

DEDUCTION SYSTEMS

Optimizations for Tableau Procedures

Sebastian Rudolph

Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary

Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary

• check satisfiability of C by constructing an abstraction of a model $\mathcal I$ such that $C^{\mathcal I} \neq \emptyset$

- check satisfiability of C by constructing an abstraction of a model $\mathcal I$ such that $C^{\mathcal I} \neq \emptyset$
- concepts in negation normal form (NNF) → makes rules simpler

- check satisfiability of C by constructing an abstraction of a model $\mathcal I$ such that $C^{\mathcal I} \neq \emptyset$
- concepts in negation normal form (NNF) → makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$

- check satisfiability of C by constructing an abstraction of a model $\mathcal I$ such that $C^{\mathcal I} \neq \emptyset$
- concepts in negation normal form (NNF) → makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize G with a node v such that $L(v) = \{C\}$

- check satisfiability of C by constructing an abstraction of a model $\mathcal I$ such that $C^{\mathcal I} \neq \emptyset$
- concepts in negation normal form (NNF) → makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize G with a node v such that $L(v) = \{C\}$
- extend G by applying tableau rules

- check satisfiability of C by constructing an abstraction of a model $\mathcal I$ such that $C^{\mathcal I} \neq \emptyset$
- concepts in negation normal form (NNF) → makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize G with a node v such that $L(v) = \{C\}$
- extend G by applying tableau rules
 - — □-rule non-deterministic (we guess)
- tableau branch closed if *G* contains an atomic contradiction (clash)

- check satisfiability of C by constructing an abstraction of a model $\mathcal I$ such that $C^{\mathcal I} \neq \emptyset$
- concepts in negation normal form (NNF) → makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize G with a node v such that $L(v) = \{C\}$
- extend G by applying tableau rules
 - — □-rule non-deterministic (we guess)
- tableau branch closed if *G* contains an atomic contradiction (clash)
- tableau construction successful, if no further rules are applicable and there is no contradiction

- check satisfiability of C by constructing an abstraction of a model $\mathcal I$ such that $C^{\mathcal I} \neq \emptyset$
- concepts in negation normal form (NNF) → makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize G with a node v such that $L(v) = \{C\}$
- extend G by applying tableau rules
 - — □-rule non-deterministic (we guess)
- tableau branch closed if *G* contains an atomic contradiction (clash)
- tableau construction successful, if no further rules are applicable and there is no contradiction
- C is satisfiable iff there is a successful tableau construction

Treatment of Knowledge Bases

we condense the TBox into one concept:

for
$$\mathcal{T} = \{C_i \sqsubseteq D_i \mid 1 \le i \le n\}, C_{\mathcal{T}} = NNF(\bigcap_{1 \le i \le n} \neg C_i \sqcup D_i)$$

we extend the rules of the \mathcal{ALC} tableau algorithm:

$$\mathcal{T}$$
-rule: for an arbitrary $v \in V$ with $C_{\mathcal{T}} \notin L(v)$, let $L(v) := L(v) \cup \{C_{\mathcal{T}}\}$.

in order to take an ABox A into account, initialize G such that

- V contains a node v_a for every individual a in A
- $L(v_a) = \{C \mid C(a) \in \mathcal{A}\}$
- $\langle v_a, v_b \rangle \in E \text{ iff } r(a, b) \in \mathcal{A}$

Extensions of the Logic

- plus inverses (ALCI): inverse roles in edge labels, definition and use of r-neighbors instead of r-successors in tableau rules
- plus functional roles (ALCIF): merging of nodes to account for functionality

blocking guarantees termination:

- ALC subset-blocking
- plus inverses (ALCI): equality blocking
- plus functional roles (ALCIF): pairwise blocking

Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary

Optimizations

- Naïve implementation not performant enough
 - \mathcal{T} -regel adds one disjunction per axiom to the corresponding node
 - $-\,$ ontologies may contain >1.000 axioms and tableaux may contain thousands of nodes

Optimizations

- Naïve implementation not performant enough
 - \mathcal{T} -regel adds one disjunction per axiom to the corresponding node
 - ontologies may contain > 1.000 axioms and tableaux may contain thousands of nodes
- realistic implementations use many optimizations
 - (Lazy) unfolding
 - Absorbtion
 - Dependency directed backtracking
 - Simplification and Normalization
 - Caching
 - Heuristics
 - ...

