## DEDUCTION SYSTEMS

## Answer Set Programming: Solving

Markus Krötzsch
Chair for Knowledge-Based Systems
Slides by Sebastian Rudolph, and based on a lecture by Martin Gebser and Torsten Schaub (CC-By 3.0)

TU Dresden, 2 July 2018

## ASP Solving: Overview

Motivation
(2) Boolean constraints

3 Nogoods from logic programs

- Nogoods from program completion
- Nogoods from loop formulas

4 Conflict-driven nogood learning

- CDNL-ASP Algorithm
- Nogood Propagation
- Conflict Analysis


## Outline

(9) Motivation
(2) Boolean constraints
(3) Nogoods from logic programs

- Nogoods from program completion
- Nogoods from loop formulas

4 Conflict-driven nogood learning

- CDNL-ASP Algorithm
- Nogood Propagation
- Conflict Analysis


## Motivation

- Goal: Approach to computing stable models of logic programs, based on concepts from
- Constraint Processing (CP) and
- Satisfiability Testing (SAT)
- Idea: View inferences in ASP as unit propagation on nogoods
- Benefits:
- A uniform constraint-based framework for different kinds of inferences in ASP
- Advanced techniques from the areas of CP and SAT
- Highly competitive implementation


## Outline

(1) Motivation
(2) Boolean constraints
(3) Nogoods from logic programs

- Nogoods from program completion
- Nogoods from loop formulas

4 Conflict-driven nogood learning

- CDNL-ASP Algorithm
- Nogood Propagation
- Conflict Analysis


## Assignments

- An assignment $A$ over $\operatorname{dom}(A)=\operatorname{atom}(P) \cup \operatorname{body}(P)$ is a sequence

$$
\left(\sigma_{1}, \ldots, \sigma_{n}\right)
$$

of signed literals $\sigma_{i}$ of form $\boldsymbol{T v}$ or $\boldsymbol{F v}$ for $v \in \operatorname{dom}(A)$ and $1 \leq i \leq n$

- $\boldsymbol{T} v$ expresses that $v$ is true and $\boldsymbol{F} v$ that it is false


## Assignments

- An assignment $A$ over $\operatorname{dom}(A)=\operatorname{atom}(P) \cup \operatorname{body}(P)$ is a sequence

$$
\left(\sigma_{1}, \ldots, \sigma_{n}\right)
$$

of signed literals $\sigma_{i}$ of form $\boldsymbol{T} v$ or $\boldsymbol{F} v$ for $v \in \operatorname{dom}(A)$ and $1 \leq i \leq n$

- The complement, $\bar{\sigma}$, of a literal $\sigma$ is defined as $\overline{\boldsymbol{T} v}=\boldsymbol{F} v$ and $\overline{\boldsymbol{F} v}=\boldsymbol{T} v$


## Assignments

- An assignment $A$ over $\operatorname{dom}(A)=\operatorname{atom}(P) \cup \operatorname{body}(P)$ is a sequence

$$
\left(\sigma_{1}, \ldots, \sigma_{n}\right)
$$

of signed literals $\sigma_{i}$ of form $\boldsymbol{T v}$ or $\boldsymbol{F} v$ for $v \in \operatorname{dom}(A)$ and $1 \leq i \leq n$

- $A \circ \sigma$ stands for the result of appending $\sigma$ to $A$


## Assignments

- An assignment $A$ over $\operatorname{dom}(A)=\operatorname{atom}(P) \cup \operatorname{body}(P)$ is a sequence

$$
\left(\sigma_{1}, \ldots, \sigma_{n}\right)
$$

of signed literals $\sigma_{i}$ of form $\boldsymbol{T v}$ or $\boldsymbol{F} v$ for $v \in \operatorname{dom}(A)$ and $1 \leq i \leq n$

- Given $A=\left(\sigma_{1}, \ldots, \sigma_{k-1}, \sigma_{k}, \ldots, \sigma_{n}\right)$, we let $A\left[\sigma_{k}\right]=\left(\sigma_{1}, \ldots, \sigma_{k-1}\right)$


## Assignments

- An assignment $A$ over $\operatorname{dom}(A)=\operatorname{atom}(P) \cup \operatorname{body}(P)$ is a sequence

$$
\left(\sigma_{1}, \ldots, \sigma_{n}\right)
$$

of signed literals $\sigma_{i}$ of form $\boldsymbol{T v}$ or $\boldsymbol{F} v$ for $v \in \operatorname{dom}(A)$ and $1 \leq i \leq n$

- We sometimes identify an assignment with the set of its literals


## Assignments

- An assignment $A$ over $\operatorname{dom}(A)=\operatorname{atom}(P) \cup \operatorname{body}(P)$ is a sequence

$$
\left(\sigma_{1}, \ldots, \sigma_{n}\right)
$$

of signed literals $\sigma_{i}$ of form $\boldsymbol{T} v$ or $\boldsymbol{F} v$ for $v \in \operatorname{dom}(A)$ and $1 \leq i \leq n$

- We sometimes identify an assignment with the set of its literals
- Given this, we access true and false propositions in $A$ via

$$
A^{T}=\{v \in \operatorname{dom}(A) \mid \boldsymbol{T} v \in A\} \text { and } A^{F}=\{v \in \operatorname{dom}(A) \mid \boldsymbol{F} v \in A\}
$$

## Assignments

- An assignment $A$ over $\operatorname{dom}(A)=\operatorname{atom}(P) \cup \operatorname{body}(P)$ is a sequence

$$
\left(\sigma_{1}, \ldots, \sigma_{n}\right)
$$

of signed literals $\sigma_{i}$ of form $\boldsymbol{T v}$ or $\boldsymbol{F} v$ for $v \in \operatorname{dom}(A)$ and $1 \leq i \leq n$

- $\boldsymbol{T} v$ expresses that $v$ is true and $\boldsymbol{F} v$ that it is false
- The complement, $\bar{\sigma}$, of a literal $\sigma$ is defined as $\overline{\boldsymbol{T} v}=\boldsymbol{F} v$ and $\overline{\boldsymbol{F} v}=\boldsymbol{T} v$
- $A \circ \sigma$ stands for the result of appending $\sigma$ to $A$
- Given $A=\left(\sigma_{1}, \ldots, \sigma_{k-1}, \sigma_{k}, \ldots, \sigma_{n}\right)$, we let $A\left[\sigma_{k}\right]=\left(\sigma_{1}, \ldots, \sigma_{k-1}\right)$
- We sometimes identify an assignment with the set of its literals
- Given this, we access true and false propositions in $A$ via

$$
A^{\boldsymbol{T}}=\{v \in \operatorname{dom}(A) \mid \boldsymbol{T} v \in A\} \text { and } A^{F}=\{v \in \operatorname{dom}(A) \mid \boldsymbol{F} v \in A\}
$$

## Nogoods, solutions, and unit propagation

- A nogood is a set $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ of signed literals, expressing a constraint violated by any assignment containing $\sigma_{1}, \ldots, \sigma_{n}$


## Nogoods, solutions, and unit propagation

- A nogood is a set $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ of signed literals, expressing a constraint violated by any assignment containing $\sigma_{1}, \ldots, \sigma_{n}$
- An assignment $A$ such that $A^{T} \cup A^{F}=\operatorname{dom}(A)$ and $A^{T} \cap A^{F}=\emptyset$ is a solution for a set $\Delta$ of nogoods, if $\delta \not \subset A$ for all $\delta \in \Delta$


## Nogoods, solutions, and unit propagation

- A nogood is a set $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ of signed literals, expressing a constraint violated by any assignment containing $\sigma_{1}, \ldots, \sigma_{n}$
- An assignment $A$ such that $A^{T} \cup A^{F}=\operatorname{dom}(A)$ and $A^{T} \cap A^{F}=\emptyset$ is a solution for a set $\Delta$ of nogoods, if $\delta \nsubseteq A$ for all $\delta \in \Delta$
- For a nogood $\delta$, a literal $\sigma \in \delta$, and an assignment $A$, we say that $\bar{\sigma}$ is unit-resulting for $\delta$ wrt $A$, if
(1) $\delta \backslash A=\{\sigma\}$ and
(2) $\bar{\sigma} \notin A$


## Nogoods, solutions, and unit propagation

- A nogood is a set $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ of signed literals, expressing a constraint violated by any assignment containing $\sigma_{1}, \ldots, \sigma_{n}$
- An assignment $A$ such that $A^{T} \cup A^{F}=\operatorname{dom}(A)$ and $A^{T} \cap A^{F}=\emptyset$ is a solution for a set $\Delta$ of nogoods, if $\delta \nsubseteq A$ for all $\delta \in \Delta$
- For a nogood $\delta$, a literal $\sigma \in \delta$, and an assignment $A$, we say that $\bar{\sigma}$ is unit-resulting for $\delta$ wrt $A$, if
(1) $\delta \backslash A=\{\sigma\}$ and
(2) $\bar{\sigma} \notin A$
- For a set $\Delta$ of nogoods and an assignment $A$, unit propagation is the iterated process of extending $A$ with unit-resulting literals until no further literal is unit-resulting for any nogood in $\Delta$


