

## DEDUCTION SYSTEMS

### Answer Set Programming: Solving

Markus Krötzsch

Chair for Knowledge-Based Systems

Slides by Sebastian Rudolph, and based on a lecture by Martin Gebser and Torsten Schaub (CC-By 3.0)



TU Dresden, 2 July 2018



## ASP Solving: Overview



2

#### Motivation

Boolean constraints

- 3 Nogoods from logic programs
  - Nogoods from program completion
  - Nogoods from loop formulas



- Conflict-driven nogood learning
- CDNL-ASP Algorithm
- Nogood Propagation
- Conflict Analysis



## Outline



#### Motivation

Boolean constraints

- Nogoods from logic programs
   Nogoods from program completion
   Nogoods from loop formulas
  - Conflict-driven nogood learning CDNL-ASP Algorithm
  - Nogood Propagation
  - Conflict Analysis



## Motivation

- Goal: Approach to computing stable models of logic programs, based on concepts from
  - Constraint Processing (CP) and
  - Satisfiability Testing (SAT)
- Idea: View inferences in ASP as unit propagation on nogoods
- Benefits:
  - A uniform constraint-based framework for different kinds of inferences in ASP
  - Advanced techniques from the areas of CP and SAT
  - Highly competitive implementation



## Outline



#### Motivation



Nogoods from logic programs
 Nogoods from program completion
 Nogoods from loop formulas

4

- Conflict-driven nogood learning CDNL-ASP Algorithm
- Nogood Propagation
- Conflict Analysis



• An assignment A over  $dom(A) = atom(P) \cup body(P)$  is a sequence

 $(\sigma_1,\ldots,\sigma_n)$ 

of signed literals  $\sigma_i$  of form Tv or Fv for  $v \in dom(A)$  and  $1 \le i \le n$ 

• *Tv* expresses that *v* is true and *Fv* that it is false



• An assignment A over  $dom(A) = atom(P) \cup body(P)$  is a sequence

 $(\sigma_1,\ldots,\sigma_n)$ 

of signed literals  $\sigma_i$  of form Tv or Fv for  $v \in dom(A)$  and  $1 \le i \le n$ 

• The complement,  $\overline{\sigma}$ , of a literal  $\sigma$  is defined as  $\overline{Tv} = Fv$  and  $\overline{Fv} = Tv$ 



• An assignment A over  $dom(A) = atom(P) \cup body(P)$  is a sequence

 $(\sigma_1,\ldots,\sigma_n)$ 

of signed literals  $\sigma_i$  of form Tv or Fv for  $v \in dom(A)$  and  $1 \le i \le n$ 

•  $A \circ \sigma$  stands for the result of appending  $\sigma$  to A



• An assignment A over  $dom(A) = atom(P) \cup body(P)$  is a sequence

 $(\sigma_1,\ldots,\sigma_n)$ 

of signed literals  $\sigma_i$  of form Tv or Fv for  $v \in dom(A)$  and  $1 \le i \le n$ 

• Given 
$$A = (\sigma_1, \ldots, \sigma_{k-1}, \sigma_k, \ldots, \sigma_n)$$
, we let  $A[\sigma_k] = (\sigma_1, \ldots, \sigma_{k-1})$ 



• An assignment A over  $dom(A) = atom(P) \cup body(P)$  is a sequence

 $(\sigma_1,\ldots,\sigma_n)$ 

of signed literals  $\sigma_i$  of form Tv or Fv for  $v \in dom(A)$  and  $1 \le i \le n$ 

• We sometimes identify an assignment with the set of its literals



• An assignment A over  $dom(A) = atom(P) \cup body(P)$  is a sequence

 $(\sigma_1,\ldots,\sigma_n)$ 

of signed literals  $\sigma_i$  of form Tv or Fv for  $v \in dom(A)$  and  $1 \le i \le n$ 

- We sometimes identify an assignment with the set of its literals
- Given this, we access true and false propositions in A via

 $A^{T} = \{v \in dom(A) \mid Tv \in A\} \text{ and } A^{F} = \{v \in dom(A) \mid Fv \in A\}$ 



• An assignment A over  $dom(A) = atom(P) \cup body(P)$  is a sequence

 $(\sigma_1,\ldots,\sigma_n)$ 

of signed literals  $\sigma_i$  of form Tv or Fv for  $v \in dom(A)$  and  $1 \le i \le n$ 

- *Tv* expresses that *v* is true and *Fv* that it is false
- The complement,  $\overline{\sigma}$ , of a literal  $\sigma$  is defined as  $\overline{Tv} = Fv$  and  $\overline{Fv} = Tv$
- $A \circ \sigma$  stands for the result of appending  $\sigma$  to A
- Given  $A = (\sigma_1, \ldots, \sigma_{k-1}, \sigma_k, \ldots, \sigma_n)$ , we let  $A[\sigma_k] = (\sigma_1, \ldots, \sigma_{k-1})$
- · We sometimes identify an assignment with the set of its literals
- Given this, we access true and false propositions in *A* via

$$A^{T} = \{v \in dom(A) \mid Tv \in A\} \text{ and } A^{F} = \{v \in dom(A) \mid Fv \in A\}$$



 A nogood is a set {σ<sub>1</sub>,...,σ<sub>n</sub>} of signed literals, expressing a constraint violated by any assignment containing σ<sub>1</sub>,..., σ<sub>n</sub>



