
Putting ABox Updates into Action

Conrad Drescher, Hongkai Liu, Franz Baader, Steffen Guhlemann, Uwe
Petersohn, Peter Steinke, Michael Thielscher

Department of Computer Science,
Dresden University of Technology

Nöthnitzer Str. 46, 01187 Dresden, Germany

Abstract. When trying to apply recently developed approaches for up-
dating Description Logic ABoxes in the context of an action program-
ming language, one encounters two problems. First, updates generate
so-called Boolean ABoxes, which cannot be handled by traditional De-
scription Logic reasoners. Second, iterated update operations result in
very large Boolean ABoxes, which, however, contain a huge amount of
redundant information. In this paper, we address both issues from a
practical point of view.

1 Introduction

Agent programming languages such as Golog [1] and Flux [2] employ actions
whose effects are defined in a logic-based calculus to describe and implement
the behaviour of intelligent agents. In the so-called progression approach, the
agent starts with a (possibly incomplete) description of the initial state of the
world. When an action is performed, it updates this description to take into
account the effects of this action. Reasoning about the description of the current
state of the world is then, for example, used in the control structures of the
agent program to decide which action to apply. The calculi underlying Golog
and Flux (situation calculus and fluent calculus, respectively) employ full first-
order predicate logic, which makes the computation of exact updates as well
as the use of decision procedures for reasoning about descriptions of the state
of the world impossible. To overcome this problem, recent papers [3, 4] have
proposed to employ a decidable Description Logic (DL) [5] in place of full first-
order predicate logic. In particular, states of the world are then described using
a DL ABox. In [4], a method for updating DL ABoxes has been developed, and
in [6] it was shown that this notion of an update conforms with the semantics
employed by Golog and Flux.

In practice, however, there are two obstacles towards employing the update
approach from [4] in the context of agent programs. First, using the update
procedures in the form described in [4] quickly leads to unmanageably large
ABoxes. However, there is quite some room for optimizations since the updated
ABoxes contain a lot of redundant information. The second problem is that
the updated ABoxes are so-called Boolean ABoxes, which cannot be directly
handled by traditional DL reasoners. The main contributions of this paper are,

2 Conrad Drescher, Hongkai Liu, et.al.

on the one hand, that we propose and evaluate different optimization approaches
for computing more concise updated ABoxes. On the other hand, we compare
different approaches for reasoning with Boolean ABoxes, among them one based
on the DPLL(T) approach.

The rest of this paper is organized as follows. In Section 2, we recall the basic
notions for DLs and ABox updates. In Sections 3 we present optimizations that
enable the construction of more concise updated ABoxes, and in Section 4 we
discuss reasoning with Boolean ABoxes. In Section 5, the approaches introduced
in the previous two sections are empirically evaluated. This paper is also available
as a longer technical report [7].

2 Preliminaries

In DLs, knowledge is represented with the help of concepts (unary predicates)
and roles (binary predicates). Complex concepts and roles are inductively de-
fined starting with a set NC of concept names, a set NR of role names, and a
set NI of individual names. The expressiveness of a DL is determined by the
set of available constructors to build concepts and roles. The concept and role
constructors of the DLs ALCO@ and ALCO+ that form the base of our work
on ABox update are shown in Table 1, where C,D are concepts, q, r are roles,
and a, b are individual names. The DL that allows only for negation, conjunc-
tion, disjunction, and universal and existential restrictions is called ALC. By
adding nominals O, we obtain ALCO, which is extended to ALCO@ by the @-
constructor from hybrid logic [8], and to ALCO+ by the Boolean constructors
on roles and the nominal role [4]. We will use ⊤ (⊥) to denote arbitrary tau-
tological (unsatisfiable) concepts and roles. By sub(φ) we denote the set of all
subconcepts and subroles of a concept or role φ, respectively.

Name Syntax Semantics

negation ¬C ∆I \ CI

conjunction C ⊓ D CI ∩ DI

disjunction C ⊔ D CI ∪ DI

universal restriction ∀r.C {x | ∀y.((x, y) ∈ rI → y ∈ CI)}

existential restriction ∃r.C {x | ∃y.((x, y) ∈ rI ∧ y ∈ CI)}

nominal {a} {aI}

@ constructor @aC ∆I if aI ∈ CI , and ∅ otherwise

role negation ¬r (∆I × ∆I) \ rI

role conjunction q ⊓ r qI ∩ rI

role disjunction q ⊔ r qI ∪ rI

nominal role {(a, b)} {(aI , bI)}

Table 1. Syntax and semantics of ALCO@ and ALCO+.

Putting ABox Updates into Action 3

The semantics of concepts and roles is given via interpretations I = (∆I , ·I).
The domain ∆I is a non-empty set and the interpretation function ·I maps each
concept name A ∈ NC to a subset AI of ∆I , each role name r ∈ NR to a binary
relation rI on ∆I , and each individual name a ∈ NI to an individual aI ∈ ∆I .
The interpretation function ·I is inductively extended to complex concepts and
roles as shown in Table 1.