## Outline



Motivation
(2) Boolean constraints
(3) Nogoods from logic programs

- Nogoods from program completion
- Nogoods from loop formulas

4 Conflict-driven nogood learning

- CDNL-ASP Algorithm
- Nogood Propagation
- Conflict Analysis


## Outline

(9) Motivation
(2) Boolean constraints
(3) Nogoods from logic programs

- Nogoods from program completion
- Nogoods from loop formulas

4 Conflict-driven nogood learning

- CDNL-ASP Algorithm
- Nogood Propagation
- Conflict Analysis


## Nogoods from logic programs <br> via program completion

When introducing auxiliary atoms $v_{B}$ for rule bodies $B$, the completion of a logic program $P$ can be defined as follows:

$$
\begin{aligned}
\left\{v_{B} \leftrightarrow\right. & a_{1} \wedge \cdots \wedge a_{m} \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_{n} \mid \\
& \left.B \in \operatorname{body}(P) \text { and } B=\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\}\right\} \\
\cup \quad\{a \leftrightarrow & v_{B_{1}} \vee \cdots \vee v_{B_{k}} \mid \\
& \left.a \in \operatorname{atom}(P) \text { and } \operatorname{body}_{P}(a)=\left\{B_{1}, \ldots, B_{k}\right\}\right\},
\end{aligned}
$$

where $^{\operatorname{body}_{P}(a)=\{\operatorname{body}(r) \mid r \in P \text { and } \operatorname{head}(r)=a\}, ~(r)}$

## Nogoods from logic programs via program completion

- The (body-oriented) equivalence

$$
v_{B} \leftrightarrow a_{1} \wedge \cdots \wedge a_{m} \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_{n}
$$

can be decomposed into two implications:

## Nogoods from logic programs via program completion

- The (body-oriented) equivalence

$$
v_{B} \leftrightarrow a_{1} \wedge \cdots \wedge a_{m} \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_{n}
$$

can be decomposed into two implications:
(1) $v_{B} \rightarrow a_{1} \wedge \cdots \wedge a_{m} \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_{n}$ is equivalent to the conjunction of

$$
\neg v_{B} \vee a_{1}, \ldots, \neg v_{B} \vee a_{m}, \neg v_{B} \vee \neg a_{m+1}, \ldots, \neg v_{B} \vee \neg a_{n}
$$

and induces the set of nogoods

$$
\Delta(B)=\left\{\left\{\boldsymbol{T} B, \boldsymbol{F} a_{1}\right\}, \ldots,\left\{\boldsymbol{T} B, \boldsymbol{F} a_{m}\right\},\left\{\boldsymbol{T} B, \boldsymbol{T} a_{m+1}\right\}, \ldots,\left\{\boldsymbol{T} B, \boldsymbol{T} a_{n}\right\}\right\}
$$

## Nogoods from logic programs via program completion

- The (body-oriented) equivalence

$$
v_{B} \leftrightarrow a_{1} \wedge \cdots \wedge a_{m} \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_{n}
$$

can be decomposed into two implications:
(2) $a_{1} \wedge \cdots \wedge a_{m} \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_{n} \rightarrow v_{B}$
gives rise to the nogood

$$
\delta(\boldsymbol{B})=\left\{\boldsymbol{F} B, \boldsymbol{T} a_{1}, \ldots, \boldsymbol{T} a_{m}, \boldsymbol{F} a_{m+1}, \ldots, \boldsymbol{F} a_{n}\right\}
$$

## Nogoods from logic programs via program completion

- Analogously, the (atom-oriented) equivalence

$$
a \leftrightarrow v_{B_{1}} \vee \cdots \vee v_{B_{k}}
$$

yields the nogoods
(1) $\Delta(a)=\left\{\left\{\boldsymbol{F} a, \boldsymbol{T} B_{1}\right\}, \ldots,\left\{\boldsymbol{F} a, \boldsymbol{T} B_{k}\right\}\right\}$ and
(2) $\delta(a)=\left\{\boldsymbol{T} a, \boldsymbol{F} B_{1}, \ldots, \boldsymbol{F} B_{k}\right\}$

## Outline

(9) Motivation
(2) Boolean constraints
(3) Nogoods from logic programs

- Nogoods from program completion
- Nogoods from loop formulas

4 Conflict-driven nogood learning

- CDNL-ASP Algorithm
- Nogood Propagation
- Conflict Analysis


## Nogoods from logic programs <br> via loop formulas

Let $P$ be a normal logic program and recall that:

- For $L \subseteq \operatorname{atom}(P)$, the external supports of $L$ for $P$ are

$$
E S_{P}(L)=\left\{r \in P \mid \operatorname{head}(r) \in L \text { and } \operatorname{body}(r)^{+} \cap L=\emptyset\right\}
$$

## Nogoods from logic programs <br> via loop formulas

Let $P$ be a normal logic program and recall that:

- For $L \subseteq \operatorname{atom}(P)$, the external supports of $L$ for $P$ are

$$
E S_{P}(L)=\left\{r \in P \mid \operatorname{head}(r) \in L \text { and } \operatorname{body}(r)^{+} \cap L=\emptyset\right\}
$$

- The (disjunctive) loop formula of $L$ for $P$ is

$$
\begin{aligned}
L F_{P}(L) & =\left(\bigvee_{A \in L} A\right) \rightarrow\left(\bigvee_{r \in E S_{p}(L)} \operatorname{body}(r)\right) \\
& \equiv\left(\bigwedge_{r \in E S_{P}(L)} \neg \operatorname{body}(r)\right) \rightarrow\left(\bigwedge_{A \in L} \neg A\right)
\end{aligned}
$$

- Note: The loop formula of $L$ enforces all atoms in $L$ to be false whenever $L$ is not externally supported


## Nogoods from logic programs <br> via loop formulas

Let $P$ be a normal logic program and recall that:

- For $L \subseteq \operatorname{atom}(P)$, the external supports of $L$ for $P$ are

$$
E S_{P}(L)=\left\{r \in P \mid \operatorname{head}(r) \in L \text { and } \operatorname{body}(r)^{+} \cap L=\emptyset\right\}
$$

- The (disjunctive) loop formula of $L$ for $P$ is

$$
\begin{aligned}
L F_{P}(L) & =\left(\bigvee_{A \in L} A\right) \rightarrow\left(\bigvee_{r \in E S_{p}(L)} \operatorname{body}(r)\right) \\
& \equiv\left(\bigwedge_{r \in E S_{P}(L)} \neg \operatorname{body}(r)\right) \rightarrow\left(\bigwedge_{A \in L} \neg A\right)
\end{aligned}
$$

- Note: The loop formula of $L$ enforces all atoms in $L$ to be false whenever $L$ is not externally supported
- The external bodies of $L$ for $P$ are

$$
E B_{P}(L)=\left\{\operatorname{body}(r) \mid r \in E S_{P}(L)\right\}
$$

## Nogoods from logic programs loop nogoods

- For a logic program $P$ and some $\emptyset \subset U \subseteq$ atom $(P)$, define the loop nogood of an atom $a \in U$ as

$$
\lambda(a, U)=\left\{\boldsymbol{T} a, \boldsymbol{F} B_{1}, \ldots, \boldsymbol{F} B_{k}\right\}
$$

where $E B_{P}(U)=\left\{B_{1}, \ldots, B_{k}\right\}$

## Nogoods from logic programs loop nogoods

- For a logic program $P$ and some $\emptyset \subset U \subseteq \operatorname{atom}(P)$, define the loop nogood of an atom $a \in U$ as

$$
\lambda(a, U)=\left\{\boldsymbol{T} a, \boldsymbol{F} B_{1}, \ldots, \boldsymbol{F} B_{k}\right\}
$$

where $E B_{P}(U)=\left\{B_{1}, \ldots, B_{k}\right\}$

- We get the following set of loop nogoods for $P$ :

$$
\Lambda_{P}=\bigcup_{\emptyset \subset U \subseteq \operatorname{atom}(P)}\{\lambda(a, U) \mid a \in U\}
$$

## Nogoods from logic programs loop nogoods

- For a logic program $P$ and some $\emptyset \subset U \subseteq \operatorname{atom}(P)$, define the loop nogood of an atom $a \in U$ as

$$
\lambda(a, U)=\left\{\boldsymbol{T} a, \boldsymbol{F} B_{1}, \ldots, \boldsymbol{F} B_{k}\right\}
$$

where $E B_{P}(U)=\left\{B_{1}, \ldots, B_{k}\right\}$

- We get the following set of loop nogoods for $P$ :

$$
\Lambda_{P}=\bigcup_{\emptyset \subset U \subseteq \operatorname{atom}(P)}\{\lambda(a, U) \mid a \in U\}
$$

