Technische Universität Dresden Fakultät Informatik

OWL 2 Profiles

An Introduction to Lightweight Ontology Languages

Markus Krötzsch TU Dresden

ICCL Summer School 2015

September 18, 2015

Plan

Goal:

Learn about the lightweight ontology languages, and understand why they are lightweight.

- 1) Review: OWL and DLs
- 2) Overview: OWL 2 Profiles
- 3) Reasoning in OWL RL: Instance Retrieval
- 4) Reasoning in OWL EL: Classification
- 5) Reasoning in OWL QL: Query Answering
- 6) Limits of Tractability
- 7) Advanced Features

The Web Ontology Language OWL

The OWL Language

- W3C standard since 2004, updated in 2009
- An ontology language with two sides:
 - Descriptive: express expert knowledge formally
 - Logical: draw conclusions from this knowledge
 → reasoning
- Compatibility with important technology standards
 Unicode, IRI, XML Schema, RDF, RDF Schema

The Data Model of OWL

- Ontologies use a vocabulary of entities
 - Classes
 - Properties
 - Individuals and data literals
- Entities are combined to form expressions
- Relationships of expressions are described by axioms

Syntaxes and Semanticses

- 5 official syntactic formats:
 - Functional-Style Syntax
 - Manchester Syntax
 - OWL/XML Syntax
 - RDF-based syntaxes (RDF/XML, Turtle)
- 2 formal semantics:
 - Direct Semantics
 - RDF-Based Semantics

Markus Krötzsch -- OWL 2 Profiles

Reasoning Tasks

- Every ontology has infinitely many conclusions
- Which conclusions are we interested in?
 - Instance checking
 - Class subsumption
 - Ontology consistency
 - Class consistency (coherence)
 - → Tasks can be reduced to each other with little effort

Hardness of Reasoning

- Main requirements:
 - Soundness: only correct conclusions are computed
 - Completeness: no correct conclusion is missed
- Reasoning is hard:
 - Undecidable for RDF-Based Semantics
 - N2ExpTime-complete for Direct Semantics
 - → OWL Profiles: sub-languages with easier reasoning

OWL and Description Logics: Basic Features

	OWL Functional-Style Syntax	DL Syntax
Axioms	SubClassOf(C D)	$C \sqsubseteq D$
	ClassAssertion(Ca)	<i>C</i> (<i>a</i>)
	ObjectPropertyAssertion(P a b)	P(a, b)
Class expressions	ObjectIntersectionOf(C D)	$C \sqcap D$
	ObjectUnionOf(C D)	$C \sqcup D$
	ObjectComplementOf(C)	$\neg C$
	owl:Thing	т
	owl:Nothing	\perp
	ObjectSomeValuesFrom(P C)	∃ <i>P</i> . <i>C</i>
	ObjectAllValuesFrom(P C)	∀P.C
Property expressions	ObjectInverseOf(P)	P ⁻

Example Axioms in DL Syntax

FelisCatus(silvester)
preysOn(silvester, tweety)FelisCatus \sqsubseteq Mammalia $\exists preysOn. \top \sqsubseteq$ Predator $\top \sqsubseteq \forall preysOn.Animal$ Animal \sqcap PlaysChess \sqsubseteq HomoSapiensMammalia \sqsubseteq $\exists hasFather.Mammalia$

Silvester is a cat. Silvester preys on Tweety. Cats are mammals. What preys on something is a predator. What is preyed on is an animal. All animals that play chess are humans. Every mammal has a mammal father.

