
TU Dresden, Fakultät Informatik Winter Term 2015/2016
Daniel Borchmann, Markus Krötzsch

Complexity Theory
Exercise 1: Mathematica Foundations, and Decidability and Recognisability

17 October 2017

Exercise 1.1. Let M be a set. Show that there is no function

f : M → 2M

such that f is surjective.

Solution. Consider the set D de�ned by

x ∈ D ⇐⇒ x /∈ f(x).

If now f were surjective, then there would exist some x′ such that f(x′) = D. But then

x′ ∈ D ⇐⇒ x′ /∈ f(x′) = D,

a contradiction. (One can also draw a nice diagram here, akin to the classical diagram for
proving the uncountability of R.)

Exercise 1.2. Show the following claims.

1. |N| = |N× N|.

2. |N| = |Q|.

3. |N| 6= |R|.

Solution.

1. Make a grid of all pairs of natural numbers and traverse in diagonals starting from the
corner.

2. Same, but this time the grid consists of all fractions instead of pairs of natural numbers.

3. See other exercise: a subset S of N can be interpreted as the positions of the ternary
expansion of a number in [0, 1] such that there is a 1 at position i if i ∈ S and 0 otherwise
(and never a 2). Thus

|N| < |2N| ≤ |[0, 1]| ≤ |R|.

Exercise 1.3. Show the following claims.

1. There exist non-regular languages.

2. There exist undecidable languages.

3. There exist non-Turing-recognizable languages.

https://iccl.inf.tu-dresden.de/web/Complexity_Theory_(WS2017/18)

Solution. The argument is always the same: over a �xed alphabet there are only count-
ably many automata and Turing machines with that input alphabet, but uncountably many
languages. Therefore, most of the languages cannot be regular/decidable/recognizable.

Exercise 1.4. Show that every simple undirected graph with two or more nodes contains two
nodes that have equal degrees.

Solution. Consider a graph with n nodes (recall: graphs are not directed here and do not
contain any loops). Then each node can have degree 0, 1, . . . , n− 1. If some node has degree
0, then no node can have degree n− 1. If some node has degree n− 1, then no node can have
degree 0. Thus, either all nodes have degree 0, . . . , n− 2 or 1, . . . , n− 1. In either case, there
are only n−1 possible values of a degree for an overall of n nodes. Therefore, two nodes must
have the same degree.

Exercise 1.5. Let A = { s }, where

s :=

{
0 if life will never be found on Mars,
1 if life will be found on Mars someday.

Is A decidable? (For the purpose of this problem, assume that the question whether life will
be found on Mars has an unambiguous “yes” or “no” answer.)

Solution. Either A = { 0 } or A = { 1 }, and both sets are decidable. However, we cannot
decide which case is true (at least not now). But this does not matter: to show that A is
decidable it is su�cient to show that there exists a Turing machine deciding it. The way this
Turing machine is found does not need to be constructive. (See also the proof of the theorem
saying that decidable sets are exactly those that can be enumerated by a Turing machine in
non-decreasing length of the output words).

Exercise 1.6. Show that the class of Turing-decidable languages is closed under

(a) union,

(b) concatenation,

(c) intersection,

(d) star.

Solution. To decide the union of two decidable sets we just run the corresponding deciders
in parallel and accept if any of those accepts, and reject if both reject. Intersection works the
same way, but this time we accept only if both deciders accept. For concatenation we just
guess a separation point and check the corresponding subwords for membership. The same
we can do for star.

∗ Exercise 1.7. Show that the class of Turing-recognizable languages is closed under homomor-
phism.

Solution. To see closure under homomorphisms let f : Σ∗ → ∆∗ be a homomorphism and
let L ⊆ Σ∗ be some Turing-recognizable set. Then L can be enumerated by some Turing
machine M , and if we apply f to each output word of M we obtain an enumerator for f(L)
(note that homomorphism are always computable).

Exercise 1.8. A Turingmachine with two-sided unbounded tape is a single-tape Turing machine
where the tape is unbounded on both sides. Argue that such machines can be simulated by
ordinary Turing machines.