- The set $\Lambda_{P}$ of loop nogoods denies cyclic support among true atoms


## Example

- Consider the program

$$
\left\{\begin{array}{ll}
x \leftarrow \sim y & u \leftarrow x \\
y \leftarrow \sim x & u \leftarrow v \\
v \leftarrow u, y
\end{array}\right\}
$$

## Example

- Consider the program

$$
\left\{\begin{array}{ll}
x \leftarrow \sim y & u \leftarrow x \\
y \leftarrow \sim x & u \leftarrow v \\
v \leftarrow u, y
\end{array}\right\}
$$

- For $u$ in the set $\{u, v\}$, we obtain the loop nogood:

$$
\lambda(u,\{u, v\})=\{\boldsymbol{T} u, \boldsymbol{F}\{x\}\}
$$

## Example

- Consider the program

$$
\left\{\begin{array}{ll} 
& u \leftarrow x \\
y \leftarrow \sim x & u \leftarrow v \\
& v \leftarrow u, y
\end{array}\right\}
$$

- For $u$ in the set $\{u, v\}$, we obtain the loop nogood:

$$
\lambda(u,\{u, v\})=\{\boldsymbol{T} u, \boldsymbol{F}\{x\}\}
$$

Similarly for $v$ in $\{u, v\}$, we get:

$$
\lambda(v,\{u, v\})=\{\boldsymbol{T} v, \boldsymbol{F}\{x\}\}
$$

## Characterization of stable models

## Theorem

Let $P$ be a logic program. Then, $X \subseteq \operatorname{atom}(P)$ is a stable model of $P$ iff
$X=A^{T} \cap \operatorname{atom}(P)$ for a (unique) solution $A$ for $\Delta_{P} \cup \Lambda_{P}$

## Characterization of stable models

## Theorem

Let $P$ be a logic program. Then, $X \subseteq \operatorname{atom}(P)$ is a stable model of $P$ iff $X=A^{T} \cap \operatorname{atom}(P)$ for a (unique) solution $A$ for $\Delta_{P} \cup \Lambda_{P}$

Some remarks

- Nogoods in $\Lambda_{P}$ augment $\Delta_{P}$ with conditions checking for unfounded sets, in particular, those being loops
- While $\left|\Delta_{P}\right|$ is linear in the size of $P, \Lambda_{P}$ may contain exponentially many (non-redundant) loop nogoods


## Outline



Motivation
(2) Boolean constraints
(3) Nogoods from logic programs

- Nogoods from program completion
- Nogoods from loop formulas

4 Conflict-driven nogood learning

- CDNL-ASP Algorithm
- Nogood Propagation
- Conflict Analysis


## Towards conflict-driven search

Boolean constraint solving algorithms pioneered for SAT led to:

- Traditional DPLL-style approach:
(DPLL stands for 'Davis-Putnam-Logemann-Loveland'):
- (Unit) propagation
- (Chronological) backtracking
- in ASP, eg smodels
- Modern CDCL-style approach: (CDCL stands for 'Conflict-Driven Constraint Learning'):
- (Unit) propagation
- Conflict analysis (via resolution)
- Learning + Backjumping + Assertion
- in ASP, eg clasp


## DPLL-style solving

```
loop
```

propagate // deterministically assign literals
if no conflict then
if all variables assigned then return solution else decide
// non-deterministically assign some literal
else
if top-level conflict then return unsatisfiable else
backtrack // unassign literals propagated after last decision
flip
// assign complement of last decision literal

## CDCL-style solving

```
loop
```

propagate // deterministically assign literals
if no conflict then
if all variables assigned then return solution
else decide // non-deterministically assign some literal
else
if top-level conflict then return unsatisfiable else
analyze
// analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit

## Outline

(9) Motivation
(2) Boolean constraints
(3) Nogoods from logic programs

- Nogoods from program completion
- Nogoods from loop formulas

4 Conflict-driven nogood learning

- CDNL-ASP Algorithm
- Nogood Propagation
- Conflict Analysis


## Outline of CDNL-ASP algorithm

- Keep track of deterministic consequences by unit propagation on:
- Program completion
- Loop nogoods, determined and recorded on demand
$\left[\Lambda_{P}\right]$
- Dynamic nogoods, derived from conflicts and unfounded sets


## Outline of CDNL-ASP algorithm

- Keep track of deterministic consequences by unit propagation on:
- Program completion
- Loop nogoods, determined and recorded on demand
- Dynamic nogoods, derived from conflicts and unfounded sets
- When a nogood in $\Delta_{P} \cup \nabla$ becomes violated:
- Analyze the conflict by resolution (until reaching a Unique Implication Point, short: UIP)
- Learn the derived conflict nogood $\delta$
- Backjump to the earliest (heuristic) choice such that the complement of the UIP is unit-resulting for $\delta$
- Assert the complement of the UIP and proceed (by unit propagation)


## Outline of CDNL-ASP algorithm

- Keep track of deterministic consequences by unit propagation on:
- Program completion
- Loop nogoods, determined and recorded on demand
- Dynamic nogoods, derived from conflicts and unfounded sets
- When a nogood in $\Delta_{P} \cup \nabla$ becomes violated:
- Analyze the conflict by resolution (until reaching a Unique Implication Point, short: UIP)
- Learn the derived conflict nogood $\delta$
- Backjump to the earliest (heuristic) choice such that the complement of the UIP is unit-resulting for $\delta$
- Assert the complement of the UIP and proceed (by unit propagation)
- Terminate when either:
- Finding a stable model (a solution for $\Delta_{P} \cup \Lambda_{P}$ )
- Deriving a conflict independently of (heuristic) choices


## Algorithm 1: CDNL-ASP

```
Input : A normal program P
Output : A stable model of \(P\) or "no stable model"
```

```
A :=\emptyset
\nabla:=\emptyset
dl:= 0
```

// assignment over atom $(P) \cup \operatorname{body}(P)$ // set of recorded nogoods // decision level

## loop

```
(A, \nabla) := NogoodPropagation(P, \nabla,A)
```

if $\varepsilon \subseteq A$ for some $\varepsilon \in \Delta_{P} \cup \nabla$ then
if $\max (\{\operatorname{dlevel}(\sigma) \mid \sigma \in \varepsilon\} \cup\{0\})=0$ then return no stable model
$(\delta, d l):=$ ConflictAnalysis $(\varepsilon, P, \nabla, A)$
$\nabla:=\nabla \cup\{\delta\} \quad$ // (temporarily) record conflict nogood
$A:=A \backslash\{\sigma \in A \mid d l<\operatorname{dlevel}(\sigma)\}$
else if $A^{T} \cup A^{F}=\operatorname{atom}(P) \cup \operatorname{body}(P)$ then
// stable model
return $A^{T} \cap \operatorname{atom}(P)$
else

```
            \(\sigma_{d}:=\operatorname{Select}(P, \nabla, A)\)
                                    // decision
```

            \(d l:=d l+1\)
            \(\operatorname{dlevel}\left(\sigma_{d}\right):=d l\)
            \(A:=A \circ \sigma_{d}\)
    
## Explanations

- Decision level $d l$, initially set to 0 , is used to count the number of heuristically chosen literals in assignment $A$
- For a heuristically chosen literal $\sigma_{d}=\boldsymbol{T} a$ or $\sigma_{d}=\boldsymbol{F} a$, respectively, we require $a \in(\operatorname{atom}(P) \cup \operatorname{body}(P)) \backslash\left(A^{T} \cup A^{F}\right)$
- For any literal $\sigma \in A$, $\operatorname{dlevel}(\sigma)$ denotes the decision level of $\sigma$, i.e. the value $d l$ had when $\sigma$ was assigned


## Explanations

- Decision level $d l$, initially set to 0 , is used to count the number of heuristically chosen literals in assignment $A$
- For a heuristically chosen literal $\sigma_{d}=\boldsymbol{T} a$ or $\sigma_{d}=\boldsymbol{F} a$, respectively, we require
$a \in(\operatorname{atom}(P) \cup \operatorname{body}(P)) \backslash\left(A^{T} \cup A^{F}\right)$
- For any literal $\sigma \in A, \operatorname{dlevel}(\sigma)$ denotes the decision level of $\sigma$, i.e. the value $d l$ had when $\sigma$ was assigned
- A conflict is detected from violation of a nogood $\varepsilon \subseteq \Delta_{P} \cup \nabla$
- A conflict at decision level 0 (where $A$ contains no heuristically chosen literals) indicates non-existence of stable models
- A nogood $\delta$ derived by conflict analysis is asserting, that is, some literal is unit-resulting for $\delta$ at a decision level $k<d l$


## Explanations

- Decision level $d l$, initially set to 0 , is used to count the number of heuristically chosen literals in assignment $A$
- For a heuristically chosen literal $\sigma_{d}=\boldsymbol{T} a$ or $\sigma_{d}=\boldsymbol{F} a$, respectively, we require
$a \in(\operatorname{atom}(P) \cup \operatorname{body}(P)) \backslash\left(A^{T} \cup A^{F}\right)$
- For any literal $\sigma \in A$, $\operatorname{dlevel}(\sigma)$ denotes the decision level of $\sigma$, i.e. the value $d l$ had when $\sigma$ was assigned
- A conflict is detected from violation of a nogood $\varepsilon \subseteq \Delta_{P} \cup \nabla$
- A conflict at decision level 0 (where $A$ contains no heuristically chosen literals) indicates non-existence of stable models
- A nogood $\delta$ derived by conflict analysis is asserting, that is, some literal is unit-resulting for $\delta$ at a decision level $k<d l$
- After learning $\delta$ and backjumping to decision level $k$, at least one literal is newly derivable by unit propagation
- No explicit flipping of heuristically chosen literals!