- A nogood is a set {σ<sub>1</sub>,...,σ<sub>n</sub>} of signed literals, expressing a constraint violated by any assignment containing σ<sub>1</sub>,...,σ<sub>n</sub>
- An assignment A such that A<sup>T</sup> ∪ A<sup>F</sup> = dom(A) and A<sup>T</sup> ∩ A<sup>F</sup> = Ø is a solution for a set Δ of nogoods, if δ ⊆ A for all δ ∈ Δ



- A nogood is a set {σ<sub>1</sub>,...,σ<sub>n</sub>} of signed literals, expressing a constraint violated by any assignment containing σ<sub>1</sub>,...,σ<sub>n</sub>
- An assignment A such that A<sup>T</sup> ∪ A<sup>F</sup> = dom(A) and A<sup>T</sup> ∩ A<sup>F</sup> = Ø is a solution for a set Δ of nogoods, if δ ⊆ A for all δ ∈ Δ
- For a nogood  $\delta$ , a literal  $\sigma \in \delta$ , and an assignment A, we say that  $\overline{\sigma}$  is unit-resulting for  $\delta$  wrt A, if

```
(1) \delta \setminus A = \{\sigma\} and
(2) \overline{\sigma} \notin A
```



- A nogood is a set {σ<sub>1</sub>,...,σ<sub>n</sub>} of signed literals, expressing a constraint violated by any assignment containing σ<sub>1</sub>,...,σ<sub>n</sub>
- An assignment A such that A<sup>T</sup> ∪ A<sup>F</sup> = dom(A) and A<sup>T</sup> ∩ A<sup>F</sup> = Ø is a solution for a set Δ of nogoods, if δ ⊆ A for all δ ∈ Δ
- For a nogood  $\delta$ , a literal  $\sigma \in \delta$ , and an assignment A, we say that  $\overline{\sigma}$  is unit-resulting for  $\delta$  wrt A, if

(1) 
$$\delta \setminus A = \{\sigma\}$$
 and

(2) 
$$\overline{\sigma} \not\in A$$

• For a set  $\Delta$  of nogoods and an assignment *A*, unit propagation is the iterated process of extending *A* with unit-resulting literals until no further literal is unit-resulting for any nogood in  $\Delta$ 



## Outline



### Motivation

Boolean constraints

- Nogoods from logic programs
   Nogoods from program completion
   Nogoods from loop formulas
  - Conflict-driven nogood learning
     CDNL-ASP Algorithm
     Nogood Propagation
  - Conflict Analysis



## Outline



#### Motivation







#### Conflict-driven nogood learning

- CDNL-ASP Algorithm
- Nogood Propagation
- Conflict Analysis



When introducing auxiliary atoms  $v_B$  for rule bodies *B*, the completion of a logic program *P* can be defined as follows:

$$\{v_B \leftrightarrow a_1 \wedge \dots \wedge a_m \wedge \neg a_{m+1} \wedge \dots \wedge \neg a_n \mid B \in body(P) \text{ and } B = \{a_1, \dots, a_m, \neg a_{m+1}, \dots, \neg a_n\}\}$$
$$\cup \quad \{a \leftrightarrow v_{B_1} \vee \dots \vee v_{B_k} \mid a \in atom(P) \text{ and } body_P(a) = \{B_1, \dots, B_k\}\},\$$

where  $body_P(a) = \{body(r) \mid r \in P \text{ and } head(r) = a\}$ 



• The (body-oriented) equivalence

 $v_B \leftrightarrow a_1 \wedge \cdots \wedge a_m \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_n$ 

can be decomposed into two implications:



• The (body-oriented) equivalence

 $v_B \leftrightarrow a_1 \wedge \cdots \wedge a_m \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_n$ 

can be decomposed into two implications:

(1)  $v_B \rightarrow a_1 \wedge \cdots \wedge a_m \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_n$ 

is equivalent to the conjunction of

 $\neg v_B \lor a_1, \ldots, \neg v_B \lor a_m, \neg v_B \lor \neg a_{m+1}, \ldots, \neg v_B \lor \neg a_n$ 

and induces the set of nogoods

 $\Delta(B) = \{ \{ TB, Fa_1 \}, \dots, \{ TB, Fa_m \}, \{ TB, Ta_{m+1} \}, \dots, \{ TB, Ta_n \} \}$ 

TU Dresden, 2 July 2018

Deduction Systems



• The (body-oriented) equivalence

 $v_B \leftrightarrow a_1 \wedge \cdots \wedge a_m \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_n$ 

can be decomposed into two implications:

(2) 
$$a_1 \wedge \cdots \wedge a_m \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_n \rightarrow v_B$$
  
gives rise to the nogood

 $\delta(B) = \{FB, Ta_1, \ldots, Ta_m, Fa_{m+1}, \ldots, Fa_n\}$ 



• Analogously, the (atom-oriented) equivalence

 $a \leftrightarrow v_{B_1} \vee \cdots \vee v_{B_k}$ 

yields the nogoods

(1)  $\Delta(a) = \{ \{Fa, TB_1\}, \dots, \{Fa, TB_k\} \}$  and

(2)  $\delta(a) = \{\mathbf{T}a, \mathbf{F}B_1, \dots, \mathbf{F}B_k\}$ 



## Outline



#### Motivation



Nogoods from logic programs
 Nogoods from program completion
 Nogoods from loop formulas



#### Conflict-driven nogood learning

- CDNL-ASP Algorithm
- Nogood Propagation
- Conflict Analysis



## Nogoods from logic programs via loop formulas

Let *P* be a normal logic program and recall that:

• For  $L \subseteq atom(P)$ , the external supports of L for P are

 $ES_P(L) = \{r \in P \mid head(r) \in L \text{ and } body(r)^+ \cap L = \emptyset\}$ 



