An Existential Rule Framework for
Computing Why-Provenance On-Demand for Datalog

Ali Elhalawati[0000_0003_1457_0031] Markus Krétzsch[0000_0002‘9172‘2601] and
Stephan Mennicke[0000—0002—3293—2940]

Knowledge-Based Systems Group, TU Dresden, Dresden, Germany
{fistname.lastname}@tu-dresden.de

Abstract. Why-provenance — explaining why a query result is obtained — is
an essential asset for reaching the goal of Explainable Al. For instance, recursive
(Datalog) queries may show unexpected derivations due to complex entangle-
ment of database atoms inside recursive rule applications. Provenance, and why-
provenance in particular, helps debugging rule sets to eventually obtain the desired
set of rules. There are three kinds of approaches to computing why-provenance
for Datalog in the literature: (1) the complete ones, (2) the approximate ones,
and (3) the theoretical ones. What all these approaches have in common is that
they aim at computing provenance for all IDB atoms, while only a few atoms
might be requested to be explained. We contribute an on-demand approach: After
deriving all entailed facts of a Datalog program, we allow for querying for the
provenance of particular IDB atoms and the structures involved in deriving prove-
nance are computed only then. Our framework is based on terminating existential
rules, recording the different rule applications. We present two implementations
of the framework, one based on the semiring solver FPsolve, the other one based
Datalog(S), a recent extension of Datalog by set terms. We perform experiments
on benchmark rule sets using both implementations and discuss feasibility of
provenance on-demand.

Keywords: Datalog provenance - why-provenance - Datalog(S)

1 Introduction

Explainability and justification of data that stems from complex, even recursive, pro-
cesses have attracted both, the community of knowledge representation as well as the
database community. The reason is that recursive programs tend to get complicated,
which makes it hard for users to debug, audit, establish trust in, or even query the data.
Data provenance is one particular way of achieving these aspects and has a long-standing
tradition in the field of relational databases and non-recursive queries [5,8]. For recur-
sive queries, provenance for Datalog has been studied and found to be expressible with
quite similar tools as the ones underlying provenance for non-recursive queries [13,10].
Provenance describes how annotations on database tuples or facts have been used to
obtain a query result.

In this work, we explore the task of providing explainability for Datalog programs
by why-provenance [5]. Why-provenance considers the witnesses of a derivation, which

2 Ali Elhalawati, Markus Krotzsch, and Stephan Mennicke

are sets of database atoms that can be used to achieve the derivation through reasoning.
Previous works [12,14,3] contributed to computing why-provenance for databases, which
are practical but restricted to non-recursive programs (e.g., SQL queries). Only a few
works actually considered the implementation of why-provenance for Datalog. Most of
it has been either on the theoretical side [9,10], bound to certain underapproximations
of why-provenance [20], restricted to non-recursive Datalog programs [17], or require
an expensive transformation of the instantiated rules in a Datalog program to a system
of equations [11].

Since providing why-provenance for all the data derived from a database via a
Datalog program is an expensive task (the set of all witnesses is generally exponential in
the size of the database), we explore computing why-provenance for Datalog programs in
a more practical framework. Instead of computing provenance for all atoms, we propose
and implement an on-demand approach. Our contributions are summarized as follows:

We introduce a novel on-demand approach to why-provenance computation restrict-
ing its computation to a given goal atom. This approach is a purely rule-based one
(Sect. 3).

Upon the structures we introduce for the on-demand approach, we show how to create

a system of equations (on-demand) whose solutions, interpreted over the so-called

why-semiring, are identical with the why-provenance of the goal atom (Sect. 4).

This representation can be presented to a semiring solver, like FPsolve [11], in a

serialized form.

— Based on the same structures used before, we provide a novel approach to computing
why-provenance based on Datalog(S) rules (Sect. 5). Datalog(S) is a recent extension
of Datalog having set terms as first-class citizens [7].

— We experimented with both of the aforementioned realizations and get a first insight

on their runtime behavior (Sect. 6).

Beyond the main part of the paper (sections 3—6), we provide our basic notions in
Sect. 2, related work in Sect. 7, and our conclusions and future work in Sect. 8.

2 Preliminaries

In this section, we introduce our notation for databases, Datalog, and (why-)provenance.
Therefore, we assume a fixed first-order vocabulary C of constants, V of variables
(CNV = 0), and P of predicate names. Each predicate name p € P has an arity
ar(p) e N. Alistof terms ty, .. .,t, (t; € CUV)is often abbreviated by 7 and has length
|7] = n. For convenience, we treat lists of terms 7 as sets when order is irrelevant. We
call an expression p(7) an atom if p € P, € CUV, and || = ar(p). An atom is ground
if each of its terms is a constant and a finite set D of ground atoms is called a database.
A Datalog rule is a first-order formula of the form

P:VEPI(E) Ao A pm(tm) = q(id), (1

where pi(f1), ..., pm(tm), and g(ii) are atoms using only variables in X, such that each
variable in ¢ (if) further occurs in some atom p; (#;) (safety). We call q(ii) the head of p

Computing Why-Provenance On-Demand for Datalog 3

(denoted head(p)) and p(f1) A. .. A pn(tm) the body of p (denoted body(p)). We may
treat conjunctions as sets, e.g., to write p1(f1) € body(p), and tacitly omit the universal
quantifiers for brevity. A variable-free rule is a rule instance (i.e., in which all atoms are
ground atoms). A set of Datalog rules X is referred to as a Datalog program. A predicate
p that occurs only in rule bodies of X is an EDB predicate (extensional database
predicate); all other predicates are IDB predicates (intensional database predicates).
Datalog programs X are evaluated over databases that use only EDB predicates of X.
The distinction in EDB and IDB predicates is necessary for a construction in Sect. 3.