## Example: CDNL-ASP

Consider

$$
P=\left\{\begin{array}{lll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y
\end{array} \quad w \leftarrow \sim x, \sim y\right\}
$$

| $d l$ | $\sigma_{d}$ | $\bar{\sigma}$ | $\delta$ |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

## Example: CDNL-ASP

Consider

$$
P=\left\{\begin{array}{lll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y
\end{array} \quad w \leftarrow \sim x, \sim y\right\}
$$

| $d l$ | $\sigma_{d}$ | $\bar{\sigma}$ | $\delta$ |
| :--- | :--- | :--- | :--- |
| 1 | $\boldsymbol{T u}$ |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

## Example: CDNL-ASP

Consider

$$
P=\left\{\begin{array}{lll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y
\end{array} \quad w \leftarrow \sim x, \sim y\right\}
$$

| $d l$ | $\sigma_{d}$ | $\bar{\sigma}$ | $\delta$ |
| :--- | :--- | :--- | :--- |
| 1 | $\boldsymbol{T} u$ |  |  |
| 2 | $\boldsymbol{F}\{\sim x, \sim y\}$ |  |  |
|  |  |  |  |
|  |  |  |  |

## Example: CDNL-ASP

Consider

$$
P=\left\{\begin{array}{lll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y
\end{array} \quad w \leftarrow \sim x, \sim y\right\}
$$

| $d l$ | $\sigma_{d}$ | $\bar{\sigma}$ | $\delta$ |
| :--- | :--- | :--- | :--- |
| 1 | $\boldsymbol{T} u$ |  |  |
| 2 | $\boldsymbol{F}\{\sim x, \sim y\}$ |  |  |
|  |  | $\boldsymbol{F} w$ | $\{\boldsymbol{T} w, \boldsymbol{F}\{\sim x, \sim y\}\}=\delta(w)$ |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

## Example: CDNL-ASP

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

| $d l$ | $\sigma_{d}$ | $\bar{\sigma}$ | $\delta$ |
| :---: | :--- | :--- | :--- |
| 1 | $\boldsymbol{T} u$ |  |  |
| 2 | $\boldsymbol{F}\{\sim x, \sim y\}$ |  |  |
|  |  | $\boldsymbol{F} w$ | $\{\boldsymbol{T} w, \boldsymbol{F}\{\sim x, \sim y\}\}=\delta(w)$ |
| 3 | $\boldsymbol{F}\{\sim y\}$ |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

## Example: CDNL-ASP

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

| $d l$ | $\sigma_{d}$ | $\bar{\sigma}$ | $\delta$ |
| :---: | :--- | :--- | :--- |
| 1 | $\boldsymbol{T} u$ |  |  |
| 2 | $\boldsymbol{F}\{\sim x, \sim y\}$ |  |  |
|  |  | $\boldsymbol{F} w$ | $\{\boldsymbol{T} w, \boldsymbol{F}\{\sim x, \sim y\}\}=\delta(w)$ |
| 3 | $\boldsymbol{F}\{\sim y\}$ |  |  |
|  |  | $\boldsymbol{F} x$ | $\{\boldsymbol{T} x, \boldsymbol{F}\{\sim y\}\}=\delta(x)$ |
|  |  | $\boldsymbol{F}\{x\}$ | $\{\boldsymbol{T}\{x\}, \boldsymbol{F} x\} \in \Delta(\{x\})$ |
|  |  | $\boldsymbol{F}\{x, y\}$ | $\{\boldsymbol{T}\{x, y\}, \boldsymbol{F} x\} \in \Delta(\{x, y\})$ |
|  |  |  |  |
|  |  |  |  |

## Example: CDNL-ASP

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

| $d l$ | $\sigma_{d}$ | $\bar{\sigma}$ | $\delta$ |
| :---: | :--- | :--- | :--- |
| 1 | $\boldsymbol{T} u$ |  |  |
| 2 | $\boldsymbol{F}\{\sim x, \sim y\}$ |  |  |
|  |  | $\boldsymbol{F} w$ | $\{\boldsymbol{T} w, \boldsymbol{F}\{\sim x, \sim y\}\}=\delta(w)$ |
| 3 | $\boldsymbol{F}\{\sim y\}$ |  |  |
|  |  | $\boldsymbol{F} x$ | $\{\boldsymbol{T} x, \boldsymbol{F}\{\sim y\}\}=\delta(x)$ |
|  |  | $\boldsymbol{F}\{x\}$ | $\{\boldsymbol{T}\{x\}, \boldsymbol{F} x\} \in \Delta(\{x\})$ |
|  |  | $\boldsymbol{F}\{x, y\}$ | $\{\boldsymbol{T}\{x, y\}, \boldsymbol{F} x\} \in \Delta(\{x, y\})$ |
|  |  | $\vdots$ | $\vdots$ |
|  |  |  | $\{\boldsymbol{T} u, \boldsymbol{F}\{x\}, \boldsymbol{F}\{x, y\}\}=\lambda(u,\{u, v\})$ |

## Example: CDNL-ASP

Consider

$$
P=\left\{\begin{array}{lll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y
\end{array} \quad w \leftarrow \sim x, \sim y\right\}
$$

| $d l$ | $\sigma_{d}$ | $\bar{\sigma}$ | $\delta$ |
| :---: | :--- | :--- | :--- |
| 1 | $\boldsymbol{T u}$ |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

## Example: CDNL-ASP

Consider

$$
P=\left\{\begin{array}{lll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y
\end{array} \quad w \leftarrow \sim x, \sim y\right\}
$$

| $d l$ | $\sigma_{d}$ | $\bar{\sigma}$ | $\delta$ |
| :---: | :--- | :--- | :--- |
| 1 | $\boldsymbol{T} u$ |  |  |
|  |  | $\boldsymbol{T} x$ | $\{\boldsymbol{T} u, \boldsymbol{F} x\} \in \nabla$ |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

## Example: CDNL-ASP

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

| $d l$ | $\sigma_{d}$ | $\bar{\sigma}$ | $\delta$ |
| :---: | :--- | :--- | :--- |
| 1 | $\boldsymbol{T} u$ |  |  |
|  |  | $\boldsymbol{T} x$ | $\{\boldsymbol{T} u, \boldsymbol{F} x\} \in \nabla$ |
|  |  | $\vdots$ | $\vdots$ |
|  |  | $\boldsymbol{T} v$ | $\{\boldsymbol{F} v, \boldsymbol{T}\{x\}\} \in \Delta(v)$ |
|  |  | $\boldsymbol{F} y$ | $\{\boldsymbol{T} y, \boldsymbol{F}\{\sim x\}\}=\delta(y)$ |
|  |  | $\boldsymbol{F} w$ | $\{\boldsymbol{T} w, \boldsymbol{F}\{\sim x, \sim y\}\}=\delta(w)$ |

## Example: CDNL-ASP

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

| $d l$ | $\sigma_{d}$ | $\bar{\sigma}$ | $\delta$ |
| :---: | :--- | :--- | :--- |
| 1 | $\boldsymbol{T} u$ |  |  |
|  |  | $\boldsymbol{T} x$ | $\{\boldsymbol{T} u, \boldsymbol{F} x\} \in \nabla$ |
|  |  | $\vdots$ | $\vdots$ |
|  |  | $\boldsymbol{T} v$ | $\{\boldsymbol{F} v, \boldsymbol{T}\{x\}\} \in \Delta(v)$ |
|  |  | $\boldsymbol{F} y$ | $\{\boldsymbol{T} y, \boldsymbol{F}\{\sim x\}\}=\delta(y)$ |
|  |  | $\boldsymbol{F} w$ | $\{\boldsymbol{T} w, \boldsymbol{F}\{\sim x, \sim y\}\}=\delta(w)$ |

## Outline

(9) Motivation
(2) Boolean constraints
(3) Nogoods from logic programs

- Nogoods from program completion
- Nogoods from loop formulas

4 Conflict-driven nogood learning

- CDNL-ASP Algorithm
- Nogood Propagation
- Conflict Analysis


## Outline of NogoodPropagation

- Derive deterministic consequences via:
- Unit propagation on $\Delta_{P}$ and $\nabla$;
- Unfounded sets $U \subseteq$ atom $(P)$
- Note that $U$ is unfounded if $E B_{P}(U) \subseteq A^{F}$
- Note: For any $a \in U$, we have $(\lambda(a, U) \backslash\{\boldsymbol{T} a\}) \subseteq A$