## Nogoods from logic programs via loop formulas

Let *P* be a normal logic program and recall that:

• For  $L \subseteq atom(P)$ , the external supports of L for P are

$$ES_P(L) = \{r \in P \mid head(r) \in L \text{ and } body(r)^+ \cap L = \emptyset\}$$

• The (disjunctive) loop formula of L for P is

$$LF_P(L) = (\bigvee_{A \in L} A) \to (\bigvee_{r \in ES_P(L)} body(r))$$
  
$$\equiv (\bigwedge_{r \in ES_P(L)} \neg body(r)) \to (\bigwedge_{A \in L} \neg A)$$

 Note: The loop formula of L enforces all atoms in L to be false whenever L is not externally supported



## Nogoods from logic programs via loop formulas

Let *P* be a normal logic program and recall that:

• For  $L \subseteq atom(P)$ , the external supports of L for P are

$$ES_P(L) = \{r \in P \mid head(r) \in L \text{ and } body(r)^+ \cap L = \emptyset\}$$

• The (disjunctive) loop formula of L for P is

$$LF_P(L) = (\bigvee_{A \in L} A) \to (\bigvee_{r \in ES_P(L)} body(r))$$
  
$$\equiv (\bigwedge_{r \in ES_P(L)} \neg body(r)) \to (\bigwedge_{A \in L} \neg A)$$

- Note: The loop formula of L enforces all atoms in L to be false whenever L is not externally supported
- The external bodies of *L* for *P* are

$$EB_{\mathcal{P}}(L) = \{body(r) \mid r \in ES_{\mathcal{P}}(L)\}$$



# Nogoods from logic programs

 For a logic program *P* and some Ø ⊂ U ⊆ *atom*(*P*), define the loop nogood of an atom a ∈ U as

$$\lambda(a, U) = \{Ta, FB_1, \dots, FB_k\}$$

where  $EB_{P}(U) = \{B_{1}, ..., B_{k}\}$ 



# Nogoods from logic programs loop nogoods

 For a logic program *P* and some Ø ⊂ U ⊆ *atom*(*P*), define the loop nogood of an atom a ∈ U as

$$\lambda(a, U) = \{Ta, FB_1, \dots, FB_k\}$$

where  $EB_{P}(U) = \{B_{1}, ..., B_{k}\}$ 

• We get the following set of loop nogoods for *P*:

$$\Lambda_P = \bigcup_{\emptyset \subset U \subseteq atom(P)} \{\lambda(a, U) \mid a \in U\}$$



# Nogoods from logic programs loop nogoods

 For a logic program P and some Ø ⊂ U ⊆ atom(P), define the loop nogood of an atom a ∈ U as

$$\lambda(a, U) = \{Ta, FB_1, \dots, FB_k\}$$

where  $EB_{P}(U) = \{B_{1}, ..., B_{k}\}$ 

• We get the following set of loop nogoods for *P*:

$$\Lambda_P = \bigcup_{\emptyset \subset U \subseteq atom(P)} \{\lambda(a, U) \mid a \in U\}$$

• The set  $\Lambda_P$  of loop nogoods denies cyclic support among true atoms



## Example

• Consider the program

$$\left\{\begin{array}{cc} x \leftarrow \neg y & u \leftarrow x \\ y \leftarrow \neg x & u \leftarrow v \\ y \leftarrow \neg x & v \leftarrow u, y \end{array}\right\}$$



## Example

• Consider the program

$$\left\{\begin{array}{cc} x \leftarrow \sim y & u \leftarrow x \\ y \leftarrow \sim y & u \leftarrow v \\ y \leftarrow \sim x & v \leftarrow u, y \end{array}\right\}$$

• For *u* in the set {*u*, *v*}, we obtain the loop nogood:

$$\lambda(u, \{u, v\}) = \{Tu, F\{x\}\}$$



## Example

• Consider the program

$$\left\{\begin{array}{cc} x \leftarrow \neg y & u \leftarrow x \\ y \leftarrow \neg y & u \leftarrow v \\ y \leftarrow \neg x & v \leftarrow u, y \end{array}\right\}$$

• For *u* in the set {*u*, *v*}, we obtain the loop nogood:

$$\lambda(u, \{u, v\}) = \{Tu, F\{x\}\}$$

Similarly for v in  $\{u, v\}$ , we get:

$$\lambda(v, \{u, v\}) = \{Tv, F\{x\}\}$$



### Characterization of stable models

### Theorem

Let *P* be a logic program. Then,  $X \subseteq atom(P)$  is a stable model of *P* iff  $X = A^T \cap atom(P)$  for a (unique) solution *A* for  $\Delta_P \cup \Lambda_P$ 



### Characterization of stable models

### Theorem

Let *P* be a logic program. Then,  $X \subseteq atom(P)$  is a stable model of *P* iff  $X = A^T \cap atom(P)$  for a (unique) solution *A* for  $\Delta_P \cup \Lambda_P$ 

#### Some remarks

- Nogoods in  $\Lambda_P$  augment  $\Delta_P$  with conditions checking for unfounded sets, in particular, those being loops
- While  $|\Delta_P|$  is linear in the size of *P*,  $\Lambda_P$  may contain exponentially many (non-redundant) loop nogoods



## Outline



#### Motivation

Boolean constraints

Nogoods from logic programs
 Nogoods from program completion
 Nogoods from loop formulas



Conflict-driven nogood learningCDNL-ASP AlgorithmNogood Propagation

Conflict Analysis


#### Towards conflict-driven search

Boolean constraint solving algorithms pioneered for SAT led to:

- Traditional DPLL-style approach: (DPLL stands for 'Davis-Putnam-Logemann-Loveland'):
  - (Unit) propagation
  - (Chronological) backtracking
  - in ASP, eg smodels
- Modern CDCL-style approach: (CDCL stands for 'Conflict-Driven Constraint Learning'):
  - (Unit) propagation
  - Conflict analysis (via resolution)
  - Learning + Backjumping + Assertion
  - in ASP, eg clasp



### DPLL-style solving

#### loop

propagate

if no conflict then

if all variables assigned then return solution else decide

// deterministically assign literals

// non-deterministically assign some literal

#### else

if top-level conflict then return unsatisfiable else

backtrack flip // unassign literals propagated after last decision // assign complement of last decision literal



### CDCL-style solving

#### loop

propagate

if no conflict then

if all variables assigned then return solution else decide

// deterministically assign literals

// non-deterministically assign some literal

#### else

if top-level conflict then return unsatisfiable else

analyze backjump // analyze conflict and add conflict constraint // unassign literals until conflict constraint is unit



### Outline



#### Motivation





#### Nogoods from logic programs Nogoods from program completion

Nogoods from loop formulas



#### Conflict-driven nogood learning CDNL-ASP Algorithm

- Nogood Propagation
- Conflict Analysis



### Outline of CDNL-ASP algorithm

• Keep track of deterministic consequences by unit propagation on:

| <ul> <li>Program completion</li> </ul>                                         | $[\Delta_P]$  |
|--------------------------------------------------------------------------------|---------------|
| <ul> <li>Loop nogoods, determined and recorded on demand</li> </ul>            | $[\Lambda_P]$ |
| <ul> <li>Dynamic nogoods, derived from conflicts and unfounded sets</li> </ul> | $[\nabla]$    |



### Outline of CDNL-ASP algorithm

- Keep track of deterministic consequences by unit propagation on:
  - Program completion
  - Loop nogoods, determined and recorded on demand
  - Dynamic nogoods, derived from conflicts and unfounded sets
- When a nogood in  $\Delta_P \cup \nabla$  becomes violated:
  - Analyze the conflict by resolution (until reaching a Unique Implication Point, short: UIP)
  - Learn the derived conflict nogood  $\delta$
  - Backjump to the earliest (heuristic) choice such that the complement of the UIP is unit-resulting for  $\delta$
  - Assert the complement of the UIP and proceed (by unit propagation)

| $[\Delta_P]$  |
|---------------|
| $[\Lambda_P]$ |
| $[\nabla]$    |



### Outline of CDNL-ASP algorithm

- Keep track of deterministic consequences by unit propagation on:
  - Program completion
  - Loop nogoods, determined and recorded on demand
  - Dynamic nogoods, derived from conflicts and unfounded sets
- When a nogood in  $\Delta_P \cup \nabla$  becomes violated:
  - Analyze the conflict by resolution (until reaching a Unique Implication Point, short: UIP)
  - Learn the derived conflict nogood  $\delta$
  - Backjump to the earliest (heuristic) choice such that the complement of the UIP is unit-resulting for  $\delta$
  - Assert the complement of the UIP and proceed (by unit propagation)
- Terminate when either:
  - Finding a stable model (a solution for  $\Delta_P \cup \Lambda_P$ )
  - Deriving a conflict independently of (heuristic) choices



#### Algorithm 1: CDNL-ASP

```
Input
             : A normal program P
Output : A stable model of P or "no stable model"
A := \emptyset
                                                                                      // assignment over atom(P) \cup body(P)
\nabla := \emptyset
                                                                                                     // set of recorded nogoods
dl := 0
                                                                                                                    // decision level
loop
      (A, \nabla) := \mathsf{NogoodPropagation}(P, \nabla, A)
      if \varepsilon \subset A for some \varepsilon \in \Delta_P \cup \nabla then
                                                                                                                             // conflict
             if \max(\{dlevel(\sigma) \mid \sigma \in \varepsilon\} \cup \{0\}) = 0 then return no stable model
            (\delta, dl) := ConflictAnalysis(\varepsilon, P, \nabla, A)
             \nabla := \nabla \cup \{\delta\}
                                                                                     // (temporarily) record conflict nogood
            A := A \setminus \{ \sigma \in A \mid dl < dlevel(\sigma) \}
                                                                                                                     // backjumping
      else if A^T \cup A^F = atom(P) \cup body(P) then
                                                                                                                     // stable model
            return A^T \cap atom(P)
      else
            \sigma_d := \text{Select}(P, \nabla, A)
                                                                                                                           // decision
            dl := dl + 1
            dlevel(\sigma_d) := dlA := A \circ \sigma_d
```



### **Explanations**

- Decision level *dl*, initially set to 0, is used to count the number of heuristically chosen literals in assignment *A*
- For a heuristically chosen literal  $\sigma_d = Ta$  or  $\sigma_d = Fa$ , respectively, we require  $a \in (atom(P) \cup body(P)) \setminus (A^T \cup A^F)$
- For any literal σ ∈ A, dlevel(σ) denotes the decision level of σ, i.e. the value dl had when σ was assigned



### Explanations

- Decision level *dl*, initially set to 0, is used to count the number of heuristically chosen literals in assignment *A*
- For a heuristically chosen literal  $\sigma_d = Ta$  or  $\sigma_d = Fa$ , respectively, we require  $a \in (atom(P) \cup body(P)) \setminus (A^T \cup A^F)$
- For any literal σ ∈ A, dlevel(σ) denotes the decision level of σ, i.e. the value dl had when σ was assigned
- A conflict is detected from violation of a nogood  $\varepsilon \subseteq \Delta_P \cup \nabla$
- A conflict at decision level 0 (where *A* contains no heuristically chosen literals) indicates non-existence of stable models
- A nogood δ derived by conflict analysis is asserting, that is, some literal is unit-resulting for δ at a decision level k < dl</li>