Datalog Semantics The semantics of a Datalog program X over a database D can
equivalently be defined via least models, least fixpoints of a consequence operator, or
proof trees [1]. A ground substitution 6 is a mapping from variables to constants. For a
database D and a rule p, a match is a ground substitution 6 with body(p)8 C D. It is
satisfied in D if head(p)6 C D, and unsatisfied otherwise. A rule is satisfied if all of its
matches are. Models and entailment (of ground facts) for Datalog is defined as usual.
We will denote the least model of program ¥ and database D as X(D). An immediate
consequence operator Ty can be defined on databases as Tx(D) = {head(p)0 | p €
¥, 6 is a match for p on D}. The iterative application of Ty starting from the initial
database converges to (D).

Example 1. Consider the database D = {e(1,2), e(2,2), e(2,3), e(4,3)} which may be
interpreted as a directed graph ({1, 2, 3,4}, {(1,2),(2,2),(2,3), (4,3)}). Furthermore,
let X = {p1, p2} with

pi: e(x,y) = 1(x,y)

p2i e(x,2) Ai(z,y) = 1(x,y)

Applying Ty iteratively to D yields additional ¢-atoms. As a result, X(D) = D U
{t(1,2),1(1,3),1(2,2),t(2,3),1(4,3)}. Forinstance, (1, 2) can be obtained by applying
p1 for 8; = {x — 1,y +— 2}. Another possibility to derive the same fact is by p, for
match 6, = {x — 1,y — 2,z — 2}. Of course, this application requires us to have also
derived #(2,2), which can be done by p; and 63 = {x > 2,y > 2}.

Graph of Rule Instances One can describe the derivation steps of Ty in a suitable
hypergraph. A (vertex-labeled, directed) hypergraph H has the form (V, &, tip, tail, 1),
where V is a finite set of vertices, £ C 2" is a set of hyperedges, with each e € £ having
tip(e) € V and tail(e) € V,and 2 : V — L is a vertex labeling function for some set of
labels L. Note that we only allow a single tip per edge but many tails. # is a hypertree
if the directed graph with edges {r — tip(e) | ¢ € tail(e),e € £} is a tree (with edges
pointing from children to parents); we write leaves(H) for its leaves. The graph of rule
instances for a Datalog program X and database D is the hypergraph GRI(X,D) :=
(Z(D), &, tip, tail, 1), where € = {(p,0) | p € X, 8 a satisfied match for p over Z(D)}
with tip(p,0) = head(p)f and tail(p,0) = body(p)6. The labeling A is simply the
identity function (non-identity labelings will be needed below).

Example 2. Reconsider X and D from Example 1. Each atom A € £(D) is a node in the
graph of rule instances GRI(X, D) = (2(D), E, tip, tail, ids(p)). The hyperedges (£) are
determined by the rules and matches producing X (D). For instance, e = (p1,0) € £ with

4 Ali Elhalawati, Markus Krotzsch, and Stephan Mennicke

1(2.3)¥/Q% 1(1,3)

t(1,2) 1(4,3)

1(2,2) e(1,2) e(4,3)

Fig. 1: The Graph of Rule Instances of ¥ and D

tip(e) = #(1,2) and tail(e) = {e(1,2)} for applying p; for match § = {x — 1,y > 2}.
Fig. 1 shows a depiction of the full graph, including all the edges. Arrow tips point to
the result of applying function tip to the respective hyperedge. If an edge has a single
tail-node, just like e above, we depict it as a simple directed edge. Edges having more
than one tail-node use a small circle to join the tail-nodes via undirected edges. The
distinction between the gray part and the rest of the graph will be explained in Sect. 3.

Proof Trees An alternative approach to the semantics of Datalog is the proof-theoretic
one, justifying inferred atoms A € (D) in terms of so-called proof trees, a necessary
prerequisite for provenance. A proof tree for A is a hypertree T = (V, E, tip, tail, 1)
with root node v such that A(v) = A, v € leaves(T) implies A(v) € D, and for each
non-leaf node v € V \ leaves(T), there is exactly one edge ¢ € E with tip(e) = v
with a rule p € ¥ and satisfied match 6 in (D), such that A(tip(e)) = head(p)6 and
{B | B € body(p)8} = {A(¢) | t € tail(e)}. Such a proof tree explains one possible
derivation of atom A, of which there may be infinitely many (due to recursion). Note
that each atom A € D has only a single proof tree, which has a single vertex and no
edges. By T(A, 2, D) (or just T(A) if £ and D are clear from the context) we denote the
set of all proof trees of A € X(D). There is a strong correspondence between GRI(Z, D)
and the union of all the proof trees for all atoms A € Z(D):

Proposition 1. Let X be a Datalog program and D a database. Then
GRI(Z,D) = (X(D), E, tip, tail, ids,(p)),

where for every A € (D), proof tree (V, E, tipy, tailp, 1) € T(A), and e € E, there is
an e’ € & such that A(tipr(e)) = tip(e’) and A(taily(e)) = tail(e’).

Thus, the graph of rule instances captures the set of all proof trees of the atoms in (D)
by finite means. If a hypergraph H captures a (possibly infinite) set of hypergraphs H in
the sense of Prop. 1, we denote this fact by 7 > H.