An ABox assertion is of the form C(a), r(a, b), or ¬r(a, b) with r a role, C a
concept and a, b individual names. A classical ABox, or an ABox for short, is a
finite conjunction of ABox assertions. A Boolean ABox is a Boolean combination
of ABox assertions. For convenience we will also sometimes represent classical
and Boolean ABoxes as finite sets of assertions by breaking the toplevel con-
junctions. An interpretation I is a model of an assertion C(a) if aI ∈ CI . I is a
model of an assertion r(a, b) (resp. ¬r(a, b)) if (aI , bI) ∈ rI (resp. (aI , bI) /∈ rI).
A model of a (Boolean) ABox is defined in the obvious way. We use M(A) to de-
note the set of models of a Boolean ABox A. A (Boolean) ABox A is consistent if
M(A) 6= ∅. Two (Boolean) ABoxes A and A′ are equivalent, denoted by A ≡ A′,
if M(A) = M(A′). An assertion α is entailed by a Boolean ABox A, written
as A |= α, if M(A) ⊆ M({α}). Classical ALCO@-ABoxes can equivalently be
compiled to Boolean ALCO-ABoxes (and vice versa) — the translation in the
first direction is exponential, in the other direction it is linear [4]. Consistency
checking and entailment for classical ABoxes are standard inference problems
and supported by all DL reasoners1, while, to the best of our knowledge, no
state of the art reasoner directly supports these inferences for Boolean ABoxes.
Reasoning in ALCO+ is NExpTime complete [9]; for ALCO@ it is PSpace

complete [10].

ABox Update An ABox can be used to represent knowledge about the state
of some world. An update contains information on changes that have taken place
in that world.

Definition 1 (Update). An update U = {δ(t̄)} contains a single literal, i.e.
δ(t̄) is of the form A(a), ¬A(a), r(a, b), or ¬r(a, b) with A a concept name, r a
role name, and a, b individual names.2

Intuitively, an update literal δ(t̄) says that this literal holds after the change of
the world state. The formal semantics of updates given in [4] defines, for every
interpretation I, a successor interpretation IU obtained by changing this model
according to the update. Given an ABox A, all its models are considered to be
possible current states of the world. The goals is then to find an updated ABox
A∗U that has exactly the successor of the models of A as its models, i.e., A∗U

1 A list of DL reasoners is available at http://www.cs.man.ac.uk/~sattler/

reasoners.html.
2 In [4], an update is defined as a consistent set of literals, not as a single literal.

Updating an ABox A with a set of literals can in our setting be achieved by iteratively
updating A with the individual literals.

4 Conrad Drescher, Hongkai Liu, et.al.

must be such that M(A ∗ U) = {IU | I ∈ M(A)}. In general, such an updated
ABox need not exists.

(∃r.C)U = (⊓
a∈Obj(U)

¬{a} ⊓ ∃r.CU) ⊔ ∃r.(⊓
a∈Obj(U)

¬{a} ⊓ CU)

⊔ ⊔
a,b∈Obj(U),r(a,b) 6∈U

({a} ⊓ ∃r.({b} ⊓ CU)) ⊔ ⊔
¬r(a,b)∈U

({a} ⊓ @bC
U)

(∀r.C)U = (⊔
a∈Obj(U)

{a} ⊔ ∀r.CU) ⊓ ∀r.(⊔
a∈Obj(U)

{a} ⊔ CU)

⊓ ⊓
a,b∈Obj(U),r(a,b) 6∈U

(¬{a} ⊔ ∀r.(¬{b} ⊔ CU)) ⊓ ⊓
¬r(a,b)∈U

(¬{a} ⊔ @bC
U)

Fig. 1. Constructing CU for ALCO@

The minimal DLs that contain both the basic DL ALC and are closed under
ABox updates are ALCO@ and Boolean ALCO. For ALCO@, updated ABoxes
are exponential in the size of the original ABox and the update. The DL ALCO+

admits updated ABoxes that are exponential in the size of the update, but
polynomial in the size of the original ABox. This is the reason why, in this work,
we focus on ALCO+ and ALCO@. The following two propositions, which are
simplified and streamlined versions of the ones given in [4], tell us how updated
ABoxes can be computed for these two DLs:

Proposition 1 (Updated ABox for ALCO+). Let αU be the concept (role)
obtained by replacing every occurrence of

– A by A ⊓ ¬{a} if U = {A(a)}; and by A ⊔ {a} if U = {¬A(a)};
– r by r ⊓ ¬{(a, b)} if U = {r(a, b)}; and by r ⊔ {(a, b)} if U = {r(a, b)}.

Let the ABox A′ be defined as

A′ =
∧

(A ∪ U) ∨
∧

(AU ∪ U), (1)

where the ABox AU is defined as AU = {αU (t̄) | α(t̄) ∈ A}. Then A ∗ U ≡ A′.

Intuitively, there is one disjunct (A∪U) for the case that the update already
held before the update, and one disjunct (AU ∪U) for the case that its negation
did.

The DL ALCO@ lacks role operators, and, hence, the construction of the
updated quantifier concepts is complicated — it is depicted in Figure 1. Here
Obj(U) denotes all the individuals that occur in the update U . For concept names
the construction is as in ALCO+.

Proposition 2 (Updated ABox for ALCO@). For ALCO@ the ABox AU is
defined as

AU = {CU (a) | C(a) ∈ A} ∪ {r(a, b) | r(a, b) ∈ A ∧ ¬r(a, b) /∈ U}∪
{¬r(a, b) | ¬r(a, b) ∈ A ∧ r(a, b) /∈ U}.

Let A′ be as defined in (1). Then A ∗ U ≡ A′.