Optimizations

- Naïve implementation not performant enough
 - \mathcal{T} -regel adds one disjunction per axiom to the corresponding node
 - ontologies may contain > 1.000 axioms and tableaux may contain thousands of nodes
- realistic implementations use many optimizations
 - (Lazy) unfolding
 - Absorbtion
 - Dependency directed backtracking
 - Simplification and Normalization
 - Caching
 - Heuristics
 - ...

Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary

Unfolding

- \mathcal{T} -rule is not necessary if \mathcal{T} is unfoldable, i.e., every axiom is:
 - definitorial: form $A \sqsubseteq C$ or $A \equiv C$ for A a concept name $(A \equiv C \text{ corresponds to } A \sqsubseteq C \text{ and } C \sqsubseteq A)$
 - acyclic: C uses A neither directly nor indirectly
 - unique: only one such axiom exists for every concept name A

Unfolding

- \mathcal{T} -rule is not necessary if \mathcal{T} is unfoldable, i.e., every axiom is:
 - definitorial: form $A \sqsubseteq C$ or $A \equiv C$ for A a concept name $(A \equiv C \text{ corresponds to } A \sqsubseteq C \text{ and } C \sqsubseteq A)$
 - acyclic: C uses A neither directly nor indirectly
 - unique: only one such axiom exists for every concept name A
- If \mathcal{T} is unfoldable, the TBox can be (unfolded) into a concept

ullet We check satisfiability of A w.r.t. the TBox ${\mathcal T}$

 \mathcal{T} : $A \sqsubseteq B \sqcap \exists r.C$ $B \equiv C \sqcup D$ $C \sqsubseteq \exists r.D$

ullet We check satisfiability of A w.r.t. the TBox ${\mathcal T}$

 \boldsymbol{A}

 $A \sqsubseteq B \sqcap \exists r.C$ $B \equiv C \sqcup D$ $C \sqsubseteq \exists r.D$

ullet We check satisfiability of A w.r.t. the TBox ${\mathcal T}$

$$A \\ \rightsquigarrow A \sqcap B \sqcap \exists r.C$$

$$T:$$

$$A \sqsubseteq B \sqcap \exists r.C$$

$$B \equiv C \sqcup D$$

$$C \sqsubseteq \exists r.D$$

• We check satisfiability of A w.r.t. the TBox \mathcal{T}

$$A \\ \rightsquigarrow A \sqcap B \sqcap \exists r.C \\ \rightsquigarrow A \sqcap (C \sqcup D) \sqcap \exists r.C$$

$$A \sqsubseteq B \sqcap \exists r.C$$

$$B \equiv C \sqcup D$$

$$C \sqsubseteq \exists r.D$$

• We check satisfiability of A w.r.t. the TBox \mathcal{T}

$$A \\ \rightsquigarrow A \sqcap B \sqcap \exists r.C \\ \rightsquigarrow A \sqcap (C \sqcup D) \sqcap \exists r.C \\ \rightsquigarrow A \sqcap ((C \sqcap \exists r.D) \sqcup D) \sqcap \exists r.(C \sqcap \exists r.D)$$

 \mathcal{T} : $A \sqsubseteq B \sqcap \exists r.C$ $B \equiv C \sqcup D$ $C \sqsubseteq \exists r.D$

• We check satisfiability of A w.r.t. the TBox \mathcal{T}

$$\mathcal{T}:$$

$$A \sqsubseteq B \sqcap \exists r.C$$

$$A \sqcap B \sqcap \exists r.C$$

$$A \sqcap C \sqcup D) \sqcap \exists r.C$$

$$A \sqcap (C \sqcup D) \sqcap \exists r.C$$

$$A \sqcap ((C \sqcap \exists r.D) \sqcup D) \sqcap \exists r.(C \sqcap \exists r.D)$$