## Outline of NogoodPropagation

- Derive deterministic consequences via:
- Unit propagation on $\Delta_{P}$ and $\nabla$;
- Unfounded sets $U \subseteq$ atom $(P)$
- Note that $U$ is unfounded if $E B_{P}(U) \subseteq A^{F}$
- Note: For any $a \in U$, we have $(\lambda(a, U) \backslash\{\boldsymbol{T} a\}) \subseteq A$
- An "interesting" unfounded set $U$ satisfies:

$$
\emptyset \subset U \subseteq\left(\operatorname{atom}(P) \backslash A^{F}\right)
$$

- Wrt a fixpoint of unit propagation,


## Outline of NogoodPropagation

- Derive deterministic consequences via:
- Unit propagation on $\Delta_{P}$ and $\nabla$;
- Unfounded sets $U \subseteq$ atom $(P)$
- Note that $U$ is unfounded if $E B_{P}(U) \subseteq A^{F}$
- Note: For any $a \in U$, we have $(\lambda(a, U) \backslash\{\boldsymbol{T} a\}) \subseteq A$
- An "interesting" unfounded set $U$ satisfies:

$$
\emptyset \subset U \subseteq\left(\operatorname{atom}(P) \backslash A^{F}\right)
$$

- Wrt a fixpoint of unit propagation, such an unfounded set contains some loop of $P$
- Note: Tight programs do not yield "interesting" unfounded sets !


## Outline of NogoodPropagation

- Derive deterministic consequences via:
- Unit propagation on $\Delta_{P}$ and $\nabla$;
- Unfounded sets $U \subseteq$ atom $(P)$
- Note that $U$ is unfounded if $E B_{P}(U) \subseteq A^{F}$
- Note: For any $a \in U$, we have $(\lambda(a, U) \backslash\{\boldsymbol{T} a\}) \subseteq A$
- An "interesting" unfounded set $U$ satisfies:

$$
\emptyset \subset U \subseteq\left(\operatorname{atom}(P) \backslash A^{F}\right)
$$

- Wrt a fixpoint of unit propagation, such an unfounded set contains some loop of $P$
- Note: Tight programs do not yield "interesting" unfounded sets !
- Given an unfounded set $U$ and some $a \in U$, adding $\lambda(a, U)$ to $\nabla$ triggers a conflict or further derivations by unit propagation
- Note: Add loop nogoods atom by atom to eventually falsify all $a \in U$


## Algorithm 2: NogoodPropagation

Input : A normal program $P$, a set $\nabla$ of nogoods, and an assignment $A$.
Output : An extended assignment and set of nogoods.

```
U:=\emptyset // unfounded set
loop
    repeat
        if \delta\subseteqA for some }\delta\in\mp@subsup{\Delta}{P}{}\cup\nabla\mathrm{ then return (A, }
    \Sigma:={\delta\in\mp@subsup{\Delta}{P}{}\cup\nabla|\delta\A={\overline{\sigma}},\sigma\not\inA}\quad // unit-resulting nogoods
    if }\Sigma\not=\emptyset\mathrm{ then let }\overline{\sigma}\in\delta\A\mathrm{ for some }\delta\in\Sigma\mathrm{ in
                dlevel (\sigma):= max({dlevel (\rho) | \rho\in\delta\{\overline{\sigma}}}\cup{0})
                        A := A\circ\sigma
    until }\Sigma=
    if loop (P)=\emptyset then return (A,\nabla)
    U:=U\A F
    if U=\emptyset then U}:=\operatorname{UnfoundedSet}(P,A
    if U=\emptyset then return (A,\nabla) // no unfounded set \emptyset\subsetU\subseteqatom(P)\A A
    let }a\inU\mathrm{ in
        L\nabla:=\nabla\cup{{\boldsymbol{T}a}\cup{\boldsymbol{FB}|B\inEBP(U)}}\quad// record loop nogood
```


## Requirements for UnfoundedSet

- Implementations of UnfoundedSet must guarantee the following for a result $U$
(1) $U \subseteq\left(\operatorname{atom}(P) \backslash A^{F}\right)$
(2) $E B_{P}(U) \subseteq A^{F}$
(3) $U=\emptyset$ iff there is no nonempty unfounded subset of $\left(\operatorname{atom}(P) \backslash A^{F}\right)$


## Requirements for UnfoundedSet

- Implementations of UnfoundedSet must guarantee the following for a result $U$
(1) $U \subseteq\left(\operatorname{atom}(P) \backslash A^{F}\right)$
(2) $E B_{P}(U) \subseteq A^{F}$
(3) $U=\emptyset$ iff there is no nonempty unfounded subset of $\left(\operatorname{atom}(P) \backslash A^{F}\right)$
- Beyond that, there are various alternatives, such as:
- Calculating the greatest unfounded set
- Calculating unfounded sets within strongly connected components of the positive atom dependency graph of $P$
- Usually, the latter option is implemented in ASP solvers


## Example: NogoodPropagation

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

| $d l$ | $\sigma_{d}$ | $\bar{\sigma}$ | $\delta$ |
| :---: | :--- | :--- | :--- |
| 1 | $\boldsymbol{T} u$ |  |  |
| 2 | $\boldsymbol{F}\{\sim x, \sim y\}$ |  |  |
|  |  | $\boldsymbol{F} w$ | $\{\boldsymbol{T} w, \boldsymbol{F}\{\sim x, \sim y\}\}=\delta(w)$ |
| 3 | $\boldsymbol{F}\{\sim y\}$ |  |  |
|  |  | $\boldsymbol{F} x$ | $\{\boldsymbol{T} x, \boldsymbol{F}\{\sim y\}\}=\delta(x)$ |
|  |  | $\boldsymbol{F}\{x\}$ | $\{\boldsymbol{T}\{x\}, \boldsymbol{F} x\} \in \Delta(\{x\})$ |
|  |  | $\boldsymbol{F}\{x, y\}$ | $\{\boldsymbol{T}\{x, y\}, \boldsymbol{F} x\} \in \Delta(\{x, y\})$ |
|  |  | $\boldsymbol{T}\{\sim x\}$ | $\{\boldsymbol{F}\{\sim x\}, \boldsymbol{F} x\}=\delta(\{\sim x\})$ |
|  |  | $\boldsymbol{T} y$ | $\{\boldsymbol{F}\{\sim y\}, \boldsymbol{F} y\}=\delta(\{\sim y\})$ |
|  |  | $\boldsymbol{T}\{v\}$ | $\{\boldsymbol{T} u, \boldsymbol{F}\{x, y\}, \boldsymbol{F}\{v\}\}=\delta(u)$ |
|  |  | $\boldsymbol{T}\{u, y\}$ | $\{\boldsymbol{F}\{u, y\}, \boldsymbol{T} u, \boldsymbol{T} y\}=\delta(\{u, y\})$ |
|  |  | $\boldsymbol{T} v$ | $\{\boldsymbol{F} v, \boldsymbol{T}\{u, y\}\} \in \Delta(v)$ |
|  |  |  | $\{\boldsymbol{T} u, \boldsymbol{F}\{x\}, \boldsymbol{F}\{x, y\}\}=\lambda(u,\{u, v\})$ |
|  |  |  |  |

## Outline

(9) Motivation
(2) Boolean constraints
(3) Nogoods from logic programs

- Nogoods from program completion
- Nogoods from loop formulas

4 Conflict-driven nogood learning

- CDNL-ASP Algorithm
- Nogood Propagation
- Conflict Analysis


## Outline of ConflictAnalysis

- Conflict analysis is triggered whenever some nogood $\delta \in \Delta_{P} \cup \nabla$ becomes violated, viz. $\delta \subseteq A$, at a decision level $d l>0$
- Note that all but the first literal assigned at $d l$ have been unit-resulting for nogoods $\varepsilon \in \Delta_{P} \cup \nabla$
- If $\sigma \in \delta$ has been unit-resulting for $\varepsilon$, we obtain a new violated nogood by resolving $\delta$ and $\varepsilon$ as follows:

$$
(\delta \backslash\{\sigma\}) \cup(\varepsilon \backslash\{\bar{\sigma}\})
$$

## Outline of ConflictAnalysis

- Conflict analysis is triggered whenever some nogood $\delta \in \Delta_{P} \cup \nabla$ becomes violated, viz. $\delta \subseteq A$, at a decision level $d l>0$
- Note that all but the first literal assigned at $d l$ have been unit-resulting for nogoods $\varepsilon \in \Delta_{P} \cup \nabla$
- If $\sigma \in \delta$ has been unit-resulting for $\varepsilon$, we obtain a new violated nogood by resolving $\delta$ and $\varepsilon$ as follows:

$$
(\delta \backslash\{\sigma\}) \cup(\varepsilon \backslash\{\bar{\sigma}\})
$$

- Resolution is directed by resolving first over the literal $\sigma \in \delta$ derived last, viz. $(\delta \backslash A[\sigma])=\{\sigma\}$
- Iterated resolution progresses in inverse order of assignment