Putting ABox Updates into Action 5

In the following, we want to illustrate the usefulness of ABox updates by a
simple example. In this example, it is convenient to use also a TBox. TBoxes are
a very useful feature of DLs that allow us to introduce abbreviations for complex
concepts. A TBox T is a finite set of concept definitions of the form A ≡ C,
where A is a concept name (called a defined concept) and C is a complex concept.
This TBox is acyclic if it does not contains multiple or cyclic definitions. Acyclic
TBoxes introduce abbreviations for complex concepts, but these abbreviations
can be expanded out [5]. This makes it possible to work with ABox updates
also in the presence of acyclic TBoxes as long as defined concept names do not
occur in the update. This restriction avoids semantic problems [3] such as the
ramification problem.

Example 1 (Medical Record – Acetylsalicylic Acid). The following concept defi-
nitions could be part of a bigger medical ontology for pain treatment. It states
under what conditions a treatment with acetylsalicylic acid (ASA) is indicated
for a patient, in terms of both anamnesis and diagnosis results, under the addi-
tional safety condition that there must not be a contraindication for “similar”
patients:3

ASA-indicated ≡ ASA-tolerant ⊓ ASA-Diagnosis ⊓
∀similar patient.ASA-tolerant

ASA-tolerant ≡ ¬Pregnant ⊓ ¬Atopic ⊓ ¬Infant ⊓ ¬Child
ASA-Diagnosis ≡ (Migraine ⊔ Tension Headache ⊔ Cluster Headache ⊔

Drug-induced Headache ⊔ Impingement Syndrome ⊔
...

HIV Peripheral Neuropathy) ⊓
¬Bleeding Diathesis ⊓ ¬Heart Disease ⊓
¬Renal Disease ⊓ ¬Peptic Ulcer

Migraine ≡ . . .

Assume that the ABox describing the medical record of the patient Mary, who
has come to the hospital because she suffers from migraine, includes the ABox
assertions in the first line below. In addition, assume that this ABox contains
the information that the patient Jane is similar to Mary:

ASA-Diagnosis ⊓ ASA-tolerant(Mary),∀similar patient.ASA-tolerant(Mary),
similar patient(Mary, Jane), similar patient(Jane,Mary).

The DL reasoner can infer from this information that Mary belongs to the con-
cept ASA-indicated, and that Jane belongs to the concept ASA-tolerant. But
assume that, at her next visits, Mary tells the doctor that she is now pregnant.
If her medical record is updated with {Pregnant(Mary)}, then we can conclude
that an ASA treatment is no longer possible for Mary since the updated ABox
implies ¬ASA-indicated(Mary). However, it also implies ¬ASA-indicated(Jane)

3 We assume here that the (reflexive and symmetric) similarity relation between pa-
tients is computed by some separate, non-DL mechanism [11].

6 Conrad Drescher, Hongkai Liu, et.al.

since there is now a patient similar to Jane (i.e., Mary) that is not ASA tolerant.
To avoid this (obviously unintended) consequence, we must additionally update
the ABox with ¬similar patient(Mary, Jane) and ¬similar patient(Jane,Mary)
(unless we have learnt that Jane is now also pregnant).

3 Optimizations for ABox Updates

It turns out that a naive implementation of the update algorithms based on
Proposition 1 or 2 is not practical. Even for very simple update problems —
where simple means e.g. small initial ABoxes containing only literals — after
only a few updates we obtain ABoxes so huge and redundant that the reasoners
cannot handle them anymore. In this section we propose a range of techniques
for obtaining less redundant updated ABoxes.

In particular we are looking for ABoxes that are smaller than, but equiv-
alent to, the updated ABoxes. In principle this could be done by enumerating
ever bigger ABoxes, and checking for equivalence to the updated ABox. This
is not likely to be practical, though. Instead we focus on logical transforma-
tions for obtaining smaller updated ABoxes. Since these transformations can be
computationally expensive themselves, we also identify fragments of the trans-
formations that we expect to be relatively cheap. The proposed techniques are
each motivated by avoidable redundancy that we observed in practical exam-
ples. We present the various techniques for obtaining smaller updated ABoxes
individually; they can be combined in a modular fashion.

Updating Boolean ABoxes Updating an ABox according to Proposition 1
or 2 results in a Boolean ABox. In [4] this updated ABox is transformed to
a non-Boolean ABox using the @-constructor, before it is updated again. The
following observation shows that Boolean ABoxes can directly be updated again
by updating the individual assertions, avoiding the transformation.

Observation 1 (Distributivity of Update) Update distributes over the con-
nectives conjunction and disjunction in Boolean ABoxes; i.e.

(A1 ⊠ A2) ∗ U ≡ (A1 ∗ U) ⊠ (A2 ∗ U),

where ⊠ denotes either ∧ or ∨ (negation can be pushed inside the assertions).

By updating a Boolean ABox directly we also obtain a slightly more compact
representation than the original one — the update U is no longer contained in
two disjuncts:

Observation 2 (Updating Boolean ABoxes) For a Boolean ABox A (we
assume negation has been pushed inside the assertions), let the updated ABox A′

be defined as

A′ = (A ⊛ U) ∧
∧

U .

Putting ABox Updates into Action 7

Here A ⊛ U is defined recursively as

α ⊛ U = α ∨ αU

(α ⊠ B) ⊛ U = (α ⊛ U) ⊠ (B ⊛ U)

where ⊠ denotes ∧ or ∨, α is an assertion, and {α}D is defined as in Proposition
1 (or 2) for ALCO+ (or for ALCO@, respectively). Then A ∗ U ≡ A′.