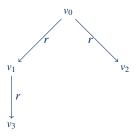
• A is satisfiable w.r.t. \mathcal{T} iff

$$A \sqcap ((C \sqcap \exists r.D) \sqcup D) \sqcap \exists r.(C \sqcap \exists r.D)$$

is satisfiable w.r.t. the empty TBox

Tableau Algorithm Example with Unfolding

We obtain the following contradiction-free tableau for the satisfiability of $U = A \sqcap ((C \sqcap \exists r.D) \sqcup D) \sqcap \exists r.(C \sqcap \exists r.D)$:



$$L(v_0) = \{U, A, (C \sqcap \exists r.D) \sqcup D, \\ \exists r. (C \sqcap \exists r.D), C \sqcap \exists r.D, \\ C, \exists r.D\}$$

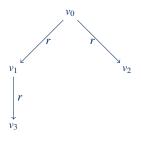
$$L(v_1) = \{C \sqcap \exists r.D, C, \exists r.D\}$$

$$L(v_2) = \{D\}$$

$$L(v_3) = \{D\}$$

Tableau Algorithm Example with Unfolding

We obtain the following contradiction-free tableau for the satisfiability of $U = A \sqcap ((C \sqcap \exists r.D) \sqcup D) \sqcap \exists r.(C \sqcap \exists r.D)$:



$$L(v_0) = \{U, A, (C \sqcap \exists r.D) \sqcup D, \\ \exists r.(C \sqcap \exists r.D), C \sqcap \exists r.D, \\ C, \exists r.D\}$$

$$L(v_1) = \{C \sqcap \exists r.D, C, \exists r.D\}$$

$$L(v_2) = \{D\}$$

$$L(v_3) = \{D\}$$

Only one disjunctive decision left!

Lazy Unfolding

- computation of NNF together with unfolding may decrease performance, e.g.:
 - satisfiability of $C \sqcap \neg C$ w.r.t. $\mathcal{T} = \{C \sqsubseteq A \sqcap B\}$
 - unfolding: $C \sqcap A \sqcap B \sqcap \neg (C \sqcap A \sqcap B)$
 - NNF + unfolding: $C \sqcap A \sqcap B \sqcap (\neg C \sqcup \neg A \sqcup \neg B)$

Lazy Unfolding

- computation of NNF together with unfolding may decrease performance, e.g.:
 - satisfiability of $C \sqcap \neg C$ w.r.t. $\mathcal{T} = \{C \sqsubseteq A \sqcap B\}$
 - unfolding: $C \sqcap A \sqcap B \sqcap \neg (C \sqcap A \sqcap B)$
 - NNF + unfolding: $C \sqcap A \sqcap B \sqcap (\neg C \sqcup \neg A \sqcup \neg B)$
- better: apply NNF and unfolding if needed, via corresponding tableau rules:
 - $-A \equiv C \leadsto A \sqsubseteq C$ and $A \sqsupset C$
- \sqsubseteq -rule: For $v \in V$ such that $A \sqsubseteq C \in \mathcal{T}$, $A \in L(v)$ and $C \notin L(v)$
 - let $L(v) := L(v) \cup C$.
- \supseteq -rule: For $v \in V$ such that $A \supseteq C \in \mathcal{T}$, $\neg A \in L(v)$ and $\neg C \notin L(v)$ let $L(v) := L(v) \cup \{\neg C\}$.
- ¬-rule: For $v \in V$ such that $\neg C \in L(v)$ and $\mathsf{NNF}(\neg C) \notin L(v)$, let $L(v) := L(v) \cup \{\mathsf{NNF}(\neg C)\}.$

Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary

- What if T is not unfoldable?
 - Separate \mathcal{T} into \mathcal{T}_u (unfoldable part) and \mathcal{T}_g (GCIs, not unfoldable)
 - \mathcal{T}_u is treated via \sqsubseteq and \supseteq -rules
 - \mathcal{T}_{g} is treated via the \mathcal{T} -rule

- What if T is not unfoldable?
 - Separate T into T_u (unfoldable part) and T_g (GCIs, not unfoldable)
 - \mathcal{T}_u is treated via \sqsubseteq and \supseteq -rules
 - $-\mathcal{T}_g$ is treated via the \mathcal{T} -rule
- absorption decreases \mathcal{T}_g and increases \mathcal{T}_u