### Explanations

- Decision level *dl*, initially set to 0, is used to count the number of heuristically chosen literals in assignment *A*
- For a heuristically chosen literal  $\sigma_d = Ta$  or  $\sigma_d = Fa$ , respectively, we require  $a \in (atom(P) \cup body(P)) \setminus (A^T \cup A^F)$
- For any literal σ ∈ A, dlevel(σ) denotes the decision level of σ, i.e. the value dl had when σ was assigned
- A conflict is detected from violation of a nogood  $\varepsilon \subseteq \Delta_P \cup \nabla$
- A conflict at decision level 0 (where *A* contains no heuristically chosen literals) indicates non-existence of stable models
- A nogood δ derived by conflict analysis is asserting, that is, some literal is unit-resulting for δ at a decision level k < dl</li>
  - After learning  $\delta$  and backjumping to decision level k, at least one literal is newly derivable by unit propagation
  - No explicit flipping of heuristically chosen literals!



$$P = \left\{ \begin{array}{ccc} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$

| $\sigma_d = \overline{\sigma}$ | δ                            |
|--------------------------------|------------------------------|
|                                |                              |
|                                |                              |
|                                |                              |
|                                |                              |
|                                |                              |
|                                |                              |
|                                |                              |
|                                |                              |
|                                |                              |
|                                | $\sigma_d \overline{\sigma}$ |



$$P = \left\{ \begin{array}{ccc} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$

| dl | $\sigma_d = \overline{\sigma}$ | δ |
|----|--------------------------------|---|
| 1  | Ти                             |   |
|    |                                |   |
|    |                                |   |
|    |                                |   |
|    |                                |   |
|    |                                |   |
|    |                                |   |
|    |                                |   |
|    |                                |   |
|    |                                |   |



$$P = \left\{ \begin{array}{ccc} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$

| dl | $\sigma_{d}$          | $\overline{\sigma}$ | δ |
|----|-----------------------|---------------------|---|
| 1  | Ти                    |                     |   |
| 2  | $F\{\sim x, \sim y\}$ |                     |   |
|    |                       |                     |   |
|    |                       |                     |   |
|    |                       |                     |   |
|    |                       |                     |   |
|    |                       |                     |   |
|    |                       |                     |   |
|    |                       |                     |   |



$$P = \left\{ \begin{array}{ccc} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$

| dl | $\sigma_{d}$          | $\overline{\sigma}$ | δ                                         |
|----|-----------------------|---------------------|-------------------------------------------|
| 1  | Tu                    |                     |                                           |
| 2  | $F\{\sim x, \sim y\}$ |                     |                                           |
|    |                       | <b>F</b> w          | $\{Tw, F\{\sim x, \sim y\}\} = \delta(w)$ |
|    |                       |                     |                                           |
|    |                       |                     |                                           |
|    |                       |                     |                                           |
|    |                       |                     |                                           |
|    |                       |                     |                                           |
|    |                       |                     |                                           |
|    |                       |                     |                                           |



$$P = \left\{ \begin{array}{ccc} x \leftarrow \neg y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \neg x, \neg y \\ y \leftarrow \neg x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$

| dl | $\sigma_{d}$          | $\overline{\sigma}$ | δ                                         |
|----|-----------------------|---------------------|-------------------------------------------|
| 1  | Tu                    |                     |                                           |
| 2  | $F\{\sim x, \sim y\}$ |                     |                                           |
|    |                       | <b>F</b> w          | $\{Tw, F\{\sim x, \sim y\}\} = \delta(w)$ |
| 3  | $F{\sim y}$           |                     |                                           |
|    |                       |                     |                                           |
|    |                       |                     |                                           |
|    |                       |                     |                                           |
|    |                       |                     |                                           |
|    |                       |                     |                                           |
|    |                       |                     |                                           |



$$P = \left\{ \begin{array}{ccc} x \leftarrow \neg y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \neg x, \neg y \\ y \leftarrow \neg x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$

| $\{x, \sim y\}\} = \delta(w)$                                                   |
|---------------------------------------------------------------------------------|
| $x, \sim y\}\} = \delta(w)$                                                     |
| $\{x, \sim y\}\} = \delta(w)$                                                   |
|                                                                                 |
|                                                                                 |
| $ v_{j} = \delta(x)  \cdot_{j} \in \Delta(\{x\})  Fx_{j} \in \Delta(\{x, y\}) $ |
| x                                                                               |



$$P = \left\{ \begin{array}{ccc} x \leftarrow \neg y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \neg x, \neg y \\ y \leftarrow \neg x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$

| dl | $\sigma_{d}$          | $\overline{\sigma}$ | δ                                                                 |
|----|-----------------------|---------------------|-------------------------------------------------------------------|
| 1  | Ти                    |                     |                                                                   |
| 2  | $F\{\sim x, \sim y\}$ |                     |                                                                   |
|    |                       | <b>F</b> w          | $\{Tw, F\{\sim x, \sim y\}\} = \delta(w)$                         |
| 3  | $F{\sim y}$           |                     |                                                                   |
|    |                       | <b>F</b> x          | $\{Tx, F\{\sim y\}\} = \delta(x)$                                 |
|    |                       | $F\{x\}$            | $\{T\{x\}, Fx\} \in \Delta(\{x\})$                                |
|    |                       | $F\{x, y\}$         | $\{T\{x,y\}, Fx\} \in \Delta(\{x,y\})$                            |
|    |                       | :                   | :                                                                 |
|    |                       | •                   |                                                                   |
|    |                       |                     | $  \{Tu, F\{x\}, F\{x, y\}\} = \lambda(u, \{u, v\})   \mathbf{X}$ |