Determinate Updates Looking at the construction of updated ABoxes, we see
that from an ABox A by an update we get a disjunction A∨AU . This causes a
rapid growth of the updated ABox. If, however, either the update or its negation
is entailed by the ABox A, then one of the disjuncts is inconsistent and can be
removed:

Observation 3 (Determinate Updates) For Boolean ABox A, update U =
{δ}, and updated ABox A′ we have that A′ ≡ A if A � δ; and A′ ≡ U ∪ AU

if A � ¬δ.4 Otherwise, if neither A |= δ nor A |= ¬δ, both A∅ and AU are
consistent with U .

Detecting this type of situation requires up to two reasoning steps: A |= δ and
A |= ¬δ, resulting in a tradeoff between time and space efficiency.

Exploiting the Unique Name Assumption The common unique name as-
sumption (UNA) means that no two individual names may denote the same
object. The constructions from Proposition 1 and 2 do not take the UNA into
account; but we can construct simpler updated ABoxes by keeping track of the
individuals s̄ and t̄ that an assertion γ(s̄) refers to when updating it with δ(t̄):

Example 2 (Exploiting UNA). If we update the ABox A = {A(i)} with U =
{¬A(j)}, we can easily obtain A(i), instead of A ⊔ {j}(i) using the standard
construction. But next consider the ABox A = {∀r.({j} ⊓ A)(i)}, updated by
U = {A(k)}. As part of the update construction we obtain ∀r.({j}⊓(A⊓¬{k}))(i)
which can be simplified using UNA to ∀r.({j}⊓A)(i). Our implemented method
for exploiting UNA cannot detect this latter case.

This UNA-based construction is not costly at all. It cannot identify all cases
where the UNA admits a more concise updated ABox, though.

Omitting Subsuming Disjuncts and Entailed Assertions Intuitively, in a
disjunction we can omit the “stronger” of two disjuncts: Let the disjunction (A∨
AU) be part of an updated ABox. If A � AU (or AU � A) then (A∨AU) ≡ AU

(or (A∨AU) ≡ A). Detecting subsuming disjuncts in general requires reasoning.
But by a simple, syntactic check we can detect beforehand some cases where
one of the disjuncts AU and A will subsume the other. Then the computation

4 The latter of these two observations is from [4].

8 Conrad Drescher, Hongkai Liu, et.al.

of subsuming disjuncts can be avoided. We say that an occurrence of a concept
or role name δ in an assertion is positive, if it is in the scope of an even number
of negation signs, and negative otherwise; δ occurs only positively (negatively) in
an assertion if every occurrence of δ is positive (negative).

Observation 4 (Detecting Subsuming Disjuncts) If for an ABox A, up-
dated with update U = {(¬)δ(t̄)}, we have that:

(1) if the update is positive (i.e. δ(t̄)) then
• if δ occurs only positively in A then AU � A; and
• if δ occurs only negatively in A then A � AU .

(2) if the update is negative (i.e. ¬δ(t̄)) then
• if δ occurs only positively in A then A � AU ; and
• if δ occurs only negatively in A then AU � A.

Conversely, we can also avoid updating entailed assertions: Let A be an ABox
and U an update. If U |= α or A \ {α} |= α for some assertion α ∈ A, then
A ∗ U ≡ (A \ {α}) ∗ U . Removing all entailed assertions might be too expensive
in practice; one might try doing this periodically.

Propositional ABoxes Sometimes we do not need the full power of DL rea-
soning, but propositional reasoning is enough: We call a Boolean ABox propo-
sitional if it does not contain quantifiers. For propositional ABoxes we could
in principle use progression algorithms for propositional logic [12] and efficient
SAT-technology, since an updated propositional ABox is propositional, too.

Independent Assertions Next we address the question under which condi-
tions an assertion in an ABox is not affected by an update.We say that assertion
α in an ABox A is independent from update U = {δ} iff A ∗ U ≡ α ∧ (B ∗ U)
where B = A \ {α}. The more independent assertions we can identify, the more
compact our ABox representation becomes.

Detecting this in all cases requires reasoning steps and thus is costly. It is
easy, though, to syntactically detect some of the independent assertions:

Observation 5 (Independent Assertion) For an ABox A in negation nor-
mal form and update U = {(¬)δ(t̄1)}, the assertion α(t̄2) ∈ A is independent
if δ /∈ sub(α). It is also independent if A � t̄1 6= t̄2, δ occurs in α only outside
the scope of a quantifier, and for all subconcepts @iC of α the assertion C(i) is
independent of U .

4 Reasoning with Boolean ABoxes

As we have seen in the previous sections, updated ABoxes are Boolean ALCO@-
or ALCO+-ABoxes, so that an intelligent agent built on top of ABox update
needs Boolean ABox reasoning. Reasoning with ALC-LTL formulas [13] requires
Boolean ABox reasoning, too. However, Boolean ABox reasoning is not directly
supported by DL reasoners. In this section, we present four different reasoning
methods that can handle Boolean ABoxes:

Putting ABox Updates into Action 9

– one where a DL reasoner operates on single disjuncts of an ABox in DNF;
– one which uses Otter, a first-order theorem prover;
– one which uses a consistency preserving reduction from a Boolean ABox to

a non-Boolean ABox; and
– one which is based on propositional satisfiability testing modulo theories —

the DPLL(T) approach.

