ とう

Pseudo-Intents and the Stem Base

Example: membership of developing countries in supranational groups (Source: Lexikon Dritte Welt. Rowohlt-Verlag, Reinbek 1993)

• • = • • = •

	Group of 77	Non-aligned	LLDC	MSAC	OPEC	ACP
Afghanistan	×	×	×	×		
Algeria	×	×			×	
Angola	×	×				×
Antigua and Barbuda	×					×
Argentina	×					
Bahamas	×					×
Bahrain	×	×				
Bangladesh	×	×	×	×		
Barbados	×	×				×
Belize	×	×		Γ		×
Benin	×	×	×	×		×
Bhutan	×	×	×			
Bolivia	×	×				
Botswana	×	×	×			×
Brazil	×					
Brunei						
Burkina Faso	×	×	×	×		×
Burundi	×	×	×	×		×
Cambodia	×	×		×		
Cameroon	×	×		×		×
Cape Verde	×	×	×	×		×
Central African Rep.	×	×	×	×		×
Chad	×	×	×	×		×
Chile	×			Π	Γ	
China						
Colombia	×	×				
Comoros	×	×	×			×
Congo	×	×				×
Costa Rica	×					
Cuba	×		[
Djibouti	×	×	×			×
Dominica	×	×				×
Dominican Rep.	×					×

	of 77	med]				_						
	Group o	Non-alis	LLDC	MSAC	OPEC	ACP		Group of 77	n-aligned	LLDC	MSAC	EC	Ь		Group of 77	Non-aligned	
Ecuador	×	×	Ē	\square	×	Ē		5	N	Ξ	S	ЧO	PAC AC		5	N	ł
Egypt	×	×		×			Libya	x	-	Н	1	×	۲	Senegal	×	×	
El Salvador	×			×		Γ	Madagascar	x		×	×		×	Sevchelles	×	×	
Equatorial Guinea	×	×	×			×	Malawi	X	×		Ĥ		×	Sierra Leone	X	×	
Ethiopia	×	×	×	×			Malaysia	X		F 1	-	-	-	Singapore	×	x	-
Fiji	×					×	Maledives	×	×	×	-	-	-	Solomon Islands	×	<u> </u>	t
Gabon	×	×			×	×	Mali			X	×		×	Somalia	X	×	t
Gambia	X	×	×	×		×	Mauretania	x	×	×	×		×	Sri Lanka	×	×	
Ghana	×	×	×	×		×	Mauritius	x	×	F.	-		×	St Kitts		1	t
Grenada	×	×				×	Mexico	×			1		-	St Lucia	×	×	t
Guatemala	×			×			Mongolia	<u> </u>		×	-		-	St Vincent& Grenad.	X	1 [~]	t
Guinea	×	×	×	×		×	Morocco	x	×	H	1		4	Sudan	×	×	t
Guinea-Bissau	×	×	×	×		×	Mozambique	X	×	H	×	-	×	Surinam	×	×	
Guyana	×	×		×		×	Myanmar	x		×	×		-	Swaziland	X	×	
Haiti	×		×	×		×	Namibia	x		H			×	Svria	x	İx	t
Honduras	×			×			Nauru	\vdash		H	-	-	4	Taiwan	⊢	⊢	t
Hong Kong				Π			Nepal	x	×	x	×			Tanzania	×	×	5
India	×	×		×		Г	Nicaragua	×	×	H			1	Thailand	×	t	t
Indonesia	×	×			×		Niger	×	×	×	×		×	Togo	×	İ×	5
Iran	×	×		Π	×		Nigeria	×	×			×	×	Tonga	×	t	t
Iraq	×	×			×	Γ	Oman	×	×				1	Trinidad and Tobago	×	×	t
Ivory Coast	×	×		×		×	Pakistan	×	×	H	×		7	Tunisia	×	×	t
Jamaica	×	×				×	Panama	×	×					Tuvalu			5
Jordan	×	×				Γ	Papua New Guinea	×					×	Uganda	×	×	5
Kenya	×	×		×		×	Paraguay	×		H			1	United Arab Emirates	×	×	t
Kiribati			×	Π			Peru	×	×					Uruguay	×	t	t
Korea-North	×	×	×			Γ	Philippines	×		H			1	Vanuatu	×	×	5
Korea-South	×						Qatar	×	×			×	1	Venezuela	×	×	t
Kuwait	×	×		Π	×	Γ	Réunion							Vietnam	×	×	5
Laos	×	×	×	×		Г	Rwanda	×	×	×	×		×	Yemen	×	×	5
Lebanon	×	×					Samoa	×		×	×		×	Zaire	×	×	5
Lesotho	×	×	×	×		×	São Tomé e Principe	×	×	×			×	Zambia	×	×	5
Liberia	×	×				×	Saudi Arabia	×	×			×	T	Zimbabwe	×	×	T
	-	_	-	_		-		-	-	-	_	_	_			-	-

The abbreviations stand for: LLDC := Least Developed Countries, MSAC := Most Seriously Affected Countries, OPEC := Organization of Petro Exporting Countries, ACP := African, Caribbean and Pacific Countries.