$$P = \left\{ \begin{array}{ccc} x \leftarrow \neg y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \neg x, \neg y \\ y \leftarrow \neg x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$

| dl | $\sigma_d$ | $\overline{\sigma}$ | δ |
|----|------------|---------------------|---|
| 1  | Ти         |                     |   |
|    |            |                     |   |
|    |            |                     |   |
|    |            |                     |   |
|    |            |                     |   |
|    |            |                     |   |
|    |            |                     |   |



$$P = \left\{ \begin{array}{ccc} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$

| dl | $\sigma_{d}$ | $\overline{\sigma}$ | δ                       |
|----|--------------|---------------------|-------------------------|
| 1  | Ти           |                     |                         |
|    |              | Tx                  | $\{Tu, Fx\} \in \nabla$ |
|    |              |                     |                         |
|    |              |                     |                         |
|    |              |                     |                         |
|    |              |                     |                         |
|    |              |                     |                         |



$$P = \left\{ \begin{array}{ccc} x \leftarrow \neg y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \neg x, \neg y \\ y \leftarrow \neg x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$

| dl | $\sigma_{d}$ | $\overline{\sigma}$ | δ                                         |
|----|--------------|---------------------|-------------------------------------------|
| 1  | Ти           |                     |                                           |
|    |              | Tx                  | $\{Tu, Fx\} \in \nabla$                   |
|    |              | :                   | :                                         |
|    |              | Тv                  | $\{Fv, T\{x\}\} \in \Delta(v)$            |
|    |              | Fy                  | $\{Ty, F\{\sim x\}\} = \delta(y)$         |
|    |              | Fw                  | $\{Tw, F\{\sim x, \sim y\}\} = \delta(w)$ |



$$P = \left\{ \begin{array}{ccc} x \leftarrow \neg y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \neg x, \neg y \\ y \leftarrow \neg x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$

| dl | $\sigma_{d}$ | $\overline{\sigma}$ | δ                                         |
|----|--------------|---------------------|-------------------------------------------|
| 1  | Ти           |                     |                                           |
|    |              | Tx                  | $\{Tu, Fx\} \in \nabla$                   |
|    |              | :                   | :                                         |
|    |              | Тv                  | $\{Fv, T\{x\}\} \in \Delta(v)$            |
|    |              | Fy                  | $\{Ty, F\{\sim x\}\} = \delta(y)$         |
|    |              | Fw                  | $\{Tw, F\{\sim x, \sim y\}\} = \delta(w)$ |



### Outline



#### Motivation





## Nogoods from logic programsNogoods from program completion

Nogoods from loop formulas



# Conflict-driven nogood learning CDNL-ASP Algorithm Nogood Propagation

Conflict Analysis



- Derive deterministic consequences via:
  - Unit propagation on  $\Delta_P$  and  $\nabla$ ;
  - Unfounded sets  $U \subseteq atom(P)$
- Note that U is unfounded if  $EB_P(U) \subseteq A^F$ 
  - Note: For any  $a \in U$ , we have  $(\lambda(a, U) \setminus \{Ta\}) \subseteq A$



- Derive deterministic consequences via:
  - Unit propagation on  $\Delta_P$  and  $\nabla$ ;
  - Unfounded sets  $U \subseteq atom(P)$
- Note that U is unfounded if  $EB_P(U) \subseteq A^F$ 
  - Note: For any  $a \in U$ , we have  $(\lambda(a, U) \setminus \{Ta\}) \subseteq A$
- An "interesting" unfounded set U satisfies:

 $\emptyset \subset U \subseteq (atom(P) \setminus A^F)$ 

• Wrt a fixpoint of unit propagation,



- Derive deterministic consequences via:
  - Unit propagation on  $\Delta_P$  and  $\nabla$ ;
  - Unfounded sets  $U \subseteq atom(P)$
- Note that U is unfounded if  $EB_P(U) \subseteq A^F$ 
  - Note: For any  $a \in U$ , we have  $(\lambda(a, U) \setminus \{Ta\}) \subseteq A$
- An "interesting" unfounded set *U* satisfies:

 $\emptyset \subset U \subseteq (atom(P) \setminus A^F)$ 

- Wrt a fixpoint of unit propagation, such an unfounded set contains some loop of *P* 
  - Note: Tight programs do not yield "interesting" unfounded sets !