Replacing every assertion in a Boolean ABox A with a propositional letter results
in a propositional formula FA. The ABox A is a Boolean ABox in CNF (resp.
DNF) if FA is in CNF (resp. DNF). The first approach works on Boolean ABoxes
in DNF while the other approaches are based on CNF.

We do not use the equivalence-preserving, exponential transformation from
[4] for compiling the @ constructor away. Instead we simulate the @-operator by
a universal role [14]; this consistency-preserving transformation is linear.

We use Pellet as a DL reasoner because it supports nominals, query-answering
and pinpointing [15].

The DNF Approach A Boolean ABox in DNF is consistent iff it contains
a consistent disjunct. We can employ a DL reasoner to decide the consistency
of each disjunct. We refer to this approach as Pellet-DNF. A drawback of this
approach is that we will see that the less redundant updated ABoxes are in CNF,
and thus require a costly translation to DNF (using de Morgan’s laws).

The Theorem Prover Approach The DL ALCO+ admits smaller updated
ABoxes than ALCO@ [4]; however, its role operators are not supported by cur-
rent mature DL reasoners. By translating ALCO+ to first order logic [16] we can
use theorem provers that can cope with Boolean role constructors. We chose to
use Otter [17] because it supports query-answering via answer literals [18]; this
is useful e.g. for parametric actions, which are to be instantiated to concrete ac-
tions. After a few experiments we chose to configure Otter to use hyperresolution
combined with Knuth-Bendix-rewriting, plus the set-of-support strategy.

The Reduction Approach We can linearly compile Boolean ALCO@-ABoxes
to classical ALCO@-ABoxes [4]. Then, simulating the @-operator by a universal
role, we can directly use a standard DL reasoner; this approach is henceforth
called Pellet-UR.

The DPLL(T) Approach Most modern SAT-solvers [19, 20] are variants of
the Davis-Putnam-Logemann-Loveland (DPLL) procedure [21, 22]. Such a SAT-
solver exhaustively applies transition rules5 to generate and extend a partial
interpretation and thus decides satisfiability of a propositional formula in CNF.
One of the strengths of the DPLL procedures is that they can efficiently prune
the search space by building and learning backjump clauses [24].

5 See [23] for the details.

10 Conrad Drescher, Hongkai Liu, et.al.

The DPLL(T) approach combines a DPLL procedure with a theory solver
that can handle conjunctions of literals in the theory to solve the satisfiability
problem modulo theories (SMT) [23]. In DPLL(T) a DPLL procedure works on
the propositional formula obtained by replacing the theory atoms with proposi-
tional letters. Whenever the DPLL procedure extends the current partial inter-
pretation by a new element the theory solver is invoked to check consistency of
the conjunction of the theory atoms corresponding to the partial, propositional
interpretation. If the theory solver reports an inconsistency, the DPLL procedure
will backjump and thus the search space is pruned.

The consistency problem of Boolean ABoxes can be viewed as an instance of
SMT where ABox assertions are the theory atoms and a DL reasoner serves as
theory solver.

The non-standard DL inference of pinpointing [25, 26] is highly relevant to
this approach. Explaining why an ABox is inconsistent is an instance of the
pinpointing problem, where an explanation is a minimal sub-conjunction of the
input ABox, containing only those assertions that are responsible for the incon-
sistency. Based on these explanations in the DPLL(T) approach we can build
better backjump clauses [23].

We implemented an algorithm based on the DPLL(T) approach with the
strategy of MiniSat [19]. Pellet was chosen as the theory solver because it sup-
ports pinpointing. Henceforth we call this approach Pellet-DPLL.

Propositional Reasoning For the case where we can identify propositional
ABoxes we have developed and implemented a simple, specialized method. Rea-
soning there is reduced to efficient list operations. This reasoner is used to sup-
plement the other reasoning approaches (if possible).

5 Experimental Results

In this section, we evaluate the efficiency of the different update and reason-
ing mechanisms. The relevant measures are the time needed for computing the
updated ABox together with its size, and the efficiency of reasoning with it.

An update algorithm based on Proposition 1 or 2 generates Boolean ABoxes
in DNF, while an algorithm based on Proposition 2 outputs ABoxes in CNF. Of
course, every Boolean ABox can equivalently be represented in CNF or in DNF;
however, this transformation (using De Morgan’s laws) is rather expensive. The
performance of reasoning with updated ABoxes strongly depends on the choice
of underlying representation. We use several types of testing data:

– we use a set of randomly generated Boolean ABoxes in CNF;
– we use a set of random ABoxes, Updates, and Queries; and
– we use the Wumpus world [27].

We distinguish two main types of update algorithms that we implemented:

– In one we compute updated ABoxes in DNF; we call this the DNF approach.

Putting ABox Updates into Action 11

– Or we compute updated ABoxes in CNF; we call this the CNF approach.

Both approaches are further parametrized by using different reasoners, and
a different combination of optimization techniques. We have implemented the
different ABox update algorithms in ECLiPSe-Prolog.

The reasoning methods have already been described in Section 4. We call
a reasoning method hybrid if it resorts to our propositional reasoner whenever
possible; for example, we then speak of hybrid Pellet-UR.