Example 3. InFig. 2, we depict three different proof trees deriving (1, 2) from X and D
(cf. Example 1). While tree (a) represents the derivation by rule p, as discussed earlier,

Computing Why-Provenance On-Demand for Datalog 5

e(1,2)

1(1,2) —— e(1,2) 1(1,2) ~C<

1(2,2) «— ¢(2,2)

(@) (b)
e(1,2)

1(1,2) ~O< e(2.2)
1(2,2) <—C<

1(2,2) «—— ¢(2,2)
©

Fig.2: A Selection of Proof Trees for 7(1,2)

trees (b) and (c) use one or two rule applications of p;, prepended by a rule application
of p. Note how in Fig. 2 (c), there are several nodes having the same label. Observe that
the unfolding step performed between Fig. 2 (b) and (c) can be performed arbitrarily
often, yielding an infinite set of proof trees for 7(1, 2).

Why-Provenance for Datalog Provenance is about additional information, usually by
means of annotations attached to the atoms of a database. Therefore, we assume a
dedicated set K of annotations (e.g., sources, multiplicities, or costs) and provide for
each atom A € D an annotation a(A) € K. A K-annotated database is, thus, a pair
(D, @) such that D is a database and @ : D — K. To model tuples having no annotations
we would assume special symbols like L or @ to be part of K.

Let X be a Datalog program and (D, @) a K-annotated database. Why-provenance
takes the annotations of database atoms and provides a set of witnesses (sets of database
annotations) from all those database atoms that can be used to infer a given atom
A € (D). In particular, the annotations of the leaf nodes of a single proof tree for
A € X(D), as a set, form a witness in the why-provenance of A. For atom A € X(D)
and a proof tree T € T(A), we call the set {@(A(v)) | v € leaves(T)} a witness for A,
denoted by a(T). Why-provenance of A (w.r.t. £ and D) Why(A, Z, D) (or Why(A) for
short) is the set of all witnesses for A, meaning Why(A, X, D) :={a(T) | T € T(A)}.
For every A € £(D), Why(A,X,D) C 22" and since D is finite, the set of all witnesses
for A € (D) is also finite, despite the fact that T(A, X, D) may be infinite.

3 Rule-Based Provenance On-Demand

Throughout this section, we assume the fixed Datalog program X and database D. We
have seen that the graph of rule instances GRI(Z, D) captures all proof trees of all atoms
A € X(D). However, this complete representation of the rule instances is exponential

6 Ali Elhalawati, Markus Krotzsch, and Stephan Mennicke

and, therefore, quite costly to always compute with the set X(D), especially when we
are considering a debugging scenario, in which the provenance of only a few atoms is
ever queried. In this section, we present how we avoid the full construction of the GRI,
but may still access the necessary parts of it, upon the query for why-provenance of
a particular atom A € X (D). The key insight to our on-demand approach is that the
downward closure of A € (D) w.r.t. GRI(Z, D) captures all proof trees T € T(A).
For hypergraph # = (V, &, tip, tail, 1) and node v € V, we denote by v! the hypergraph
(W, F, tip| . tail| 7, Ajw), such that YW and F are the smallest sets satisfying (1) v € W
and (2) if u € W and there is an edge E € &£ with tip(E) = u, then E € F and
tail(E) € V. Note, W C V and F C &, justifying the domain restrictions tip| £, tail 7,
and A)yy. Such downward closures are sufficiently representing proof trees in the sense
of Prop. 1:

Proposition 2. For GRI(Z, D) = (Z(D), &, tip, tail, 1) and A € (D), we have Al >
T(A).

Example 4. We stick with atom #(1,2) € X(D) from Example 1, whose downward-
closure is the black part of the GRI depicted in Fig. 1. Proof trees in Fig. 2 (a) and
(b) directly embed into the relevant part of the GRI. Note that there is no proof tree of
t(1,2) relating to the grayed-out parts of the GRI (cf. Fig. 1).

To achieve an on-demand-driven provenance computation we therefore perform two
steps: First, we record the nodes of GRI(X, D) (i.e., V), during the derivation of (D).
This is a necessary prerequisite to prepare for subsequent provenance computations. As
we cannot use atoms as terms, we associate each atom A € X (D) with a term v4 that
may be seen as an identifier for A. Second, when asked for the why-provenance of atom
A, we only construct the downward closure A! by resorting to v4. We subsequently
show how we do both steps via rule-based reasoning using existential quantification in
the head of Datalog rules only for the recording step.

For each predicate p occurring in X or D, let p* be a fresh predicate name with
ar(p*) = ar(p) +1. For each atom A = p (), we introduce the aforementioned identifier
v 4 for A in the last component of its p*-copy (i.e., A = p(7) entails the atom p*(7,v4)).
We obtain such a copy by using the following rule for predicate p:

P(X1, .o Xar(p)) = V. PT(XLL L Xar(p)s V)- ()

Existential quantification in rule heads leaves the realm of pure Datalog, but is here meant
in a safe sense. State-of-the-art rule reasoners, like VLog [6], implement the standard
chase which ensures that each atom is copied only once and, therefore, also associated to
exactly one (new) identifier v 4. Any reasoner that guarantees this uniqueness constraint
may be used to obtain the same results. For each predicate p occurring in X, we need to
consider a respective rule (2). Let * denote the set of all such rules. Note, X* does not
depend on D because atoms with predicate names not occurring in Z have no effect on
the additional atoms derived in (D).