 - 2 transform the axiom: $A \sqsubseteq C \sqcup \neg B$
 - 3 if \mathcal{T}_u contains an axiom of the form $A \equiv D$ $(A \sqsubseteq D \text{ and } D \supseteq A)$, then $A \sqsubseteq C \sqcup \neg B$ cannot be absorbed;
 - $A \sqsubseteq C \sqcup \neg B$ remains in \mathcal{T}_g
 - otherwise, if \mathcal{T}_u contains an axiom of the form $A \sqsubseteq D$, then absorb $A \sqsubseteq C \sqcup \neg B$ resulting in $A \sqsubseteq D \sqcap (C \sqcup \neg B)$
 - **5** otherwise move $A \sqsubseteq C \sqcup \neg B$ to \mathcal{T}_u

- What if T is not unfoldable?
 - Separate \mathcal{T} into \mathcal{T}_u (unfoldable part) and \mathcal{T}_g (GCIs, not unfoldable)
 - \mathcal{T}_u is treated via \sqsubseteq and \supseteq -rules
 - $-\mathcal{T}_g$ is treated via the \mathcal{T} -rule
- absorption decreases \mathcal{T}_g and increases \mathcal{T}_u
 - 1 take an axiom from \mathcal{T}_g , e.g., $A \sqcap B \sqsubseteq C$
 - 2 transform the axiom: $A \sqsubseteq C \sqcup \neg B$
 - if \mathcal{T}_u contains an axiom of the form $A \equiv D$ $(A \sqsubseteq D \text{ and } D \supseteq A)$, then $A \sqsubseteq C \sqcup \neg B$ cannot be absorbed;
 - $A \sqsubseteq C \sqcup \neg B$ remains in \mathcal{T}_g
 - otherwise, if \mathcal{T}_u contains an axiom of the form $A \sqsubseteq D$, then absorb $A \sqsubseteq C \sqcup \neg B$ resulting in $A \sqsubseteq D \sqcap (C \sqcup \neg B)$
 - **6** otherwise move $A \sqsubseteq C \sqcup \neg B$ to \mathcal{T}_u
- If $A \equiv D \in \mathcal{T}_u$, try rewriting/absorption with other axioms in \mathcal{T}_u

- What if T is not unfoldable?
 - Separate \mathcal{T} into \mathcal{T}_u (unfoldable part) and \mathcal{T}_g (GCIs, not unfoldable)
 - \mathcal{T}_u is treated via \sqsubseteq and \supseteq -rules
 - $-\mathcal{T}_g$ is treated via the \mathcal{T} -rule
- absorption decreases T_g and increases T_u
 - 1 take an axiom from \mathcal{T}_g , e.g., $A \sqcap B \sqsubseteq C$
 - 2 transform the axiom: $A \sqsubseteq C \sqcup \neg B$
 - if \mathcal{T}_u contains an axiom of the form $A \equiv D$ $(A \sqsubseteq D \text{ and } D \supseteq A)$, then $A \sqsubseteq C \sqcup \neg B$ cannot be absorbed;
 - $A \sqsubseteq C \sqcup \neg B$ remains in \mathcal{T}_g
 - otherwise, if \mathcal{T}_u contains an axiom of the form $A \sqsubseteq D$, then absorb $A \sqsubseteq C \sqcup \neg B$ resulting in $A \sqsubseteq D \sqcap (C \sqcup \neg B)$
 - **5** otherwise move $A \sqsubseteq C \sqcup \neg B$ to \mathcal{T}_u
- If $A \equiv D \in \mathcal{T}_u$, try rewriting/absorption with other axioms in \mathcal{T}_u
- nondeterministic: $B \sqsubseteq C \sqcup \neg A$ also possible

Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary

- · despite those optimizations, search space often to big
- let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$

- despite those optimizations, search space often to big
- let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$

```
u \sqcap -rule \mathsf{L}(\mathsf{v}) := L(v) \cup \{(C_1 \sqcup D_1), \dots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. A\}
```


