

DATABASE THEORY

Lecture 4: Complexity of FO Query Answering

Markus Krötzsch Knowledge-Based Systems

TU Dresden, 23rd Apr 2019

An Algorithm for Evaluating FO Queries

function $\operatorname{Eval}(\varphi, I)$

01 **switch** (φ) { 02 **case** $p(c_1, \ldots, c_n)$: return $\langle c_1, \ldots, c_n \rangle \in p^I$ 03 **case** $\neg \psi$: return \neg Eval(ψ , I) 04 **case** $\psi_1 \land \psi_2$: return Eval $(\psi_1, I) \land$ Eval (ψ_2, I) 05 case $\exists x.\psi$: for $c \in \Delta^I$ { 06 07 **if** $Eval(\psi[x \mapsto c], I)$ **then** return **true** 80 } 09 return false 10

How to Measure Query Answering Complexity

Query answering as decision problem \sim consider Boolean gueries

Various notions of complexity:

- Combined complexity (complexity w.r.t. size of query and database instance)
- Data complexity (worst case complexity for any fixed query)
- Query complexity (worst case complexity for any fixed database instance)

Various common complexity classes:

 $L \subseteq \mathsf{NL} \subseteq \mathsf{P} \subseteq \mathsf{NP} \subseteq \mathsf{PSpace} \subseteq \mathsf{ExpTime}$

Markus Krötzsch, 23rd Apr 2019

Database Theory

slide 2 of 11

FO Algorithm Worst-Case Runtime

Let *m* be the size of φ , and let $n = |\mathcal{I}|$ (total table sizes)

- How many recursive calls of Eval are there?
 → one per subexpression: at most m
- Maximum depth of recursion?
 → bounded by total number of calls: at most m
- Maximum number of iterations of for loop?
 → |Δ^I| ≤ n per recursion level
 → at most n^m iterations
- Checking $\langle c_1, \ldots, c_n \rangle \in p^I$ can be done in linear time w.r.t. *n*

Runtime in $m \cdot n^m \cdot n = m \cdot n^{m+1}$

Time Complexity of FO Algorithm

Let *m* be the size of φ , and let $n = |\mathcal{I}|$ (total table sizes)

Runtime in $m \cdot n^{m+1}$

Time complexity of FO query evaluation

- Combined complexity: in ExpTime
- Data complexity (*m* is constant): in P
- Query complexity (*n* is constant): in ExpTime

FO Algorithm Worst-Case Memory Usage

We can get better complexity bounds by looking at memory

Let *m* be the size of φ , and let $n = |\mathcal{I}|$ (total table sizes)

- For each (recursive) call, store pointer to current subexpression of φ : log m
- For each variable in φ (at most m), store current constant assignment (as a pointer): m · log n
- Checking $\langle c_1, \ldots, c_n \rangle \in p^I$ can be done in logarithmic space w.r.t. *n*

Memory in $m \log m + m \log n + \log n = m \log m + (m + 1) \log n$

Markus Krötzsch, 23rd Apr 2019	Database Theory	slide 5 of 11	Markus Krötzsch, 23rd Apr 2019	Database Theory	slide 6 of 11
Space Complexity of FO Algorithm			FO Combined Complexity		
Let <i>m</i> be the size of φ , and let $n = \mathcal{I} $ (total table sizes) Memory in $m \log m + (m + 1) \log n$			The algorithm shows that FO query evaluation is in PSpace. Is this the best we can get? Hardness proof: reduce a known PSpace-hard problem to FO query evaluation → QBF satisfiability		
 Space complexity of FO query evaluation Combined complexity: in PSpace Data complexity (<i>m</i> is constant): in L Query complexity (<i>n</i> is constant): in PSpace 			Let $Q_1X_1.Q_2X_2Q_nX_n.\varphi[X_1,,X_n]$ be a QBF (with $Q_i \in \{\forall,\exists\}$) • Database instance I with $\Delta^I = \{0,1\}$ • One table with one row: true(1) • Transform input QBF into Boolean FO query $Q_1x_1.Q_2x_2Q_nx_n.\varphi[X_1 \mapsto true(x_1),,X_n \mapsto true(x_n)]$ It is easy to check that this yields the required reduction.		(<i>x</i> _n)]

Markus Krötzsch, 23rd Apr 2019

PSpace-hardness for DI Queries

The previous reduction from QBF may lead to a query that is not domain independent

Example: QBF $\exists p.\neg p$ leads to FO query $\exists x.\neg$ true(x)

Better approach:

- Consider QBF Q₁X₁.Q₂X₂...Q_nX_n.φ[X₁,...,X_n] with φ in negation normal form: negations only occur directly before variables X_i (still PSpace-complete: exercise)
- Database instance I with $\Delta^{I} = \{0, 1\}$
- Two tables with one row each: true(1) and false(0)
- Transform input QBF into Boolean FO query

 $\mathsf{Q}_1 x_1 \cdot \mathsf{Q}_2 x_2 \cdots \mathsf{Q}_n x_n \cdot \varphi'$

where φ' is obtained by replacing each negated variable $\neg X_i$ with false(x_i) and each non-negated variable X_i with true(x_i).

Markus Krötzsch, 23rd Apr 2019

Database Theory

slide 9 of 11

Summary and Outlook

The evaluation of FO queries is

- PSpace-complete for combined complexity
- PSpace-complete for query complexity

Open questions:

- What is the data complexity of FO queries?
- Are there query languages with lower complexities? (next lecture)
- Which other computing problems are interesting?

Combined Complexity of FO Query Answering

Summing up, we obtain:

Theorem 4.1: The evaluation of FO queries is PSpace-complete with respect to combined complexity.

We have actually shown something stronger:

Theorem 4.2: The evaluation of FO queries is PSpace-complete with respect to query complexity.

Markus Krötzsch, 23rd Apr 2019

Database Theory

slide 10 of 11