Upon the query for why-provenance of an atom p(ty, . ..,t,) € X(D), we may now
resort to p*(t1,...,t,,v) € (ZUXZ*)(D) as a starting point, where v indicates the base
node from which the downward closure shall be computed. If we add the following rule

Computing Why-Provenance On-Demand for Datalog 7

to our overall rule set, we trigger the computation of the downward closure from v by
the derived fact G (v):
Vx. pt(t1,. ..t x) = G(x) 3)

We assume G to be a fresh predicate. For an atom A, let us denote its triggering rule (3) by
trig(A). For the construction of the downward closure, we match rule instances on atoms
produced by rules in £* (e.g., p*) and connect the associated nodes accordingly. To cope
with the different numbers of atoms per rule, we use auxiliary fresh predicates &1, . . ., &,
such that ar(&;) =i (1 <i < k). We pick a high enough k € N (e.g., the maximum
number of atoms in a rule of £). Then for eachrule p = p1 (f))A...Api(f7) — q(ii) € Z,
we create the rule

1
G (vo) Ag*(it, vo) Api (T, vD) A .. Ap; (i1, v1) = i (vo, vi, .. -,Vl)/\/\ G(vi), D
i=1

where vg, vy, ...,V is a list of variables distinct from those used in p. Note, having
more than one head atom in a Datalog rule, as in (4), is just a shorthand for as many
single-head rules as there are atoms in the head. Requiring the derivation of atoms

G(v1),...,G(v;) makes sure that the downward closure is triggered recursively. Let X°
be the set of rules like (4) for each p € X. Additionally, add to X° one rule
q*(6,v) = E1(v) (5)

for each EDB predicate p of X. £ -atoms will later be used as the base case for provenance
computation. For an atom A € (D), adding trig(A) to £ U Z* U X° suffices to fully
describe the downward closure of A (via v4) as follows:

Proposition 3. Let A € (D) and M = (2 U X* U X° U {trig(A)})(D), Then E with
tin(E) = vpo and tail(E) = {vp1,...,ven} is an edge of AL if, and only if, there is a set
{i1,i2,...,in} = tail(E), such that E,41 (vpo, viys .- ., vi,) € M.

Throughout the next two sections, we incorporate these preliminary constructions
in two solutions for obtaining why-provenance of atoms A € X(D). The first is based
on a representation of why-provenance as the solutions to a system of equations [13]
specific to (D). The second is a purely rule-based approach, incorporating the recent
extension of Datalog by set primitives, called Datalog(S) [7].

4 Realization as Solutions to Systems of Equations

Green et al. [13] have shown that provenance for Datalog (over K-annotated databases)
can be generalized to solutions of a system of equations, specific to the Datalog program X
and the K -annotated database (D, «), interpreted over certain semirings. In the equations
we use a generalized join operator ® (for combining the leaf nodes of a single proof tree)
and @ as the generalized union (for combining alternative proof trees). Furthermore, a
system of equations uses variables from a set V, such that for each atom A € X(D),
V(A) € V and

V= P | K Ve (©)

TeT(A,2,D) \Bea(T)

8 Ali Elhalawati, Markus Krotzsch, and Stephan Mennicke

is the characteristic equation for A (w.r.t. ¥ and D). The system of equations for £ and D
is then the pair (V, E), such that E contains the characteristic equation (6) for each A €
2(D). (V,E) is interpreted over semirings that provide different granularities of prove-
nance information. For Datalog provenance, it is of utmost importance that the semiring
at hand is w-continuous, guaranteeing that infinite sums, like the ones introduced by
(6) (recall that the set T(A, X, D) is generally infinite), have well-defined solutions.
Fortunately, the semiring for why-provenance, Why(V, K) = (ZZK, U, u,0,{0}) enjoys
this property. Note, for sets A and B of subsets of K, AUB:={aUb |aecA,be B}.
An assignment over Why(V, K) is a function g : V — 22 An assignment f3 is valid
for (V,E) if, and only if, (a) B(V(A)) = a(A) for each A € D, and (b) for each equation
of the form (6),

BV = |) (BB ... uBV(EB)),)

TeT(A,2,D)

where for each T € T(A,X,D), a(T) = {By,...,B;} (I € N). Thus, operator & is
evaluated via union (U) and ® via cross-union (V).

The general infinity of equations like (6) is impractical for providing actual tool sup-
port. Fortunately, an alternative system of equations makes use of the fixpoint approach
to solving equations over semirings, encompassed by the finite representation of all
proof trees, the graph of rule instances GRI(Z, D) = (2(D), &, tip, tail, 1). For the finite
system of equations, we use the set (D) as the set of variables. To make the distinction
between X (D) and its system of equation clear, we will denote the variable of A € (D)
by its identifier v4 (cf. Sect. 3). As set of equations E, we have the following equation
for each atom A € X(D):

we D (@ ®
Ec& tip(E)=va \wetail(E)

Green et al. [13] showed that systems of equations created from (6) are equivalent in
their solutions with systems of equations using only finite equations of the form (8) (one
foreachvy € V).

Based on (8), we can also obtain a system of equations on-demand for node v 4
by pursuing the additional rules we added in the last section. Upon why-provenance
query for A € X(D), let 2* = T U X* U Z° U {mrig(A)} and M = Z*(D). Then
we derive the system of equations on-demand for A by querying for the atoms of

relations &1, . . ., E. Of course, we will use the node identifiers as variables and define
itby V := {v | p*(f,v) € M} (due to X*). For each variable v € V, let £(v) :=
{{vi,.., it |1 21 <k A& (v, vy, ..., v;) € M}. Both sets can be constructed by

querying for the respective atoms in M. The system of equations for A on-demand is
(V,E) where E is the set containing

- @ (R o

Ec&(v) \weE

Computing Why-Provenance On-Demand for Datalog 9

for each v € V. This is the system of equations we present a semiring solver like
FPsolve [11]. Interpreted over the why-semiring, the valid assignments for v 4 refer to
the provenance of A.

