TU Dresden, Fakultät Informatik David Carral, Markus Krötzsch

Complexity Theory Exercise 5: Space Complexity 28 November 2017

Exercise 5.1. Let A_{LBA} be the word problem of deterministic linear bounded automata. Show that A_{LBA} is PSPACE-complete.

 $\mathbf{A}_{\text{LBA}} = \{ \langle \mathcal{M}, w \rangle \mid w \in \mathbf{L}(\mathcal{M}) \text{ and } \mathcal{M} \text{ is a deterministic linear bounded automata} \}$

Exercise 5.2. Consider the Japanese game *go-moku* that is played by two players X and O on a 19x19 board. Players alternately place markers on the board, and the first one to have five of its markers in a row, column, or diagonal wins.

Consider the generalised version of go-moku on an $n \times n$ board. Say that a *position* of go-moku is a placement of markers on such a board as it could occur during the game, together with a marker which player moves next. Define

 $\mathbf{GM} = \{ \langle B \rangle \mid B \text{ is a position of go-moku where X has a winning strategy} \}.$

Show that **GM** is in PSPACE.

Exercise 5.3. Show that the universality problem of nondeterministic finite automata

 $ALL_{NFA} = \{ \langle \mathcal{A} \rangle \mid \mathcal{A} \text{ an NFA accepting every valid input} \}$

is in PSPACE.

Hint:

polynomially bounded. Finally, apply Savitch's Theorem.

Prove that, if $\mathbf{L}(\mathcal{A}) \neq \Sigma^*$ and \mathcal{A} has n states, then there exists a word $w \in \Sigma^*$ of length at most 2^n such that $w \notin \mathbf{L}(\mathcal{A})$. Then, use this fact to give a non-deterministic algorithm whose space consumption is

* Exercise 5.4. Let

 $\mathbf{EQ}_{\text{REX}} = \{ (R, S) \mid R \text{ and } S \text{ are equivalent regular expressions} \}.$

Show that \mathbf{EQ}_{REX} is in PSPACE.

Hint:

Adapt the hint of Exercise 5.3 accordingly.