Sebastian Rudolph (TUD)

2

<ロ> (日) (日) (日) (日) (日)

×х × × XXXX ×

× XXXX ×

× × × |x |x| ×× ×

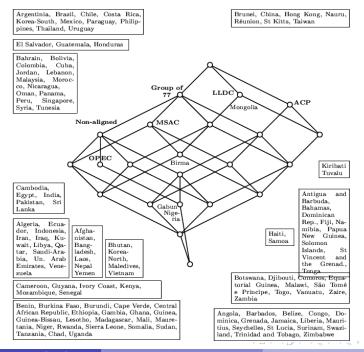
× XXXX ×

×

×

×

×


×

× Ι× × × × | x | x | x | x XXX

× ×

×

×

э

Pseudo-Intents and the Stem Base

stem base of the developing countries context:

```
\{\mathsf{OPEC}\} \rightarrow \{\mathsf{Group of 77, Non-Alligned}\}\{\mathsf{MSAC}\} \rightarrow \{\mathsf{Group of 77}\}\{\mathsf{Non-Alligned}\} \rightarrow \{\mathsf{Group of 77}\}\{\mathsf{Group of 77, Non-Alligned, MSAC, OPEC}\} \rightarrow \{\mathsf{LLDC, AKP}\}\{\mathsf{Group of 77, Non-Alligned, LLDC, OPEC}\} \rightarrow \{\mathsf{MSAC, AKP}\}
```

Computing the Stem Base With NEXT CLOSURE

The algorithm NEXT $\operatorname{CLOSURE}$ to compute all concept intents and the stem base:

- **1** The set \mathcal{L} of all implications is initialized to $\mathcal{L} = \emptyset$.
- **2** The lectically first concept intent or pseudo-intent is \emptyset .
- If A is an intent or a pseudo-intent, the lectically next intent/pseudo-intent is computed by checking all i ∈ M\A in descending order, until A <_i L(A + i) holds. Then L(A + i) is the next intent or pseudo-intent.
- If L(A + i) = (L(A + i))" holds, then L(A + i) is a concept intent, otherwise it is a pseudo-intent and the implication L(A + i) → (L(A + i))" is added to L.
- If $\mathcal{L}(A+i) = M$, finish. Else, set $A \leftarrow \mathcal{L}(A+i)$ and continue with Step 3.

◆□▶ ◆□▶ ◆三▶ ◆三▶ □ のへ⊙

Computing the Stem Base With NEXT CLOSURE

		а	b	с	е
Example:	1	×		х	
Example.	2		X		×
	3		×	Х	×

A	i	A + i	$\mathcal{L}(A+i)$	$A <_i \mathcal{L}(A+i)?$	$\left \left(\mathcal{L}(A+i) \right)'' \right.$	\mathcal{L}	new intent	_
							1) Q (?
Set	bast	ian Rudolph (TUI	D)	Formal Concept Ana			14	/ 24

Agenda

4

Implications

- Implications
- Attribute Logic
- Concept Intents and Implications
- Implications and Closure Systems
- Pseudo-Intents and the Stem Base
- Computing the Stem Base With NEXT CLOSURE
- Bases of Association Rules

3 K K 3 K

The input data to compute association rules can be represented as a formal context (G, M, I):

- M is a set of *items* (things, products of a market basket),
- G contains the transaction ids,
- and the relation *I* the *list of transactions*.

The *support* of an implication is the fraction of all objects that have all attributes from the premise and the conclusion.

(repetition: the support of an attribute set $X \subseteq M$ is $\operatorname{supp}(X) := \frac{|X'|}{|G|}$.) **Def.:** The support of a rule $X \to Y$ is given by

$$\operatorname{supp}(X \to Y) := \operatorname{supp}(X \cup Y)$$

The *confidence* is the fraction of all objects that fulfill both the premise and the conclusion among those objects that fulfill the premise.

Def.: The confidence of a rule $X \to Y$ is given by

$$\operatorname{conf}(X \to Y) := \frac{\operatorname{supp}(X \cup Y)}{\operatorname{supp}(X)}$$

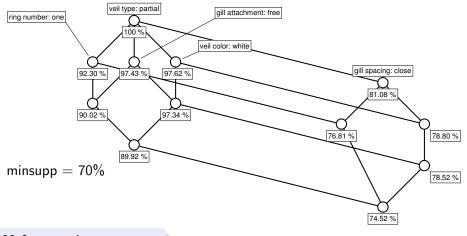
・ロト ・得ト ・ヨト ・ヨト

 $\begin{aligned} & \{ \text{veil color: white, gill spacing: close} \} \rightarrow \{ \text{gill attachment: free} \} \\ & \text{support: 78.52\%} \\ & \text{confidence: 99.60\%} \end{aligned}$

Classical data mining task: Find for given $minsupp, minconf \in [0, 1]$ all rules with a support and confidence above these bounds.

Our task: finding a *base* of rules, i.e., a minimal set of rules from which all other rules follow.