5 Realization with Datalog(S)

Our second solution to why-provenance on-demand is a pure rule-based approach. Let
us assume a Datalog program X, a database D, an atom A € X (D) we want to know why-
provenance for, and the rule set X* containing X, ¥, £°, and {#rig(A)} (cf. Sect. 3). We
now associate with each node identifier v (due to rules in X*) sets of node identifiers that
each represents a witness for the atom represented by A. Sets are not part of the terms in
Datalog, but the recent extension of Datalog with sets [7] does include special set terms.
The language facilitating basic set operations during reasoning is called Datalog(S) and
will be briefly introduced in the first part of this section. Later on, we give a fixed set of
Datalog(S) rules ZéVhy for X, capable of traversing the downward closure produced by

>* and collecting witnesses in the above-mentioned sense.

5.1 Datalog with Sets

Datalog(S) is a recent extension of Datalog that introduces a new term set, the set
variables Vg, which can be used in a Datalog(S) program. Furthermore, the set terms
that can be used are defined inductively: (1a) V € Vg is a set term, (1b) 0 is a set term
representing the empty set in Datalog(S), (1c) for each term z € C UV, {t} is a set
term, and (2) if 77 and T, are set terms, then (77 |J T5) is a set term. We often drop the
parenthesis in unions. A Datalog(S) rule has the form

vz, X. [%, X] — q(i0), (10)

where ¥ € V, X C Vg, @ U {q(ir)} is a set of atoms (potentially) with set terms, such
that each variable in i is an element of ¥ U X. Instances (and models) are variable-free
sets of atoms or set atoms (i.e., atoms containing set terms). Since we use Datalog(S)
only for the computation of provenance, we can assume databases to be set-atom-free
ground instances. Substitutions must match set variables with set terms and variables
in V with non-set terms, and matching rules are defined accordingly. The procedures
evaluating a set of Datalog(S) rules, also called Datalog(S) programs, are similar to the
ones for Datalog. Carral et al. provide a reasoning approach based on an encoding of
Datalog(S) programs in existential rules [7]. We subsequently give a Datalog(S) program
that traverse the downward-closure we constructed in Sect. 3.

5.2 Collecting Sets from Downward Closures

Let prov be a fresh binary predicate (i.e., it does not occur in 2*). The rules collecting the
witnesses as set terms produce prov-atoms with a node identifier in the first position and
a set term (a witness) in the second. Recall that the model Z* (D) contains facts for the
predicates &1, ..., E (for some k € N determined by the rules in X). Furthermore, all

10 Ali Elhalawati, Markus Krotzsch, and Stephan Mennicke

database node identifiers v4 (with A € D) are represented by atoms £ (v4) € Z* (D). It
is going to be these database node identifiers that will be carried along in the witnesses
of atoms B € X(D). Therefore, we construct a set of Datalog(S) rules E’{,Vhy in which
each rule introduces new prov-atoms as witness information. In the base case, rule

E1(x) — prov(x, {x}) 11

belongs to Zévny' Upon evaluation, the provenance of each database atom A is represented

by the atom prov(va,{va}). For each j € {1,...,k — 1}, the set Z"thy contains the
following rule:

J

Eir1 (X0, X1, .., Xj) A /\prov(xi,Xi) — prov(xg, X1 U U X;) (12)

i=1

Since every edge of the downward closure effectively represents a rule instance, the
union of all witnesses belonging to the body of rule instance is a witness for the head.

6 Implementation and Experimental Results

We implemented our on-demand approach (cf. Sect. 3) using VLog [6] and realized
why-provenance computation with the approaches described in sections 4 and 5. We
chose FPsolve [11] as the semiring solver since it offers a built-in implementation of the
why-semiring. We emulated Datalog(S) by means of terminating existential rules, again
using VLog, as described by Carral et al. [7]. For a given Datalog program X, we have
run a script translating the program into X* (cf. Sect. 3). VLog does not only perform
the initial Datalog reasoning step, but is also crucial in the construction of the system of
equations for FPsolve (Sect. 4) and for performing the necessary reasoning steps of our
Datalog(S)-based process (Sect. 5).

As input, we used the DocTors scenario from the Chasebench [4] and a Datalog
implementation of the EL ontology Galen! using the ELK reasoning calculus [15]. In
particular, we rewrote the DocTors scenario into Datalog (originally, it contains exis-
tential rules), which we obtained by replacing all occurrences of existentially quantified
variables uniformly by fresh constants. The DocTors scenario provides seven queries
(ql-q7) alongside the dataset 100k, which we subsequently identify by the names of the
queries. As for the EL ontology Galen, we queried for the rdfs : subClassOf-property.
As input data for Galen we obtained 10%, 15%, 25%, 40%, and 50% random samples
(subsequently referred to as g10,g15....,950). We are well aware that such a random
sampling may destroy a lot of the complicated reasoning in Galen. These initial ex-
periments still allow for a glimpse on how the two on-demand provenance approaches
handle increasing sizes of datasets, performance-wise.

Experimental Workflows As input we get a Datalog program X and a database D.
Furthermore, why-provenance of (a randomly chosen) atom A € (D) must be provided.
We describe the tools and steps involved in the computation of Why(A).