- Derive deterministic consequences via:
  - Unit propagation on  $\Delta_P$  and  $\nabla$ ;
  - Unfounded sets  $U \subseteq atom(P)$
- Note that U is unfounded if  $EB_P(U) \subseteq A^F$ 
  - Note: For any  $a \in U$ , we have  $(\lambda(a, U) \setminus \{Ta\}) \subseteq A$
- An "interesting" unfounded set *U* satisfies:

 $\emptyset \subset U \subseteq (atom(P) \setminus A^F)$ 

- Wrt a fixpoint of unit propagation, such an unfounded set contains some loop of *P* 
  - Note: Tight programs do not yield "interesting" unfounded sets !
- Given an unfounded set U and some  $a \in U$ , adding  $\lambda(a, U)$  to  $\nabla$  triggers a conflict or further derivations by unit propagation
  - Note: Add loop nogoods atom by atom to eventually falsify all  $a \in U$

#### Algorithm 2: NogoodPropagation

```
Input
              : A normal program P, a set \nabla of nogoods, and an assignment A.
             : An extended assignment and set of nogoods.
Output
U := \emptyset
                                                                                                             // unfounded set
loop
      repeat
            if \delta \subseteq A for some \delta \in \Delta_P \cup \nabla then return (A, \nabla)
                                                                                                                        // conflict
            \Sigma := \{ \delta \in \Delta_P \cup \nabla \mid \delta \setminus A = \{ \overline{\sigma} \}, \sigma \notin A \}
                                                                                                // unit-resulting nogoods
            if \Sigma \neq \emptyset then let \overline{\sigma} \in \delta \setminus A for some \delta \in \Sigma in
                  dlevel(\sigma) := \max(\{dlevel(\rho) \mid \rho \in \delta \setminus \{\overline{\sigma}\}\} \cup \{0\})
              A := A \circ \sigma
      until \Sigma = \emptyset
      if loop(P) = \emptyset then return (A, \nabla)
      U := U \setminus A^F
      if U = \emptyset then U := UnfoundedSet(P, A)
                                                                       // no unfounded set \emptyset \subset U \subseteq atom(P) \setminus A^F
      if U = \emptyset then return (A, \nabla)
      let a \in U in
       \nabla := \nabla \cup \{\{Ta\} \cup \{FB \mid B \in EB_P(U)\}\}
                                                                                                     // record loop nogood
```



### Requirements for UnfoundedSet

- Implementations of UnfoundedSet must guarantee the following for a result U
  - (1)  $U \subseteq (atom(P) \setminus A^F)$ (2)  $EB_P(U) \subseteq A^F$

  - (3)  $U = \emptyset$  iff there is no nonempty unfounded subset of  $(atom(P) \setminus A^F)$



### Requirements for UnfoundedSet

- Implementations of UnfoundedSet must guarantee the following for a result U
  - (1)  $U \subseteq (atom(P) \setminus A^F)$ (2)  $EB_P(U) \subseteq A^F$

  - (3)  $U = \emptyset$  iff there is no nonempty unfounded subset of  $(atom(P) \setminus A^F)$
- Beyond that, there are various alternatives, such as:
  - Calculating the greatest unfounded set
  - Calculating unfounded sets within strongly connected components of the positive atom dependency graph of P
  - Usually, the latter option is implemented in ASP solvers



### Example: NogoodPropagation

#### Consider

$$P = \left\{ \begin{array}{ll} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$

| dl | $\sigma_{d}$          | $\overline{\sigma}$ | δ                                                  |   |
|----|-----------------------|---------------------|----------------------------------------------------|---|
| 1  | Ти                    |                     |                                                    |   |
| 2  | $F\{\sim x, \sim y\}$ |                     |                                                    |   |
|    |                       | Fw                  | $\{Tw, F\{\sim x, \sim y\}\} = \delta(w)$          |   |
| 3  | $F{\sim y}$           |                     |                                                    |   |
|    |                       | <b>F</b> x          | $\{Tx, F\{\sim y\}\} = \delta(x)$                  |   |
|    |                       | $F{x}$              | $\{T\{x\}, Fx\} \in \Delta(\{x\})$                 |   |
|    |                       | $F\{x, y\}$         | $\{T\{x,y\}, Fx\} \in \Delta(\{x,y\})$             |   |
|    |                       | $T\{\sim x\}$       | $\{F\{\sim x\}, Fx\} = \delta(\{\sim x\})$         |   |
|    |                       | Ty                  | $\{F\{\sim y\}, Fy\} = \delta(\{\sim y\})$         |   |
|    |                       | $T\{v\}$            | $\{Tu, F\{x, y\}, F\{v\}\} = \delta(u)$            |   |
|    |                       | $T{u, y}$           | $\{F\{u, y\}, Tu, Ty\} = \delta(\{u, y\})$         |   |
|    |                       | Tv                  | $\{Fv, T\{u, y\}\} \in \Delta(v)$                  |   |
|    |                       |                     | $\{Tu, F\{x\}, F\{x, y\}\} = \lambda(u, \{u, v\})$ | X |

TU Dresden, 2 July 2018

**Deduction Systems** 



### Outline



#### Motivation





#### Nogoods from logic programs Nogoods from program completion

Nogoods from loop formulas



#### Conflict-driven nogood learning CDNL-ASP Algorithm

- Nogood Propagation
- Conflict Analysis



### Outline of ConflictAnalysis

- Conflict analysis is triggered whenever some nogood δ ∈ Δ<sub>P</sub> ∪ ∇ becomes violated, viz. δ ⊆ A, at a decision level dl > 0
  - Note that all but the first literal assigned at dl have been unit-resulting for nogoods  $\varepsilon\in\Delta_P\cup\nabla$
  - If  $\sigma \in \delta$  has been unit-resulting for  $\varepsilon$ , we obtain a new violated nogood by resolving  $\delta$  and  $\varepsilon$  as follows:

 $(\delta \setminus \{\sigma\}) \cup (\varepsilon \setminus \{\overline{\sigma}\})$ 



### Outline of ConflictAnalysis

- Conflict analysis is triggered whenever some nogood δ ∈ Δ<sub>P</sub> ∪ ∇ becomes violated, viz. δ ⊆ A, at a decision level dl > 0
  - Note that all but the first literal assigned at dl have been unit-resulting for nogoods  $\varepsilon\in\Delta_P\cup\nabla$
  - If  $\sigma \in \delta$  has been unit-resulting for  $\varepsilon$ , we obtain a new violated nogood by resolving  $\delta$  and  $\varepsilon$  as follows:

$$(\delta \setminus \{\sigma\}) \cup (\varepsilon \setminus \{\overline{\sigma}\})$$