5.1 Representation: DNF or CNF?

We have used both the Wumpus world and the random update examples to
compare DNF and CNF based update algorithms (with and without optimiza-
tions). CNF representation consistently proved to be superior: The DNF ap-
proach quickly drowns in redundant information. This is because to compute an
updated ABox in DNF is to include both the update and all the non-affected
information in both disjuncts. Detecting subsuming disjuncts and determinate
updates alleviates this problem, but does not eliminate it. By avoiding this re-
dundancy we immediately obtain an updated ABox in CNF. On DNF-based
updated ABoxes Pellet-DNF performs best — the other methods suffer from
the expensive conversion to CNF. In the following we only consider the CNF-
based representation of updated ABoxes.

5.2 Consistency Checking for Boolean ABoxes in CNF

We implemented a random generator of Boolean ALC-ABoxes, which randomly
generates a propositional formula in CNF and then assigns a randomly generated
assertion to each propositional letter. Several parameters are used to control the
shape of the generated Boolean ABoxes (the numbers in parentheses indicate the
upper bound on the parameters we used): the number n1 of literals in a clause
(53), the number n2 of propositional letters (36), the number n3 of clauses (83),
the number d of nested roles in a concept assertion (23), the number ncs of
the constructors in a concept assertion (106), the numbers nc, nr, and ni of
concept names, role names, and individual names in an assertion (12 each), and
the probability pr of generating a role assertion (0.2).

In Figure 2, we plot the runtimes of Pellet-DPLL and Pellet-UR on these test-
ing data against the number of symbols in the Boolean ABox. The points plotted
as + indicate the runtime of Pellet-DPLL while those plotted as × indicate the
runtime of Pellet-UR. We depict the performance on consistent and inconsistent
Boolean ABoxes separately — the testing data contained more consistent than
inconsistent Boolean ABoxes.

We can see that the runtime of Pellet-UR linearly increases with the size of
the input (the bar from the lower left to the upper right corner). On inconsis-
tent ABoxes Pellet-DPLL also exhibits a linear increase in runtime, while on
consistent ABoxes the runtime is less predictable. Pellet-DPLL performs better
on all of the inconsistent Boolean ABoxes. On most of the consistent ABoxes,

12 Conrad Drescher, Hongkai Liu, et.al.

the Pellet-UR approach does better. This is due to the fact that in Pellet-DPLL
the frequent invocations of the theory solver Pellet are more likely to pay off if
inconsistency of the current, partial model can be detected often: We then can
build a back-jump clause that helps to prune the search space. The runtimes of
Pellet-UR are about the same on both consistent and inconsistent input data.

For Otter the conversion from ABoxes in CNF to full first order CNF proved
to be a big obstacle, as did the conversion to DNF for Pellet-DNF.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0 40000 80000 120000 160000

tim
e

(m
s)

number of symbols in the input

On consistent ABoxes

Pellet-DPLL
Pellet-UR

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 20000 40000 60000 80000

tim
e

(m
s)

number of symbols in the input

On inconsistent ABoxes

Pellet-DPLL
Pellet-UR

Fig. 2. Experimental Results for Pellet-DPLL and Pellet-UR

5.3 Random Updates

We have extensively experimented with a set of randomly generated ABoxes and
updates. Initial ABoxes were between two and thirty assertions in size.We were
mostly interested in runtime and space consumption for iterated updates. We
could make a number of interesting observations:

– The cheap UNA-based concept update construction always paid.
– The reasoning needed to identify determinate updates pays in the long run.
– Syntactically detecting subsuming disjuncts worked, too. Doing so using a

reasoner proved to be too expensive.
– Identifying all entailed assertions to shrink the ABoxes proved to be too

expensive, too.
– Resorting to our dedicated propositional reasoner whenever possible resulted

in significantly better performance.
– We can keep updated ABoxes much smaller at a low cost by syntactically

identifying independent assertions.

Updating an ABox according to [4] is a purely syntactic procedure. But if we
iteratively update ABoxes, then in the long run we get both a lower space and
time consumption by calling a reasoner to identify determinate updates. Using
our propositional reasoner whenever possible for this resulted in better perfor-
mance. If identifying determinate updates required DL reasoning then Pellet-UR

Putting ABox Updates into Action 13

performed slightly better than Pellet-DPLL. This is due to the fact that less up-
dates were determinate than not, and thus inconsistency was not detected often.
On a subset of the random examples where there were more determinate updates
Pellet-DPLL performed better than Pellet-UR. The runtimes for Otter widely
varied: converting CNF-ABoxes to full first order CNF proved the bottleneck.
Pellet-DNF was not competitive because of the expensive conversion to DNF.

We could also identify characteristics of initial ABoxes that allow to predict
performance: If the initial ABox does not contain nested quantifiers then per-
formance is acceptable; e.g. we can iteratively apply 300 singleton updates to a
fifteen assertion ABox in 90 seconds, without a significant increase in size. If the
initial ABox contains nested quantifiers space consumption quickly grows out of
bounds. This is because we then cannot cheaply identify independent assertions
and use the UNA-based concept update construction. For nested quantifiers us-
ing ALCO+ instead of ALCO@ helps to reduce space consumption; but this still
does not result in satisfactory overall performance.