- · despite those optimizations, search space often to big
- let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$

```
v 
\Box \text{-rule} \quad \mathsf{L}(\mathsf{v}) := L(v) \cup \{(C_1 \sqcup D_1), \dots, (C_n \sqcup D_n), \\
\exists r. \neg A, \forall r. A\}

\sqcup \text{-rule} \quad \mathsf{L}(\mathsf{v}) := L(v) \cup \{C_1\}

\vdots \qquad \vdots \qquad \vdots

\sqcup \text{-rule} \quad \mathsf{L}(\mathsf{v}) := L(v) \cup \{C_n\}
```

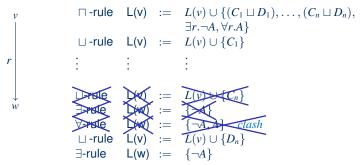

- despite those optimizations, search space often to big
- let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$

- despite those optimizations, search space often to big
- let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$

- despite those optimizations, search space often to big
- let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$

- despite those optimizations, search space often to big
- let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$

- despite those optimizations, search space often to big
- let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$



- · despite those optimizations, search space often to big
- let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$

- despite those optimizations, search space often to big
- let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$

exponentially big search space is traversed

• goal: recognize bad branching decisions quickly and do not repeat them

- goal: recognize bad branching decisions quickly and do not repeat them
- most frequently used: backjumping

- goal: recognize bad branching decisions quickly and do not repeat them
- most frequently used: backjumping
- backjumping works roughly as follows:
 - concepts in the node label are tagged with a set of integers (dependency set) allowing to identify the concept's "origin"
 - initially, all concepts are tagged with ∅
 - tableau rules combine and extend these tags
 - — □-rule adds the tag {d} to the existing tag, where d is the □-depth (number of □-rules applied by now)
 - when encountering a contradiction, the labels alow to identify the origin of the concepts causing the contradiction
 - jump back to the last relevant application of a □-rule

- goal: recognize bad branching decisions quickly and do not repeat them
- most frequently used: backjumping
- backjumping works roughly as follows:
 - concepts in the node label are tagged with a set of integers (dependency set) allowing to identify the concept's "origin"
 - initially, all concepts are tagged with ∅
 - tableau rules combine and extend these tags
 - — ⊔-rule adds the tag {d} to the existing tag, where d is the ⊔-depth (number of ⊔-rules applied by now)
 - when encountering a contradiction, the labels alow to identify the origin of the concepts causing the contradiction
 - jump back to the last relevant application of a ⊔-rule
- irrelevant part of the search space is not considered

 $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$ tagged with \emptyset


```
 \begin{array}{ccc} (C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v) & \text{tagged with } \emptyset \\ v & \sqcap \text{-rule} & \mathsf{L}(\mathsf{v}) & := & L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\ & \exists r. \neg A, \forall r. A\} & \text{all with } \emptyset \\ \end{array}
```



```
 (C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v) \quad \text{tagged with } \emptyset 
 v \qquad \qquad \sqcap \text{-rule} \quad \mathsf{L}(\mathsf{v}) \ := \quad L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\ \qquad \qquad \exists r. \neg A, \forall r. A\} \qquad \text{all with } \emptyset 
 \sqcup \text{-rule} \quad \mathsf{L}(\mathsf{v}) \ := \quad L(v) \cup \{C_1\} \qquad C_1 \text{ tagged with } \{1\} 
 \vdots \qquad \qquad \vdots \qquad \qquad \vdots 
 \sqcup \text{-rule} \quad \mathsf{L}(\mathsf{v}) \ := \quad L(v) \cup \{C_n\} \qquad C_n \text{ tagged with } \{n\}
```


• $tag(A) \cup tag(\neg A) = \emptyset$

- $tag(A) \cup tag(\neg A) = \emptyset$

- $tag(A) \cup tag(\neg A) = \emptyset$
- Output false (unsatisfiable)

TU Dresden

Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary

- Simplification and Normalization
 - quick recognition of trivial contradictions
 - normalization, z.B., $A \sqcap (B \sqcap C) \equiv \sqcap \{A, B, C\}, \forall r.C \equiv \neg \exists r. \neg C$
 - simplification, e.g., $\neg \{A, \dots, \neg A, \dots\} \equiv \bot$, $\exists r. \bot \equiv \bot$, $\forall r. \top \equiv \top$