! Galen is an ontologies found in the Oxford Library

http://www.cs.ox.ac.uk/isg/ontologies/

Computing Why-Provenance On-Demand for Datalog 11

Common Preparation: We have created the rule set 2* from X using python scripts.
Then VLog reasoned for £* (D) having created a node identifier vg for each B €
(D) and the downward-closure vi.

FPsolve Process: When we ask FPsolve for Why(A), we query £*(D) as described
in Sect. 4 and produce an input file f for FPsolve that represents a serialization of

the downward-closure vi. Then we call FPsolve on input f to produce the output of
why-provenance (as a string). For this process, we could separate the times for (a)
the common preparation step above, (b) the writing of f (which requires querying
>*(D)), and (c) the time for FPsolve to solve the given system of equations.

Datalog(S) Process: VLog does not feature incremental reasoning, which means that
we had to simulate the materialization for Why(A) in one shot: We measure the
time taken by VLog to produce the materialization (X* U Z"i‘,hy) (D). The differences
between the runtimes of the preparation step (X* only) and the full materialization is
inconclusive since different rule sets have unpredicatably different runtime behavior.
Even if the one rule set is a superset of another, VLog may take less time for the
materialization because additional rules may mean that there are shortcuts that were
previously impossible.

As one why-provenance query appears insufficient — we could have just been lucky with
the random choice of the atom A € (D) — we have picked 50 atoms from X(D) at
random and repeated the processes for each of them separately. Therefore, we show
aggregations of the runtime behavior. We have set a timeout of 200 seconds for each
run. All experiments have been performed on a machine with an Intel(R) Xeon(R) CPU
E5-2637 v4 @ 3.50GHz processor, 378 GB of RAM, 1 TB of storage, and Debian
GNU/Linux 9.13. Pointers to the datasets we have used in the experiments and the
resulting runtimes we obtained are available on GitHub.

6.1 Feasibility of the On-Demand Approach to Why-Provenance

There are at least three user scenarios to consider for the question of feasibility of
provenance on-demand: (1) the provenance power user, who constantly queries for
the provenance of any atom that has been derived, (2) the provenance non-user, who
never poses a query for provenance, and (3) the Datalog debugger, who looks at the
materialization, finds a small number atoms (to be buggy) and tries to fix the Datalog
program according to the why-provenance of the previously identified atoms. Then, user
(3) starts over with a fresh Datalog program for which provenance has to be computed
anew. As an alternative approach to provenance on-demand, we consider computing
why-provenance of all derived atoms alongside the derivation of X(D). This approach
may be quite satisfactory for user scenario (1) since, once provenance is computed by
either FPsolve or our Datalog(S) solution, retrieving provenance information is simply
reduced to query answering over a database. However, performing this exponential step
alongside the computation of (D) may be a lot more time-consuming than just creating
linearly many node identifiers. In fact, the blank and gray bars in Fig. 3 show median
reasoning times for (D) (blank bar) and those for Z*(D) (gray bar), respectively.
Especially for user scenario (2), the time difference between the different modes may be
considered pleasant because even if there is no provenance query at all, reasoning times

https://github.com/alloka/Provenance_Data

12 Ali Elhalawati, Markus Krotzsch, and Stephan Mennicke

q [Materialization of (D)
102 [Materialization of 2 (D)
Il Producing Input File for FPsolve
M [ZJ Why-provenance Computation by FPsolve
10! ~
7]

10°

1071

ql q2 q3 a4 a5 q6 q7 glo gl5 925 g40 g50

Fig. 3: Median Runtimes of Different Phases of the FPsolve Process

il] T]
102_
101_
1T e T 1T
1004 - = % = T
P
—
—
? T

qll q'2 q'3 q'4 q'5 q'6 q'7 giO gi5 giS g40 950

Fig. 4: Summary of the Runtime Results in Seconds for the FPsolve Process

Computing Why-Provenance On-Demand for Datalog 13

for *(D) are well below 1 second or close to the time for reasoning with just . Our
on-demand process has especially been designed for user scenario (3) and needs to be
integrated with, for instance, Datalog synthesis processes like the one by Raghothaman
et al. [18]. Here we can only tell from our experience with initial experiments with
FPsolve: when trying to compute all provenance for all atoms, FPsolve took hours or
even days to finish. By glimpsing on the runtime reports of the next subsection, we see
that our Datalog(S) approach would work equally bad. A final evaluation comparing the
on-demand approach with the “all provenance at once” approach is left for future work.

6.2 Performance of Why-Provenance Computation

For this experiment we report about the different time measurements we explained earlier
for the two approaches. Note that the preparation times (common to both processes) have
been reported in the previous subsection (cf. gray bars in Fig. 3)

The FPsolve Process Additionally to the preprocessing step, producing the downward-
closure, we can report on the median times for producing the input file for FPsolve (black
bars in Fig. 3), which includes i/o operations to hard disk. As we can see, this part of the
process takes some time but in most cases is superseded by FPsolve solving the system
of equations (while solving also always includes reading the file we produced). In Fig. 4,
we see a summary of the overall runtimes of the fifty runs for each query/scenario. The
boxplots reflect on the ranges of runtimes (rectangles), the media runtime (orange line),
and runtime deviations (whiskers). While most of the queries have somewhat stable
runtime results, queries g1, g5, and q7 seem to have rather diverse ones. In our Galen
experiments, we can see that from g40 (the 40% sample of Galen) on, we produce
timeouts. At g50, almost all runs did not finish within the time bound. One reason may
be that the file sizes (reflecting on the size of the system of equations) grows by orders
of magnitude from one Galen sample to a bigger one.