5.4 The Wumpus World

The Wumpus World [27] is a well-known challenge problem in the reasoning
about action community. It consists of a grid-like world: cells may contain pits,
one cell contains gold, and one the fearsome Wumpus. The agent dies if she enters
a cell containing a pit or the Wumpus. But she carries one arrow so that she can
shoot the Wumpus from an adjacent cell. If the agent is next to a cell containing
a pit (Wumpus), she can detect that one of the surrounding cells contains a
pit (the Wumpus), but doesn’t know which one. She knows the contents of the
already visited cells. Getting the gold without getting killed is the agent’s goal.

At each step, the agent performs sensing to learn whether one of the adjacent
cells contains a pit or the Wumpus. Since the sensing results are disjunctive, we
cannot treat them via ABox updates. But the properties sensed are static (i.e.,
cannot change once we know them): We can simply adjoin the sensing results to
the ABox serving as the agent’s current world model. The effects of the agent’s
(non-sensing) actions (like moving to another cell) are modelled as ABox update.

The Wumpus World can be modelled in different ways. In the simplest model,
the initial ABox contains the connections between the cells, the agent’s location,
and the facts that the agent carries an arrow, and that the Wumpus is alive
(Model PL1). For this, Boolean combinations of concept/role literals are enough.
In Model PL2, we include the fact that the Wumpus is at exactly one location
by enumerating all possible cases in a big disjunction. We turn PL1 into a DL
problem by including the information ∃at.⊤(wumpus) (Model DL1). Model DL2
is obtained from PL2 by adding this same assertion, which here is redundant.
Table 2 shows the runtimes, where n/a stands for unavailable expressivity and
* for non-termination in 15 minutes. For the propositional models we also used
the action programming language Flux [2].

Pellet-DNF, and to a lesser extent also Otter, again had difficulties with the
necessary input conversion. Pellet-UR proved to be the best DL reasoner in this
setting. This is due to the fact that this domain requires query-answering: The

14 Conrad Drescher, Hongkai Liu, et.al.

Model Prop hybrid Otter hybrid Pellet-UR Flux

8x8 PL1 0.26 s 0.26 s 0.26 s 14.9 s

8x8 PL2 16.9 s 16.9 s 16.9 s n/a

4x4 DL1 n/a 36.4 s 5.5 s n/a

4x4 DL2 n/a * 23.93 s n/a
Table 2. Runtimes for the Wumpus World.

agent e.g. needs to know for which values of x and y we have that at(agent, x)∧
connected(x, y). Pellet-DPLL is the only reasoner that lacks direct support for
query-answering. Thus, for query C(x), we check for every individual name i ∈ NI

whether C(i) holds — this results in bad performance for Pellet-DPLL.
The propositional reasoner performs quite well on the propositional models.

Including more information wrt. the Wumpus’ location results in worse perfor-
mance. We used Model DL2 to see if it pays to identify all entailed assertions:
after omitting the entailed ∃at.⊤(wumpus) the model is propositional again. In
practice this proved too costly. The other observations from Section 5.3 also hold
in this domain. Removing assertions entailed by the update sometimes did help,
though: Once the Wumpus is found, the assertion ∃at.⊤(wumpus) is entailed by
the respective update and we can then resort to efficient propositional reasoning.

6 Summary and Future Work

In this work, we have investigated implementation techniques for ABox update,
and for reasoning with (updated) Boolean ABoxes. We have introduced and eval-
uated several optimizations of the ABox update algorithms in [4]. The lessons
learnt were: Using CNF-representation of updated ABoxes is strongly recom-
mended. The (incomplete) syntactic techniques for exploiting the unique name
assumption, and detecting subsuming disjuncts and independent assertions have
also resulted in an improved performance. The benefit of identifying determinate
updates made up for the associated reasoning costs. Other techniques requiring
DL reasoning in general proved to be too expensive; but removing some entailed
assertions helped in the Wumpus world.

Regarding the investigated reasoning methods for Boolean ABoxes, we have
come to the following conclusions. Pellet-DNF is the best reasoner for Boolean
ABoxes in DNF. For consistency checking of ABoxes in CNF, Pellet-DPLL and
Pellet-UR worked best. Pellet-DPLL did better for detecting an actual incon-
sistency, while it performed worse than Pellet-UR on most of the consistent
Boolean ABoxes. On the randomly generated update examples, Pellet-UR also
performed slightly better than Pellet-DPLL because inconsistency was not de-
tected often. On a subset where the updates were mostly determinate, Pellet-
DPLL outperformed Pellet-UR. If query-answering is among the reasoning tasks,
then Pellet-UR is to be preferred over Pellet-DPLL because of Pellet’s direct sup-
port for this inference.

Putting ABox Updates into Action 15

It would be interesting to develop heuristics for finding suitable individual
names as well as other optimizations for query-answering in the DPLL(T) ap-
proach. The performance of the DPLL(T) approach also depends on the per-
formance of the SAT solver and the pinpointing service. Thus Pellet-DPLL can
benefit from more efficient implementation of these tasks as well.

The tests on the Wumpus world confirmed that resorting to our dedicated
propositional reasoner whenever possible is useful. In the Wumpus world, re-
moving entailed assertions helped a lot. In contrast, for the randomly generated
update examples, finding entailed assertions did not pay off.