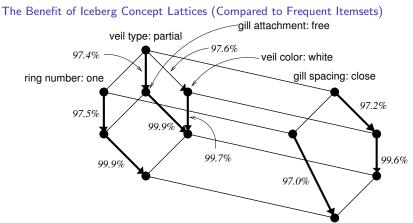
From B' = B''' follows


$$supp(B) = \frac{|B'|}{|G|} = \frac{|B'''|}{|G|} = supp(B'')$$

Theorem: $X \to Y$ and $X'' \to Y''$ have the same support and the same confidence.

To compute *all* association rules it is thus sufficient to compute the support of all frequent sets with B = B'' (i.e., the intents of the iceberg concept lattice).

・ 同 ト ・ ヨ ト ・ ヨ ト …


The Benefit of Iceberg Concept Lattices (Compared to Frequent Itemsets)

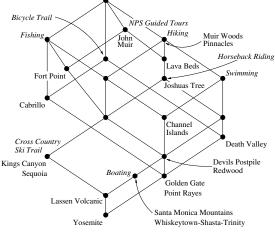
32 frequent itemsets are represented by 12 frequent concept intents

→ more efficient computation (e.g., TITANIC)
→ fewer rules (without loss of information!)

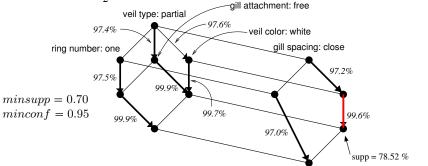
イロト イポト イヨト イヨト

Association rules can be visualized in the (iceberg) concept lattice: exact association rules (implications): conf = 100%(approximate) association rules: conf < 100%

< 152 ▶


E + 4 = 1

Bases of Association Rules: Exact Association Rules

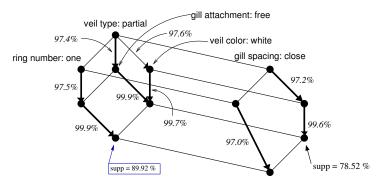

... can be read off from the stem base. In concept lattices we can read them directly off from the diagram: **Lemma:** An implication $X \rightarrow Y$ holds, iff the largest concept that is below the concepts that are generated by the attributes of X is below all concepts that are generated by the attributes in Y.

Examples:

- {Swimming} \rightarrow {Hiking} (supp = 10/19 \approx 52.6%, conf = 100%)
- {Boating} → {Swimming, Hiking, NPS Guided Tours, Fishing, Horseback Riding} (supp = 4/19 ≈ 21.0%, conf = 100%)
- {Bicycle Trail, NPS Guided Tours} → {Swimming, Hiking, Horseback Riding} (supp = 4/19 ≈ 21.0%, conf = 100%)

Def.: The *Luxenburger basis* contains all valid approximate association rules $X \to Y$, such that concepts (A_1, B_1) and (A_2, B_2) exist, with (A_1, B_1) being a direct upper neighbor of (A_2, B_2) , such that $X = B_1$ and $X \cup Y = B_2$ holds.

Every arrow shows a rule of the basis. E.g., the right arrow stands for {veil type: partial, gill spacing: close, veil color: white} \rightarrow {gill attachment: free} (conf = 99.6\%, supp = 78.52\%)


(日) (周) (三) (三)

Theorem: From the Luxenburger basis all approximate association rules (incl. support and confidence) can be derived by the following rules:

- $\phi(X \to Y) = \phi(X \to Y \setminus Z)$, for $\phi \in \{\text{conf}, \text{supp}\}, Z \subseteq X$
- $\phi(X'' \to Y'') = \phi(X \to Y)$
- $\operatorname{conf}(X \to X) = 1$
- $\operatorname{conf}(X \to Y) = p, \operatorname{conf}(Y \to Z) = q \Rightarrow \operatorname{conf}(X \to Z) = pq$ for all frequent concept intents $X \subset Y \subset Z$.
- $\operatorname{supp}(X \to Z) = \operatorname{supp}(Y \to Z)$ for all $X, Y \subseteq Z$

The basis is minimal with respect to this property.

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ - 画 - のへ⊙

example

{ring number: one} \rightarrow {veil color: white}

- has a support of 89.92% (the support of the largest concept which contains both attributes in its intent)
- and confidence $97.5\% \cdot 99.9\% \approx 97.4\%$.

Some experimental results

Dataset	Exact	stem		asssociation	Luxenburger
(Minsupp)	rules	basis	Minconf	rules	basis
			90%	16,269	3,511
T10I4D100K	0	0	70%	20,419	4,004
(0.5%)			50%	21,686	4,191
			30%	22,952	4,519
			90%	12,911	563
Mushrooms	7,476	69	70%	37,671	968
(30%)			50%	56,703	1,169
			30%	71,412	1,260
			90%	36,012	1,379
C20D10K	2,277	11	70%	89,601	1,948
(50%)			50%	116,791	1,948
			30%	116,791	1,948
			95%	1,606,726	4,052
C73D10K	52,035	15	90%	2,053,896	4,089
(90%)			85%	2,053,936	4,089
			80%	2,053,936	4,089

Sebastian Rudolph (TUD)

2

<ロ> (日) (日) (日) (日) (日)