- Simplification and Normalization
 - quick recognition of trivial contradictions
 - normalization, z.B., $A \cap (B \cap C) \equiv \bigcap \{A, B, C\}, \forall r.C \equiv \neg \exists r. \neg C$
 - simplification, e.g., $\neg \{A, \dots, \neg A, \dots\} \equiv \bot$, $\exists r.\bot \equiv \bot$, $\forall r.\top \equiv \top$
- caching
 - prevents the repeated construction of equal subtrees
 - L(v) initialized with $\{C_1, \ldots, C_n\}$ via \exists and \forall -rules
 - check if satisfiability status is cached, otherwise
 - check satisfiability of $C_1 \sqcap \ldots \sqcap C_n$, update the cache

- Simplification and Normalization
 - quick recognition of trivial contradictions
 - normalization, z.B., $A \sqcap (B \sqcap C) \equiv \sqcap \{A, B, C\}, \forall r.C \equiv \neg \exists r. \neg C$
 - simplification, e.g., $\neg \{A, \dots, \neg A, \dots\} \equiv \bot$, $\exists r.\bot \equiv \bot$, $\forall r.\top \equiv \top$
- caching
 - prevents the repeated construction of equal subtrees
 - L(v) initialized with $\{C_1, \ldots, C_n\}$ via \exists and \forall -rules
 - check if satisfiability status is cached, otherwise
 - check satisfiability of $C_1 \sqcap \ldots \sqcap C_n$, update the cache
- heuristics
 - try to find good orders for the "don't care" nondeterminism
 - e.g., ¬, ∀, ⊔, ∃

- Simplification and Normalization
 - quick recognition of trivial contradictions
 - normalization, z.B., $A \cap (B \cap C) \equiv \bigcap \{A, B, C\}, \forall r.C \equiv \neg \exists r. \neg C$
 - simplification, e.g., $\neg \{A, \dots, \neg A, \dots\} \equiv \bot$, $\exists r.\bot \equiv \bot$, $\forall r.\top \equiv \top$
- caching
 - prevents the repeated construction of equal subtrees
 - L(v) initialized with $\{C_1, \ldots, C_n\}$ via \exists and \forall -rules
 - check if satisfiability status is cached, otherwise
 - check satisfiability of $C_1 \sqcap \ldots \sqcap C_n$, update the cache
- heuristics
 - try to find good orders for the "don't care" nondeterminism
 - e.g., □, ∀, ⊔, ∃
- ..

Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary

One of the most wide-spread tasks for automated reasoning is classification

ullet compute all subclass relationships between atomic concepts in ${\mathcal T}$

One of the most wide-spread tasks for automated reasoning is classification

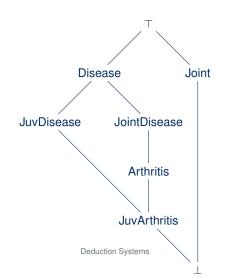
- ullet compute all subclass relationships between atomic concepts in ${\mathcal T}$
- check for T |= C □ D can be reduced to checking satisfiability of T together with the ABox (C □ ¬D)(a) (or, equivalenty: C(a), (¬D)(a))
 - \leadsto if \top is satisfiable: subsumption does not hold (as we have constructed a counter-model)
 - → if T is unsatisfiable: subsumption holds (no counter-model exists)

One of the most wide-spread tasks for automated reasoning is classification

- ullet compute all subclass relationships between atomic concepts in ${\mathcal T}$
- check for T ⊨ C ⊑ D can be reduced to checking satisfiability of T together with the ABox (C □ ¬D)(a) (or, equivalenty: C(a), (¬D)(a))
 - → if ⊤ is satisfiable: subsumption does not hold (as we have constructed a counter-model)
 - \rightarrow if \top is unsatisfiable: subsumption holds (no counter-model exists)
- naïve approach needs n^2 subsumption checks for n concept names
- normally cached in the concept hierarchy graph