Looking for reasons of why FPsolve sometimes has bad runtimes, we observed that
the computed downward closures are significantly larger for queries q1, q5, g7 than
for the other ones in DocTtors (up to one order magnitude). The size of the downward
closure correlates with the produced system of equations that is given as input to FPsolve.
It appears as if reading (from disk) and solving bigger systems of equations is not the
ideal use case for a tool like FPsolve. One way resolving the issue is to create a service
pipeline that does not have the intermediate file representation that also has to be read
from hard disk.

The Datalog(S) Process Fig. 5 reports on the overall runtime of our Datalog(S) process
(interpretation is as for Fig. 4). On one hand, we observe more diversity in the smaller
Galen samples than observed for FPsolve. On the other hand, we obtain even more stable
runtimes for the queries in the DocTors scenario. By comparing figures 4 and 5, we see
that FPsolve is faster than Datalog(S) in Galen experiments by fine margins. However,
Datalog(S) was faster than FPsolve in the queries of the DocTor scenario, sometimes
with significant differences as, for instance, in q1, q5 and q7. Our Datalog(S) solution
has the advantage that we use a single tool, here VLog, that has been made for handling
large amounts of data. Even the big structures produced for computing witnesses as

14 Ali Elhalawati, Markus Krotzsch, and Stephan Mennicke

102 1

101_

ey
—

100 4 % % % % __L_

10711
ql q2 q3 qé a5 q6 q7 gl0 gl5 925 g40 g50

Fig. 5: Summary of Runtime Results in Seconds for the Datalog(S) Process

sets can be handled in acceptable time. Especially the results in the DocTors scenario
came as a surprise, given that the implementation of Datalog(S) we use is prone to
introducing redundancy by means of having a single set represented several (but finitely
many) times [7].

Whether it really pays off that we do not have to leave the reasoner for another (more
specialized) tool is still an open question. A reasoner, particularly designed to evaluate
Datalog(S) programs, may show a lot more improvement over the FPsolve process than
we see with our implementation.

7 Related Work

We are not aware of any tool that computes why-provenance for Datalog programs
besides FPsolve. However, several provenance notions as well as implementation ideas
for Datalog provenance have been studied. GProM [3] and its extension PUG [17] pro-
vide why- and why-not-provenance for non-recursive Datalog programs with negations.
These tools are also based on graph representations of the derivation process. Since they
only consider non-recursive Datalog programs, they do not have to deal with cycles.
Having only a graph depiction for a Datalog program with a huge database can be
confusing and hard to trace, as edges and nodes in the graph can get overwhelming.
In [20], Zhao et al. represent provenance in the form of Proof Trees that show the rule
applications required to reach a particular derivation. The output of their provenance
is the minimal proof tree, from which only a single witness can be derived. Similar
ideas have been used as part of a synthesis process of Datalog programs [18]. However,
presenting only a single witness does not cover the original notion of why-provenance,
as we tackle it here. Deutch et al. [10] introduced provenance in the form of a finite

Computing Why-Provenance On-Demand for Datalog 15

circuit structure which is another representation of the proof trees view and the GRI.
One result of this work has been the absorptive semiring for provenance, being incom-
parable to why-provenance. Kohler et al. [16] produce the graph of rule instances for
Datalog programs using a rewriting with Skolem functions which is very similar to how
we construct the downward closure by existential rules. They use this graph to provide
the lineage of an atom A, being the union of all witnesses of A, an easier task than com-
puting why-provenance which can completely be implemented in Datalog. Recently, an
interesting approach has been investigated by Ramusat et al. [19] who view provenance
computation as an operation of iterating over a graph to obtain the shortest path. They
consider graph databases but we can imagine this work to also be generalizable to
provenance for Datalog.

8 Conclusions

We presented an on-demand approach to why-provenance for recursive queries by means
of Datalog programs. As a preprocessing step, we annotate each and every atom by a node
identifier (linear in X(D)). We also showed how to compute the necessary information
for computing (why-)provenance (a form of sub-hypergraph of the so-called graph of rule
instances). These steps are purely rule-based and enable for subsequent why-provenance
computation, given an atom A we want to know provenance of. We presented two
realizations, one based on a semiring solver and one based on Datalog(S) reasoning.
The latter solution builds on a recent extension of Datalog regarding set terms as first-
class citizens. Our initial experiments show that there is room for improvement, for which
more extensive experiments will be necessary. An interesting way to go is to exploit the
recent characterization of certain provenances as (generalized) shortest paths [19]. Of
course, this will leave the realm of a rule-based approach. We also believe that the graph
of rule instances, as we compute it, can be used by Al-Rabbaa et al. [2] to give “good
proofs” for Horn description logics with a translation into Datalog. The key task here
will be to translate “good proofs” as obtained from traversing the GRI of the Datalog
program into “good proofs” of the underlying description logics.

Acknowledgments This work is partly supported by the German Research Foundation
(DFG) in project number 389792660 (TRR 248, Center for Perspicuous Systems), by the
Federal Ministry of Education and Research (BMBF) in project number 13GW0552B
(KIMEDS, Kl-assistierte Zertifizierung medizinischer Software) and in the Center for
Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), by BMBF and German
Academic Exchange Service (DAAD) in project 57616814 (SECAI, School of Em-
bedded Composite Al), as well as by the Center for Advancing Electronics Dresden
(cfaed).