- Resolution is directed by resolving first over the literal  $\sigma \in \delta$  derived last, viz.  $(\delta \setminus A[\sigma]) = \{\sigma\}$ 
  - Iterated resolution progresses in inverse order of assignment



### Outline of ConflictAnalysis

- Conflict analysis is triggered whenever some nogood δ ∈ Δ<sub>P</sub> ∪ ∇ becomes violated, viz. δ ⊆ A, at a decision level dl > 0
  - Note that all but the first literal assigned at dl have been unit-resulting for nogoods  $\varepsilon\in\Delta_P\cup\nabla$
  - If  $\sigma \in \delta$  has been unit-resulting for  $\varepsilon$ , we obtain a new violated nogood by resolving  $\delta$  and  $\varepsilon$  as follows:

$$(\delta \setminus \{\sigma\}) \cup (\varepsilon \setminus \{\overline{\sigma}\})$$

- Resolution is directed by resolving first over the literal  $\sigma \in \delta$  derived last, viz.  $(\delta \setminus A[\sigma]) = \{\sigma\}$ 
  - Iterated resolution progresses in inverse order of assignment
- Iterated resolution stops as soon as it generates a nogood  $\delta$  containing exactly one literal  $\sigma$  assigned at decision level dl
  - This literal  $\sigma$  is called First Unique Implication Point (First-UIP)
  - All literals in  $(\delta \setminus \{\sigma\})$  are assigned at decision levels smaller than dl



#### Algorithm 3: ConflictAnalysis

- **Input** : A non-empty violated nogood  $\delta$ , a normal program *P*, a set  $\nabla$  of nogoods, and an assignment *A*.
- **Output** : A derived nogood and a decision level.

#### loop

$$\begin{array}{|c|c|c|c|c|} \hline let \ \sigma \in \delta \ \text{such that} \ \delta \setminus A[\sigma] = \{\sigma\} \ \text{in} \\ k := \max(\{dlevel(\rho) \mid \rho \in \delta \setminus \{\sigma\}\} \cup \{0\}) \\ \text{if} \ k = dlevel(\sigma) \ \text{then} \\ & | \ let \ \varepsilon \in \Delta_P \cup \nabla \ \text{such that} \ \varepsilon \setminus A[\sigma] = \{\overline{\sigma}\} \ \text{in} \\ & | \ b := (\delta \setminus \{\sigma\}) \cup (\varepsilon \setminus \{\overline{\sigma}\}) \\ & | \ c \in \mathbb{C} \ (\delta, k) \end{array}$$


#### Consider

$$P = \left\{ \begin{array}{ccc} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$



TU Dresden, 2 July 2018



$$P = \left\{ \begin{array}{ccc} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$





$$P = \left\{ \begin{array}{ccc} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$





$$P = \left\{ \begin{array}{ccc} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$





#### Consider

$$P = \left\{ \begin{array}{ll} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$



TU Dresden, 2 July 2018



#### Consider

$$P = \left\{ \begin{array}{ccc} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$



TU Dresden, 2 July 2018



#### Consider

$$P = \left\{ \begin{array}{ccc} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$



TU Dresden, 2 July 2018



#### Consider

$$P = \left\{ \begin{array}{ccc} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$



TU Dresden, 2 July 2018



$$P = \left\{ \begin{array}{ccc} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$





$$P = \left\{ \begin{array}{ccc} x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\ y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$





- There always is a First-UIP at which conflict analysis terminates
  - In the worst, resolution stops at the heuristically chosen literal assigned at decision level *dl*



- There always is a First-UIP at which conflict analysis terminates
  - In the worst, resolution stops at the heuristically chosen literal assigned at decision level *dl*
- The nogood  $\delta$  containing First-UIP  $\sigma$  is violated by A, viz.  $\delta \subseteq A$
- We have  $k = max(\{dl(\rho) \mid \rho \in \delta \setminus \{\sigma\}\} \cup \{0\}) < dl$



- There always is a First-UIP at which conflict analysis terminates
  - In the worst, resolution stops at the heuristically chosen literal assigned at decision level dl
- The nogood  $\delta$  containing First-UIP  $\sigma$  is violated by A, viz.  $\delta \subseteq A$
- We have  $k = max(\{dl(\rho) \mid \rho \in \delta \setminus \{\sigma\}\} \cup \{0\}) < dl$ 
  - After recording  $\delta$  in  $\nabla$  and backjumping to decision level k,  $\overline{\sigma}$  is unit-resulting for  $\delta$  !
  - Such a nogood  $\delta$  is called asserting



- There always is a First-UIP at which conflict analysis terminates
  - In the worst, resolution stops at the heuristically chosen literal assigned at decision level dl
- The nogood  $\delta$  containing First-UIP  $\sigma$  is violated by A, viz.  $\delta \subseteq A$
- We have  $k = max(\{dl(\rho) \mid \rho \in \delta \setminus \{\sigma\}\} \cup \{0\}) < dl$ 
  - After recording  $\delta$  in  $\nabla$  and backjumping to decision level k,  $\overline{\sigma}$  is unit-resulting for  $\delta$  !
  - Such a nogood  $\delta$  is called asserting
- Asserting nogoods direct conflict-driven search into a different region of the search space than traversed before,

without explicitly flipping any heuristically chosen literal !