TU Dresden

Concept Hierarchy Graph



most wide-spread technique is called enhanced traversal

most wide-spread technique is called enhanced traversal

hierarchy is created incrementally by introducing concept after concept

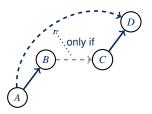
most wide-spread technique is called enhanced traversal

- · hierarchy is created incrementally by introducing concept after concept
- top-down phase: recognize direct superconcepts
- bottom-up phase: recognize direct subconcepts

Optimizing Classification

most wide-spread technique is called enhanced traversal

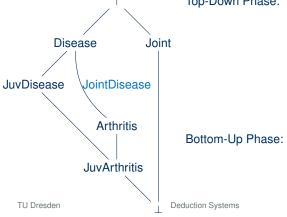
- hierarchy is created incrementally by introducing concept after concept
- top-down phase: recognize direct superconcepts
- bottom-up phase: recognize direct subconcepts

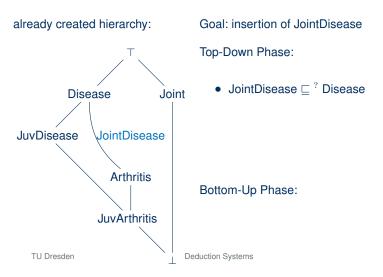


- If $A \sqsubseteq B$ and $C \sqsubseteq D$ hold,
- then $B \sqsubseteq C \longrightarrow A \sqsubseteq D$
- and $A \not\sqsubseteq D \longrightarrow B \not\sqsubseteq C$

already created hierarchy: Goal: insertion of JointDisease

Top-Down Phase:





JuvDisease

TII Dresden

Enhanced Traversal Example

already created hierarchy:

Disease

Goal: insertion of JointDisease

Top-Down Phase:

Bottom-Up Phase:

)

Joint

JointDisease

Arthritis

JuvArthritis

already created hierarchy:

Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease
 □ Disease

Bottom-Up Phase:

Disease Joint JuvDisease JointDisease **Arthritis Juv**Arthritis TII Dresden

already created hierarchy:

Disease Joint JuvDisease JointDisease **Arthritis Juv**Arthritis TII Dresden

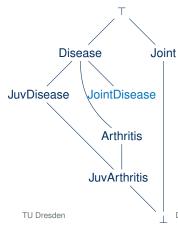
Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease
 □ Disease

Bottom-Up Phase:

already created hierarchy:



Goal: insertion of JointDisease

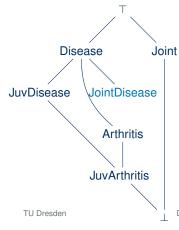
Top-Down Phase:

- JointDisease
 □ Disease

Bottom-Up Phase:

 $\bullet \ \, \mathsf{JuvArthritis} \sqsubseteq {}^? \, \mathsf{JointDisease} \\$

already created hierarchy:



Goal: insertion of JointDisease

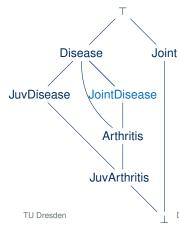
Top-Down Phase:

- JointDisease
 □ Disease

Bottom-Up Phase:

- JuvDisease ⊑[?] JointDisease

already created hierarchy:



Goal: insertion of JointDisease

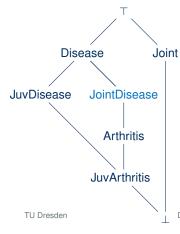
Top-Down Phase:

- JointDisease
 □ Disease

Bottom-Up Phase:

- $\begin{tabular}{lll} \bullet & Arthritis & \sqsubseteq ? JointDisease \\ \end{tabular}$

already created hierarchy:



Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease □ Disease

Bottom-Up Phase:

- Arthritis □ JointDisease

Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary

Summary

- we have a tableau algorithm for \mathcal{ALCIF} knowledge bases
 - ABox treated like for ALC
 - number restrictions are treated similar to functionality and existential quantifiers
- termination via cycle detection
 - becomes harder as the logic becomes more expressive
- naive tableau algorithm not sufficiently performant
- diverse optimizations improve average case
- specific methods for classification
 - enhanced traversal
- tableaux algorithms or variants modifications thereof are the basis of OWL reasoners