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley (1994)

2. Al-Rabbaa, C., Borgwardt, S., Koopmann, P., Kovtunova, A.: Explaining Ontology-Mediated
Query Answers using Proofs over Universal Models. In: Proc. 6th Int. Joint Conf. on Rules
and Reasoning (RuleML+RR 2022). Springer (2022)

https://www.perspicuous-computing.science/
https://www.scads.de/
https://www.secai.org/
https://www.secai.org/
https://cfaed.tu-dresden.de/

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Ali Elhalawati, Markus Krotzsch, and Stephan Mennicke

. Arab, B.S., Feng, S., Glavic, B., Lee, S., Niu, X., Zeng, Q.: GProM - A Swiss Army Knife

for Your Provenance Needs. Proc. IEEE Data Eng. Bull. 41(1), 51-62 (2018)

. Benedikt, M., Konstantinidis, G., Mecca, G., Motik, B., Papotti, P., Santoro, D., Tsamoura,

E.: Benchmarking the chase. In: Sallinger, E., Van den Bussche, J., Geerts, F. (eds.) Proc.
36th Symposium on Principles of Database Systems (PODS’17). pp. 37-52. ACM (2017)

. Buneman, P., Khanna, S., Tan, W.C.: Why and where: A characterization of data provenance.

In: Van den Bussche, J., Vianu, V. (eds.) Proc. 8th Int. Conf. on Database Theory (ICDT’01).
LNCS, vol. 1973, pp. 316-330. Springer (2001)

. Carral, D., Dragoste, 1., Gonzilez, L., Jacobs, C., Krotzsch, M., Urbani, J.: VLog: A rule

engine for knowledge graphs. In: Ghidini et al., C. (ed.) Proc. 18th Int. Semantic Web Conf.
(ISWC’19, Part IT). LNCS, vol. 11779, pp. 19-35. Springer (2019)

. Carral, D., Dragoste, 1., Krotzsch, M., Lewe, C.: Chasing Sets: How to Use Existential

Rules for Expressive Reasoning. In: Kraus, S. (ed.) Proc. 28th Int. Joint Conf. on Artificial
Intelligence (IJCAI’19). pp. 1624-1631. ijcai.org (2019)

. Cheney, J., Chiticariu, L., Tan, W.C.: Provenance in Databases: Why, How, and Where. J. of

Found. Trends Databases 1(4), 379-474 (2009)

. Damdsio, C.V., Analyti, A., Antoniou, G.: Justifications for Logic Programming. In: Cabalar,

P.,Son, T.C. (eds.) Proc. 12th Int. Conf. on Logic Programming and Nonmonotonic Reasoning
(LPNMR 2013). pp. 530-542. Springer (2013)

Deutch, D., Milo, T., Roy, S., Tannen, V.: Circuits for Datalog Provenance. In: Schweikardt,
N., Christophides, V., Leroy, V. (eds.) Proc. 17th Int. Conf. on Database Theory (ICDT 2014).
pp. 201-212. OpenProceedings.org (2014)

Esparza, J., Luttenberger, M., Schlund, M.: FPsolve: A Generic Solver for Fixpoint Equations
over Semirings. In: Holzer, M., Kutrib, M. (eds.) Proc. 19th Int. Conf. on Implementation
and Application of Automata (CIAA 2014). LNCS, vol. 8587, pp. 1-15. Springer (2014)
Glavic, B., Miller, R.J., Alonso, G.: Using SQL for Efficient Generation and Querying of
Provenance Information. In: Tannen, V., Wong, L., Libkin, L., Fan, W., Tan, W., Fourman,
M.P. (eds.) In Search of Elegance in the Theory and Practice of Computation - Essays
Dedicated to Peter Buneman, pp. 291-320. Springer (2013)

Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Proc. 26th Symposium
on Principles of Database Systems (ACM SIGACT-SIGMOD-SIGART 2007). pp. 31-40
(2007)

Karvounarakis, G., Ives, Z.G., Tannen, V.: Querying data provenance. In: Elmagarmid, A.K.,
Agrawal, D. (eds.) Proc. Int. Conf. on Management of Data (SIGMOD 2010). pp. 951-962.
ACM (2010)

Kazakov, Y., Krotzsch, M., Simancik, F.: The incredible ELK: From polynomial procedures
to efficient reasoning with £L ontologies. J. of Automated Reasoning 53, 1-61 (2013)
Kohler, S., Ludischer, B., Smaragdakis, Y.: Declarative Datalog Debugging for Mere Mortals.
In: Barceld, P., Pichler, R. (eds.) Proc. 2nd Int. Workshop on Datalog in Academia and Industry
(Datalog 2.0 2012). LNCS, vol. 7494, pp. 111-122. Springer (2012)

Lee, S., Ludischer, B., Glavic, B.: PUG: a framework and practical implementation for why
and why-not provenance. Proc. VLDB 28(1), 47-71 (2019)

Raghothaman, M., Mendelson, J., Zhao, D., Naik, M., Scholz, B.: Provenance-guided syn-
thesis of Datalog programs. Proc. ACM Program. Lang. 4(POPL), 62:1-62:27 (2020)
Ramusat, Y., Maniu, S., Senellart, P.: Provenance-Based Algorithms for Rich Queries over
Graph Databases. In: Velegrakis, Y., Zeinalipour-Yazti, D., Chrysanthis, P.K., Guerra, F.
(eds.) Proc. 24th Int. Conf. on Extending Database Technology (EDBT 2021). pp. 73-84.
OpenProceedings.org (2021)

Zhao, D., Subotic, P., Scholz, B.: Debugging Large-scale Datalog: A Scalable Provenance
Evaluation Strategy. Proc. ACM Trans. Program. Lang. Syst. 42(2), 7:1-7:35 (2020)