Solution. We only sketch the idea (this is why the exercise says “argue” instead of “prove”).
Suppose we are given a Turing machineM with a two-sided unbounded tape. Assume the cells

are numbered with elements from Z. We can simulate M with an ordinary Turing machine
M ′ that “wraps around” the tape of M at cell 0. M ′ then stores in every cell j ∈ N of its own
tape the two cells j and −(j + 1) of M . Then M ′ can simulate one step of M in just one step,
keeping track of whether to read the �rst or second part of the cell content, corresponding to
whether M ’s head is at the right or left of cell 0.

∗ Exercise 1.9. Show that single-tape Turing machines that cannot write on the portion of the
tape containing the input string recognize only regular languages.

Solution. This is a rather di�cult exercise and is not meant to be presented in class. Instead,
it is meant for very good students to be kept interested in the exercises. The solution presented
here is adapted from the solution of Exercise 3.17 of the Instructors Manual of Sipser’s Book.

We �rst observe that a trivial approach that rejects the claim does not work: we cannot
copy the input to another tape and work on this copy as usual. The problem here is that for
copying the input, we need to keep track of what the last symbol is that we have copied so
far. For this we would need to mark this position, which is not possible. (Note that, however,
if we would have another tape, then we could copy the input, showing that the above claim is
indeed false for multi-tape Turing machines.)

This failed approach however contains the �rst clue to the solution: when we have read the
input, we can only remember a �nite amount of information about the input, using a state of
the Turing machine M . We put this into a real solution by constructing a �nite automaton
A that accepts the same language as M . For this we need to construct the state space, the
transition function, and the �nal state of A.

For the state space of A we de�ne for some string s the function

Fs : (Q ∪ { first })→ (Q ∪ { accept, reject }).

This function is determined by the way M works on input s. Fs(first) is the state M reaches
when M has been started on input s from the beginning and is about to move o� of the right
end of s for the �rst time. If M accepts or rejects (either explicitly or by looping) before leaving
the input s, then Fs(first) is accept or rejects, respectively. Furthermore, for state q ∈ Q, Fs(q)
is the state the machine M enters when it is about to move o� of the end of s for the �rst time
when it was started on the right end of s in state q. Again Fs(q) is accept or reject if M accepts
or rejects before leaving the input s.

There are only �nitely many functions from Q ∪ { first } to Q ∪ { accept, reject }, and thus
there are only �nitely many functions Fs. Then M behaves the same on inputs s and t if
Fs = Ft. In particular, if Fs = Ft, then M accepts s if and only if M accepts t.

The state space of A is now the set of all such functions Fs. This state space is �nite, by the
argument of the previous paragraph. Upon reading a symbol a while in state Fs, the machine
A changes its state to Fsa. The initial state of A is Fε, which is given by Fε(first) = q0 (the
initial state of M) and Fε(q) = q for all q ∈ Q. The �nal states of A are all those functions Fs

where s is a string accepted by M .

Exercise 1.10. Let ALLDFA = { 〈A〉 | A is a DFA that accepts every word }. Show that ALLDFA

is decidable.

Solution. Given a DFA, we can obtain a DFA for the complementary language by inter-
changing �nal and non-�nal states. For this complementary DFA we can check whether the
language it accepts is empty. If so, the original DFA accepted every word. If not, then not.

Exercise 1.11. Let ETM = { 〈M〉 | M is a TM such that L(M) = ∅ }. Show that ETM is
Turing-recognizable.

Solution. Given a Turing machine M we can recognize whether the language accepted by
M is empty by just iterating over all (i, j) ∈ N × N and running M for i steps on the j-th

input word. If L(M) 6= ∅, then we will eventually �nd some word wj that is accepted in i
steps, and we accept. If L(M) = ∅, then this computation will loop and we will not accept.

Exercise 1.12. Let C be a language. Prove that C is Turing-recognizable if and only if a
decidable language D exists such that C = {x | ∃y.〈x, y〉 ∈ D }.

Solution. Suppose such a language D exists. Then we can obtain an enumerator for C
by enumerating all elements of D and dropping the second component y. Thus C can be
enumerated and must be Turing-recognizable.

Conversely assume that C is Turing-recognizable. Then there exists a Turing machine M
recognizing C . De�ne D to be the set of all pairs of (x, y) where x ∈ C and y is an accepting
computation history of M on input x. Then D is decidable and satis�es the requirements of
the claim.