## Outline of ConflictAnalysis

- Conflict analysis is triggered whenever some nogood $\delta \in \Delta_{P} \cup \nabla$ becomes violated, viz. $\delta \subseteq A$, at a decision level $d l>0$
- Note that all but the first literal assigned at $d l$ have been unit-resulting for nogoods $\varepsilon \in \Delta_{P} \cup \nabla$
- If $\sigma \in \delta$ has been unit-resulting for $\varepsilon$, we obtain a new violated nogood by resolving $\delta$ and $\varepsilon$ as follows:

$$
(\delta \backslash\{\sigma\}) \cup(\varepsilon \backslash\{\bar{\sigma}\})
$$

- Resolution is directed by resolving first over the literal $\sigma \in \delta$ derived last, viz. $(\delta \backslash A[\sigma])=\{\sigma\}$
- Iterated resolution progresses in inverse order of assignment
- Iterated resolution stops as soon as it generates a nogood $\delta$ containing exactly one literal $\sigma$ assigned at decision level $d l$
- This literal $\sigma$ is called First Unique Implication Point (First-UIP)
- All literals in ( $\delta \backslash\{\sigma\}$ ) are assigned at decision levels smaller than $d l$


## Algorithm 3: ConflictAnalysis

Input : A non-empty violated nogood $\delta$, a normal program $P$, a set $\nabla$ of nogoods, and an assignment $A$.
Output : A derived nogood and a decision level.

## loop

let $\sigma \in \delta$ such that $\delta \backslash A[\sigma]=\{\sigma\}$ in
$k:=\max (\{\operatorname{dlevel}(\rho) \mid \rho \in \delta \backslash\{\sigma\}\} \cup\{0\})$
if $k=\operatorname{dlevel}(\sigma)$ then
let $\varepsilon \in \Delta_{P} \cup \nabla$ such that $\varepsilon \backslash A[\sigma]=\{\bar{\sigma}\}$ in
$\delta:=(\delta \backslash\{\sigma\}) \cup(\varepsilon \backslash\{\bar{\sigma}\}) \quad / /$ resolution
else return $(\delta, k)$

## Example: ConflictAnalysis

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

| dl | $\sigma_{d}$ | $\bar{\sigma}$ | $\delta$ |
| :---: | :---: | :---: | :---: |
| 1 | Tu |  |  |
| 2 | $\boldsymbol{F}\{\sim x, \sim y\}$ |  |  |
|  |  | Fw | $\{\boldsymbol{T} w, \boldsymbol{F}\{\sim x, \sim y\}\}=\delta(w)$ |
| 3 | $\boldsymbol{F}\{\sim y\}$ |  |  |
|  |  | $\boldsymbol{F} x$ | $\{\boldsymbol{T} x, \boldsymbol{F}\{\sim y\}\}=\delta(x)$ |
|  |  | $\boldsymbol{F}\{x\}$ | $\{\boldsymbol{T}\{x\}, \boldsymbol{F} x\} \in \Delta(\{x\})$ |
|  |  | $\boldsymbol{F}\{x, y\}$ | \{ $\boldsymbol{T}\{x, y\}, \boldsymbol{F} x\} \in \Delta(\{x, y\})$ |
|  |  | $\boldsymbol{T}\{\sim x\}$ | $\{\boldsymbol{F}\{\sim x\}, \boldsymbol{F} x\}=\delta(\{\sim x\})$ |
|  |  | Ty | $\{\boldsymbol{F}\{\sim y\}, \boldsymbol{F} y\}=\delta(\{\sim y\})$ |
|  |  | $\boldsymbol{T}\{\nu\}$ | $\{\boldsymbol{T} u, \boldsymbol{F}\{x, y\}, \boldsymbol{F}\{v\}\}=\delta(u)$ |
|  |  | $\boldsymbol{T}\{u, y\}$ | $\{\boldsymbol{F}\{u, y\}, \boldsymbol{T} u, \boldsymbol{T} y\}=\delta(\{u, y\})$ |
|  |  | Tv | $\{\boldsymbol{F} \boldsymbol{v}, \boldsymbol{T}\{u, y\}\} \in \Delta(v)$ |
|  |  |  | $\{\boldsymbol{T} u, \boldsymbol{F}\{x\}, \boldsymbol{F}\{x, y\}\}=\lambda(u,\{u, v\})$ |

## Example: ConflictAnalysis

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

| dl | $l \sigma_{d}$ | $\bar{\sigma}$ | $\delta$ |
| :---: | :---: | :---: | :---: |
| 1 | Tu |  |  |
| 2 | $\boldsymbol{F}\{\sim x, \sim y\}$ |  |  |
|  |  | Fw | $\{\boldsymbol{T} w, \boldsymbol{F}\{\sim x, \sim y\}\}=\delta(w)$ |
| 3 | $\boldsymbol{F}\{\sim y\}$ |  |  |
|  |  | $\boldsymbol{F} x$ | $\{\boldsymbol{T} x, \boldsymbol{F}\{\sim y\}\}=\delta(x)$ |
|  |  | $\boldsymbol{F}\{x\}$ | $\{\boldsymbol{T}\{x\}, \boldsymbol{F} x\} \in \Delta(\{x\})$ |
|  |  | $\boldsymbol{F}\{x, y\}$ | $\{\boldsymbol{T}\{x, y\}, \boldsymbol{F} x\} \in \Delta(\{x, y\})$ |
|  |  | T $\{\sim x\}$ | $\{\boldsymbol{F}\{\sim x\}, \boldsymbol{F} x\}=\delta(\{\sim x\})$ |
|  |  | Ty | $\{\boldsymbol{F}\{\sim y\}, \boldsymbol{F} y\}=\delta(\{\sim y\})$ |
|  |  | $\boldsymbol{T}\{v\}$ | $\{\boldsymbol{T} u, \boldsymbol{F}\{x, y\}, \boldsymbol{F}\{v\}\}=\delta(u)$ |
|  |  | $\boldsymbol{T}\{u, y\}$ | $\{\boldsymbol{F}\{u, y\}, \boldsymbol{T} u, \boldsymbol{T} y\}=\delta(\{u, y\})$ |
|  |  | Tv | $\{\boldsymbol{F} v, \boldsymbol{T}\{u, y\}\} \in \Delta(v)$ |
|  |  |  | $\{\boldsymbol{T} u, \boldsymbol{F}\{x\}, \boldsymbol{F}\{x, y\}\}=\lambda(u,\{u, v\})$ |

## Example: ConflictAnalysis

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

| $d l$ | $l \mid \sigma_{d}$ | $\bar{\sigma}$ | $\delta$ |
| :---: | :---: | :---: | :---: |
| 1 | $1 \mathrm{~T}^{1}$ |  |  |
| 2 | $\boldsymbol{F}\{\sim x, \sim y\}$ |  |  |
|  |  | Fw | $\{\boldsymbol{T} w, \boldsymbol{F}\{\sim x, \sim y\}\}=\delta(w)$ |
| 3 | $\boldsymbol{F}\{\sim y\}$ |  |  |
|  |  | $\boldsymbol{F} x$ | $\{\boldsymbol{T} x, \boldsymbol{F}\{\sim y\}\}=\delta(x)$ |
|  |  | $\boldsymbol{F}\{x\}$ | $\{\boldsymbol{T}\{x\}, \boldsymbol{F} x\} \in \Delta(\{x\})$ |
|  |  | $\boldsymbol{F}\{x, y\}$ | $\{\boldsymbol{T}\{x, y\}, \boldsymbol{F} x\} \in \Delta(\{x, y\})$ |
|  |  | $\boldsymbol{T}\{\sim x\}$ | $\{\boldsymbol{F}\{\sim x\}, \boldsymbol{F} x\}=\delta(\{\sim x\})$ |
|  |  | Ty | $\{\boldsymbol{F}\{\sim y\}, \boldsymbol{F} y\}=\delta(\{\sim y\})$ |
|  |  | $\boldsymbol{T}\{v\}$ | $\{\boldsymbol{T} u, \boldsymbol{F}\{x, y\}, \boldsymbol{F}\{v\}\}=\delta(u)$ |
|  |  | $\boldsymbol{T}\{u, y\}$ | $\{\boldsymbol{F}\{u, y\}, \boldsymbol{T} u, \boldsymbol{T} y\}=\delta(\{u, y\})$ |
|  |  | Tv | $\{\boldsymbol{F} v, \boldsymbol{T}\{u, y\}\} \in \Delta(v)$ |
|  |  |  | $\{\boldsymbol{T} u, \boldsymbol{F}\{x\}, \boldsymbol{F}\{x, y\}\}=\lambda(u,\{u, \nu\})$ |