Using Otter as a theorem prover might be considered somewhat unfair (to
the theorem proving approach), since it is no longer actively maintained and op-
timized. The conversion to full first order CNF proved to be the biggest obstacle
for Otter. We chose to use Otter because it supports query-answering, which is
not supported by most current provers [28], but vital in some domains. If this is
to change,6 we can try to resort to state-of-the art theorem provers for reasoning
in ALCO+. This may allow us to really exploit the fact that ALCO+ admits
smaller updated ABoxes than ALCO@. Alternatively, one could also try to use
a more dedicated reasoning system for ALCO+ [29].

Acknowledgments: Many thanks to Albert Oliveras for his help regarding the
construction of a backjump clause in the DPLL(T) approach.

References

1. Levesque, H., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.: GOLOG: A logic
programming language for dynamic domains. Journal of Logic Programming (1997)

2. Thielscher, M.: FLUX: A Logic Programming Method for Reasoning Agents. The-
ory and Practice of Logic Programming (2005)

3. Baader, F., Lutz, C., Milicic, M., Sattler, U., Wolter, F.: Integrating Description
Logics and Action Formalisms: First Results. In: Proceedings of the Twentieth
National Conference on Artificial Intelligence (AAAI 2005), AAAI Press (2005)

4. Liu, H., Lutz, C., Milicic, M., Wolter, F.: Updating Description Logic ABoxes.
In: Proceedings of the Tenth International Conference on Principles of Knowledge
Representation and Reasoning (KR’06), AAAI Press (2006)

5. Baader, F., Calvanese, D., Mcguinness, D.L., Nardi, D., Patel-Schneider, P.F.,
eds.: The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press (2003)

6. Drescher, C., Thielscher, M.: Integrating Action Calculi and Description Logics.
In: Proceedings of the 30th Annual German Conference on Artificial Intelligence
(KI 2007). (2007)

7. Drescher, C., Liu, H., etal.: Putting abox updates into action. LTCS-Report
09-01, Dresden University of Technology, Germany (2009) See http://lat.inf.tu-
dresden.de/research/reports.html.

8. Areces, C., de Rijke, M.: From Description Logics to Hybrid Logics, and Back. In:
Advances in Modal Logic. (2001)

9. Tobies, S.: Complexity Results and Practical Algorithms for Logics in Knowledge
Representation. PhD thesis, RWTH-Aachen, Germany (2001)

6 cf. www.cs.miami.edu/~tptp/TPTP/Proposals/AnswerExtraction.html.

16 Conrad Drescher, Hongkai Liu, et.al.

10. Areces, Blackburn, Marx: A road-map on complexity for hybrid logics. In: CSL:
13th Workshop on Computer Science Logic, LNCS, Springer-Verlag (1999)

11. Zezula, P., Batko, M., Dohnal, V., , Amato, G.: Similarity Search: The Metric
Space Approach. Springer (2006)

12. Amir, E., Russell, S.J.: Logical Filtering. In: IJCAI-03, Proceedings of the Eigh-
teenth International Joint Conference on Artificial Intelligence, Morgan Kaufmann
(2003)

13. Baader, F., Ghilardi, S., Lutz, C.: LTL over Description Logic Axioms. In: Pro-
ceedings of the 11th International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR2008). (2008)

14. Bong, Y.: Description Logic ABox Updates Revisited. Master thesis, TU Dresden,
Germany (2007)

15. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. Journal of Web Semantics (2007)

16. Borgida, A.: On the Relative Expressiveness of Description Logics and Predicate
Logics. Artificial Intelligence (1996)

17. McCune, W.: OTTER 3.3 Manual. Computing Research Repository (2003)
18. Green, C.: Theorem Proving by Resolution as a Basis for Question-answering

Systems. Machine Intelligence (1969)
19. Een, N., Sörensson, N.: An Extensible SAT-solver. In: International Conference

on Theory and Applications of Satisfiability Testing (SAT). (2003)
20. de Moura, L., Bjørner, N.: Z3: An efficient SMT Solver. In: Tools and Algo-

rithms for the Construction and Analysis of Systems, 14th International Confer-
ence, TACAS 2008, Springer (2008)

21. Davis, M., Putnam, H.: A Computing Procedure for Quantification Theory. Jour-
nal of the ACM (1960)

22. Davis, M., Logemann, G., Loveland, D.: A Machine Program for Theorem-proving.
Communications of the ACM (1962)

23. Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: Challenges in
Satisfiability Modulo Theories. In: 18th International Conference on Term Rewrit-
ing and Applications, Springer (2007)

24. Zhang, L., Madigan, C.F., Moskewicz, M.H., Malik, S.: Efficient Conflict Driven
Learning in a Boolean Satisfiability Solver. In: International Conference on
Computer-Aided Design (ICCAD’01). (2001)

25. Schlobach, S.: Non-Standard Reasoning Services for the Debugging of Descrip-
tion Logic Terminologies. In: Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence, (IJCAI-03), Morgan Kaufmann (2003)

26. Baader, F., Peñaloza, R.: Automata-Based Axiom Pinpointing. In: Proceedings of
the 4th International Joint Conference on Automated Reasoning, (IJCAR 2008),
Springer (2008)

27. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall
(2003)

28. Waldinger, R.J.: Whatever happened to deductive question answering? In: Pro-
ceedings of the 14th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning, (LPAR 07), Yerevan, Armenia, Springer (2007)

29. Schmidt, R.A., Tishkovsky, D.: Using tableau to decide expressive description
logics with role negation. In: Proceedings of the 6th International Semantic Web
Conference, ISWC 2007, Springer (2007)