## Example: ConflictAnalysis

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

| dl | $\sigma_{d}$ | $\bar{\sigma}$ | $\delta$ |
| :---: | :---: | :---: | :---: |
| 1 | Tu |  |  |
| 2 | $\boldsymbol{F}\{\sim x, \sim y\}$ |  |  |
|  |  | Fw | $\{\boldsymbol{T} w, \boldsymbol{F}\{\sim x, \sim y\}\}=\delta(w)$ |
| 3 | $\boldsymbol{F}\{\sim y\}$ |  |  |
|  |  | $\boldsymbol{F} x$ | $\{\boldsymbol{T} x, \boldsymbol{F}\{\sim y\}\}=\delta(x)$ |
|  |  | $\boldsymbol{F}\{x\}$ | $\{\boldsymbol{T}\{x\}, \boldsymbol{F} x\} \in \Delta(\{x\})$ |
|  |  | $\boldsymbol{F}\{x, y\}$ | $\{\boldsymbol{T}\{x, y\}, \boldsymbol{F} x\} \in \Delta(\{x, y\})$ |
|  |  | $\boldsymbol{T}\{\sim x\}$ | $\{\boldsymbol{F}\{\sim x\}, \boldsymbol{F} x\}=\delta(\{\sim x\})$ |
|  |  | Ty | $\{\boldsymbol{F}\{\sim y\}, \boldsymbol{F} y\}=\delta(\{\sim y\})$ |
|  |  | $\boldsymbol{T}\{v\}$ | $\{\boldsymbol{T} u, \boldsymbol{F}\{x, y\}, \boldsymbol{F}\{v\}\}=\delta(u)$ |
|  |  | $\boldsymbol{T}\{u, y\}$ | $\{\boldsymbol{F}\{u, y\}, \boldsymbol{T} u, \boldsymbol{T} y\}=\delta(\{u, y\})$ |
|  |  | Tv | $\{\boldsymbol{F} v, \boldsymbol{T}\{u, y\}\} \in \Delta(v)$ |
|  |  |  | $\{\boldsymbol{T} u, \boldsymbol{F}\{x\}, \boldsymbol{F}\{x, y\}\}=\lambda(u,\{u, v\})$ |

## Example: ConflictAnalysis

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

| dl | $l \sigma_{d}$ | $\bar{\sigma}$ | $\delta$ |
| :---: | :---: | :---: | :---: |
| 1 | Tu |  |  |
| 2 | $\boldsymbol{F}\{\sim x, \sim y\}$ |  |  |
|  |  | Fw | $\{\boldsymbol{T} w, \boldsymbol{F}\{\sim x, \sim y\}\}=\delta(w)$ |
| 3 | $\boldsymbol{F}\{\sim y\}$ |  |  |
|  |  | Fx | $\{\boldsymbol{T} x, \boldsymbol{F}\{\sim y\}\}=\delta(x)$ |
|  |  | $\boldsymbol{F}\{x\}$ | $\{\boldsymbol{T}\{x\}, \boldsymbol{F} x\} \in \Delta(\{x\})$ |
|  |  | $\boldsymbol{F}\{x, y\}$ | $\{\boldsymbol{T}\{x, y\}, \boldsymbol{F} x\} \in \Delta(\{x, y\})$ |
|  |  | $\boldsymbol{T}\{\sim x\}$ | $\{\boldsymbol{F}\{\sim x\}, \boldsymbol{F} x\}=\delta(\{\sim x\})$ |
|  |  | Ty | $\{\boldsymbol{F}\{\sim y\}, \boldsymbol{F} y\}=\delta(\{\sim y\})$ |
|  |  | $\boldsymbol{T}\{v\}$ | $\{\boldsymbol{T} u, \boldsymbol{F}\{x, y\}, \boldsymbol{F}\{v\}\}=\delta(u)$ |
|  |  | $\boldsymbol{T}\{u, y\}$ | $\{\boldsymbol{F}\{u, y\}, \boldsymbol{T} u, \boldsymbol{T} y\}=\delta(\{u, y\})$ |
|  |  | $T \nu$ | $\{\boldsymbol{F} v, \boldsymbol{T}\{u, y\}\} \in \Delta(v)$ |
|  |  |  | $\{\boldsymbol{T} u, \boldsymbol{F}\{x\}, \boldsymbol{F}\{x, y\}\}=\lambda(u,\{u, v\})$ |

$$
\{\boldsymbol{T} u, \boldsymbol{F} x, \boldsymbol{F}\{x\}\}
$$

## Example: ConflictAnalysis

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

| dl | $\sigma_{d}$ | $\bar{\sigma}$ | $\delta$ |
| :---: | :---: | :---: | :---: |
| 1 | Tu |  |  |
| 2 | $\boldsymbol{F}\{\sim x, \sim y\}$ |  |  |
|  |  | Fw | $\{\boldsymbol{T} w, \boldsymbol{F}\{\sim x, \sim y\}\}=\delta(w)$ |
| 3 | $\boldsymbol{F}\{\sim y\}$ |  |  |
|  |  | $\boldsymbol{F} x$ | $\{\boldsymbol{T} x, \boldsymbol{F}\{\sim y\}\}=\delta(x)$ |
|  |  | $\boldsymbol{F}\{x\}$ | $\{\boldsymbol{T}\{x\}, \boldsymbol{F} x\} \in \Delta(\{x\})$ |
|  |  | $\boldsymbol{F}\{x, y\}$ | $\{\boldsymbol{T}\{x, y\}, \boldsymbol{F} x\} \in \Delta(\{x, y\})$ |
|  |  | $\boldsymbol{T}\{\sim x\}$ | $\{\boldsymbol{F}\{\sim x\}, \boldsymbol{F} x\}=\delta(\{\sim x\})$ |
|  |  | Ty | $\{\boldsymbol{F}\{\sim y\}, \boldsymbol{F} y\}=\delta(\{\sim y\})$ |
|  |  | $\boldsymbol{T}\{\nu\}$ | $\{\boldsymbol{T} u, \boldsymbol{F}\{x, y\}, \boldsymbol{F}\{v\}\}=\delta(u)$ |
|  |  | $\boldsymbol{T}\{u, y\}$ | $\{\boldsymbol{F}\{u, y\}, \boldsymbol{T} u, \boldsymbol{T} y\}=\delta(\{u, y\})$ |
|  |  | $\boldsymbol{T} v$ | $\{\boldsymbol{F} v, \boldsymbol{T}\{u, y\}\} \in \Delta(v)$ |
|  |  |  | $\{\boldsymbol{T} u, \boldsymbol{F}\{x\}, \boldsymbol{F}\{x, y\}\}=\lambda(u,\{u, v\})$ |

$$
\{\boldsymbol{T} u, \boldsymbol{F} x, \boldsymbol{F}\{x\}\}
$$

## Example: ConflictAnalysis

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

| dl | $l \sigma_{d}$ | $\bar{\sigma}$ | $\delta$ |
| :---: | :---: | :---: | :---: |
| 1 | Tu |  |  |
| 2 | $\boldsymbol{F}\{\sim x, \sim y\}$ |  |  |
|  |  | Fw | $\{\boldsymbol{T} w, \boldsymbol{F}\{\sim x, \sim y\}\}=\delta(w)$ |
| 3 | $\boldsymbol{F}\{\sim y\}$ |  |  |
|  |  | $\boldsymbol{F} x$ | $\{\boldsymbol{T} x, \boldsymbol{F}\{\sim y\}\}=\delta(x)$ |
|  |  | $\boldsymbol{F}\{x\}$ | $\{\boldsymbol{T}\{x\}, \boldsymbol{F} x\} \in \Delta(\{x\})$ |
|  |  | $\boldsymbol{F}\{x, y\}$ | $\{\boldsymbol{T}\{x, y\}, \boldsymbol{F} x\} \in \Delta(\{x, y\})$ |
|  |  | $\boldsymbol{T}\{\sim x\}$ | $\{\boldsymbol{F}\{\sim x\}, \boldsymbol{F} x\}=\delta(\{\sim x\})$ |
|  |  | Ty | $\{\boldsymbol{F}\{\sim y\}, \boldsymbol{F} y\}=\delta(\{\sim y\})$ |
|  |  | $\boldsymbol{T}\{v\}$ | $\{\boldsymbol{T} u, \boldsymbol{F}\{x, y\}, \boldsymbol{F}\{v\}\}=\delta(u)$ |
|  |  | $\boldsymbol{T}\{u, y\}$ | $\{\boldsymbol{F}\{u, y\}, \boldsymbol{T} u, \boldsymbol{T} y\}=\delta(\{u, y\})$ |
|  |  | $\boldsymbol{T} v$ | $\{\boldsymbol{F} v, \boldsymbol{T}\{u, y\}\} \in \Delta(v)$ |
|  |  |  | $\{\boldsymbol{T} u, \boldsymbol{F}\{x\}, \boldsymbol{F}\{x, y\}\}=\lambda(u,\{u, v\})$ |

$$
\{\boldsymbol{T} u, \boldsymbol{F} x, \boldsymbol{F}\{x\}\}
$$

## Example: ConflictAnalysis

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

| dl | $l \sigma_{d}$ | $\bar{\sigma}$ | $\delta$ |
| :---: | :---: | :---: | :---: |
| 1 | Tu |  |  |
| 2 | $\boldsymbol{F}\{\sim x, \sim y\}$ |  |  |
|  |  | Fw | $\{\boldsymbol{T} w, \boldsymbol{F}\{\sim x, \sim y\}\}=\delta(w)$ |
| 3 | $\boldsymbol{F}\{\sim y\}$ |  |  |
|  |  | Fx | $\{\boldsymbol{T} x, \boldsymbol{F}\{\sim y\}\}=\delta(x)$ |
|  |  | $\boldsymbol{F}\{x\}$ | $\{\boldsymbol{T}\{x\}, \boldsymbol{F} x\} \in \Delta(\{x\})$ |
|  |  | $\boldsymbol{F}\{x, y\}$ | $\{\boldsymbol{T}\{x, y\}, \boldsymbol{F} x\} \in \Delta(\{x, y\})$ |
|  |  | $\boldsymbol{T}\{\sim x\}$ | $\{\boldsymbol{F}\{\sim x\}, \boldsymbol{F} x\}=\delta(\{\sim x\})$ |
|  |  | Ty | $\{\boldsymbol{F}\{\sim y\}, \boldsymbol{F} y\}=\delta(\{\sim y\})$ |
|  |  | $\boldsymbol{T}\{v\}$ | $\{\boldsymbol{T} u, \boldsymbol{F}\{x, y\}, \boldsymbol{F}\{v\}\}=\delta(u)$ |
|  |  | $\boldsymbol{T}\{u, y\}$ | $\{\boldsymbol{F}\{u, y\}, \boldsymbol{T} u, \boldsymbol{T} y\}=\delta(\{u, y\})$ |
|  |  | $T \nu$ | $\{\boldsymbol{F} v, \boldsymbol{T}\{u, y\}\} \in \Delta(v)$ |
|  |  |  | $\{\boldsymbol{T} u, \boldsymbol{F}\{x\}, \boldsymbol{F}\{x, y\}\}=\lambda(u,\{u, v\})$ |

$$
\begin{aligned}
& \{\boldsymbol{T} u, \boldsymbol{F} x\} \\
& \{\boldsymbol{T} u, \boldsymbol{F} x, \boldsymbol{F}\{x\}\}
\end{aligned}
$$

## Example: ConflictAnalysis

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

| dl | $l \sigma_{d}$ | $\bar{\sigma}$ | $\delta$ |
| :---: | :---: | :---: | :---: |
| 1 | Tu |  |  |
| 2 | $\boldsymbol{F}\{\sim x, \sim y\}$ |  |  |
|  |  | Fw | $\{\boldsymbol{T} w, \boldsymbol{F}\{\sim x, \sim y\}\}=\delta(w)$ |
| 3 | $\boldsymbol{F}\{\sim y\}$ |  |  |
|  |  | Fx | $\{\boldsymbol{T} x, \boldsymbol{F}\{\sim y\}\}=\delta(x)$ |
|  |  | $\boldsymbol{F}\{x\}$ | $\{\boldsymbol{T}\{x\}, \boldsymbol{F} x\} \in \Delta(\{x\})$ |
|  |  | $\boldsymbol{F}\{x, y\}$ | $\{\boldsymbol{T}\{x, y\}, \boldsymbol{F} x\} \in \Delta(\{x, y\})$ |
|  |  | $\boldsymbol{T}\{\sim x\}$ | $\{\boldsymbol{F}\{\sim x\}, \boldsymbol{F} x\}=\delta(\{\sim x\})$ |
|  |  | Ty | $\{\boldsymbol{F}\{\sim y\}, \boldsymbol{F} y\}=\delta(\{\sim y\})$ |
|  |  | $\boldsymbol{T}\{v\}$ | $\{\boldsymbol{T} u, \boldsymbol{F}\{x, y\}, \boldsymbol{F}\{v\}\}=\delta(u)$ |
|  |  | $\boldsymbol{T}\{u, y\}$ | $\{\boldsymbol{F}\{u, y\}, \boldsymbol{T} u, \boldsymbol{T} y\}=\delta(\{u, y\})$ |
|  |  | $T \nu$ | $\{\boldsymbol{F} v, \boldsymbol{T}\{u, y\}\} \in \Delta(v)$ |
|  |  |  | $\{\boldsymbol{T} u, \boldsymbol{F}\{x\}, \boldsymbol{F}\{x, y\}\}=\lambda(u,\{u, v\})$ |

$$
\begin{aligned}
& \{\boldsymbol{T} u, \boldsymbol{F} x\} \\
& \{\boldsymbol{T} u, \boldsymbol{F} x, \boldsymbol{F}\{x\}\}
\end{aligned}
$$

## Example: ConflictAnalysis

Consider

$$
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
$$

| $d l$ | $l \sigma_{d}$ | $\bar{\sigma}$ | $\delta$ |
| :---: | :---: | :---: | :---: |
| 1 | Tu |  |  |
| 2 | $\boldsymbol{F}\{\sim x, \sim y\}$ |  |  |
|  |  | Fw | $\{\boldsymbol{T} w, \boldsymbol{F}\{\sim x, \sim y\}\}=\delta(w)$ |
| 3 | $\boldsymbol{F}\{\sim y\}$ |  |  |
|  |  | $\boldsymbol{F} x$ | $\{\boldsymbol{T} x, \boldsymbol{F}\{\sim y\}\}=\delta(x)$ |
|  |  | $\boldsymbol{F}\{x\}$ | $\{\boldsymbol{T}\{x\}, \boldsymbol{F} x\} \in \Delta(\{x\})$ |
|  |  | $\boldsymbol{F}\{x, y\}$ | $\{\boldsymbol{T}\{x, y\}, \boldsymbol{F} x\} \in \Delta(\{x, y\})$ |
|  |  | $\boldsymbol{T}\{\sim x\}$ | $\{\boldsymbol{F}\{\sim x\}, \boldsymbol{F} x\}=\delta(\{\sim x\})$ |
|  |  | Ty | $\{\boldsymbol{F}\{\sim y\}, \boldsymbol{F} y\}=\delta(\{\sim y\})$ |
|  |  | $\boldsymbol{T}\{\nu\}$ | $\{\boldsymbol{T} u, \boldsymbol{F}\{x, y\}, \boldsymbol{F}\{v\}\}=\delta(u)$ |
|  |  | $\boldsymbol{T}\{u, y\}$ | $\{\boldsymbol{F}\{u, y\}, \boldsymbol{T} u, \boldsymbol{T} y\}=\delta(\{u, y\})$ |
|  |  | $\boldsymbol{T} v$ | $\{\boldsymbol{F} v, \boldsymbol{T}\{u, y\}\} \in \Delta(v)$ |
|  |  |  | $\{\boldsymbol{T} u, \boldsymbol{F}\{x\}, \boldsymbol{F}\{x, y\}\}=\lambda(u,\{u, v\})$ |

$$
\begin{aligned}
& \{\boldsymbol{T} u, \boldsymbol{F} x\} \\
& \{\boldsymbol{T} u, \boldsymbol{F} x, \boldsymbol{F}\{x\}\}
\end{aligned}
$$

## Remarks

- There always is a First-UIP at which conflict analysis terminates
- In the worst, resolution stops at the heuristically chosen literal assigned at decision level $d l$


## Remarks

- There always is a First-UIP at which conflict analysis terminates
- In the worst, resolution stops at the heuristically chosen literal assigned at decision level $d l$
- The nogood $\delta$ containing First-UIP $\sigma$ is violated by $A$, viz. $\delta \subseteq A$
- We have $k=\max (\{d l(\rho) \mid \rho \in \delta \backslash\{\sigma\}\} \cup\{0\})<d l$


## Remarks

- There always is a First-UIP at which conflict analysis terminates
- In the worst, resolution stops at the heuristically chosen literal assigned at decision level $d l$
- The nogood $\delta$ containing First-UIP $\sigma$ is violated by $A$, viz. $\delta \subseteq A$
- We have $k=\max (\{d l(\rho) \mid \rho \in \delta \backslash\{\sigma\}\} \cup\{0\})<d l$
- After recording $\delta$ in $\nabla$ and backjumping to decision level $k$, $\bar{\sigma}$ is unit-resulting for $\delta$ !
- Such a nogood $\delta$ is called asserting


## Remarks

- There always is a First-UIP at which conflict analysis terminates
- In the worst, resolution stops at the heuristically chosen literal assigned at decision level $d l$
- The nogood $\delta$ containing First-UIP $\sigma$ is violated by $A$, viz. $\delta \subseteq A$
- We have $k=\max (\{d l(\rho) \mid \rho \in \delta \backslash\{\sigma\}\} \cup\{0\})<d l$
- After recording $\delta$ in $\nabla$ and backjumping to decision level $k$, $\bar{\sigma}$ is unit-resulting for $\delta$ !
- Such a nogood $\delta$ is called asserting
- Asserting nogoods direct conflict-driven search into a different region of the search space than traversed before, without explicitly flipping any heuristically chosen literal !