OWL Direct Semantics

- Based on first-order logic interpretations
- Direct correspondences:
 - classes \rightarrow sets
 - properties \rightarrow relations
 - Individuals → domain elements
- Equivalent to translating OWL to first-order logic

OWL Direct Semantics

Expression ex	Interpretation ex^{I}
$C \sqcap D$	$C^{I} \cap D^{I}$
$C \sqcup D$	$C^{I} \cup D^{I}$
$\neg C$	$arDelta^{I} \setminus \mathcal{C}^{I}$
т	\varDelta^I
上	Ø
Э <i>Р.С</i>	$\{e \mid \text{there is } f \text{ with } \langle e, f \rangle \in P^I \text{ and } f \in C^I \}$
∀P.C	$\{e \mid \text{for all } f \text{ with } \langle e, f \rangle \in P^{\mathcal{I}} \text{ we have } f \in C^{\mathcal{I}} \}$
<i>P</i> −	$\{\langle f, e \rangle \mid \langle e, f \rangle \in \mathcal{P}^{\mathcal{I}}\}$

OWL RDF-Based Semantics

- Based on translating OWL ontologies to RDF graphs
- Interpretations defined on graphs
 Applicable to all RDF graphs, even if not from OWL
- Sometimes stronger (more entailments), sometimes weaker (fewer entailments) than Direct Semantics
- Direct Semantics and RDF-Based Semantics agree under reasonable conditions

Markus Krötzsch -- OWL 2 Profiles

Reasoning in the OWL Profiles

Markus Krötzsch -- OWL 2 Profiles

Defining Language Profiles by Grammars

- The OWL sublanguage introduced above is ALCI
- Can be described by a formal grammar:

ALCI

Axiom $::= C \sqsubseteq C | C(IName) | P(IName, IName)$ $C ::= CName | \top | \perp | C \sqcap C | C \sqcup C | \neg C | \exists P.C | \forall P.C$ $P ::= PName | PName^-$

A Tiny Version of OWL EL

- OWL EL is based on the description logic EL(++)
- Typical applications in ontology engineering

ELtiny

Axiom $::= C \sqsubseteq C | C(IName) | P(IName, IName)$ $C ::= CName | \top | \bot | C \sqcap C | \exists P.C$ P ::= PName

A Tiny Version of OWL RL

- OWL RL is a "rule language"
- Typical applications in data management

RLtiny

Axiom \coloneqq CL \sqsubseteq CR | CR(IName) | P(IName, IName) CL \approx CName | \perp | CL \sqcap CL | CL \sqcup CL | \exists P.CL CR \approx CName | \perp | CR \sqcap CR | \neg CL | \forall P.CR P \approx PName | PName⁻

A Tiny Version of OWL QL

- OWL QL is a "query language"
- Typical applications in data access

QL tiny

Axiom $\coloneqq CL \sqsubseteq CR | CR(IName) | P(IName, IName)$ $CL \coloneqq CName | \top | \bot | \exists P.\top$ $CR \coloneqq CName | \top | \bot | CR \sqcap CR | \neg CL | \exists P.CR$ $P \coloneqq PName | PName^-$

Tiny OWL Profiles: Feature Overview

- RL and QL allow for inverse properties, EL doesn't.
- Features for sub- and superclasses:

Sub	Т	T	П	Ц	7	Э	ΤE	\forall	ΥΥ
RL		×	×	×		×	×		
EL	×	×	×			×	×		
QL	×	×					×		
Sup	Т	\bot	П	Ц	-	Ξ	ΤE	\forall	$\forall \top$
Sup RL	Т	⊥ ×	⊓ ×	Ш	ー ×	Е	TE	∀ ×	× ×
Sup RL EL	T ×	⊥ × ×	□ × ×	L	⊐ ×	E ×	TE ×	×	×

Rule-Based Instance Retrieval in RL

Markus Krötzsch -- OWL 2 Profiles

Rule-Based Instance Retrieval in RL

- Goal: for an ontology O, compute all entailments of the form C(a) and P(a,b) for a class name C in O and a property name P in O
- Approach: apply inference rules until no new conclusions are found
- Known under many names: saturation, deductive closure, materialisation, bottom-up reasoning, forward chaining, consequence-based reasoning

Markus Krötzsch -- OWL 2 Profiles

Derivation Rules for RL

$$\mathbf{A}_{\Xi} \quad \frac{D(c)}{E(c)} : D \equiv E \in O$$

$$\mathbf{A}_{\Pi}^{-} \quad \frac{D_{1} \sqcap D_{2}(c)}{D_{1}(c) \quad D_{2}(c)} \qquad \mathbf{A}_{\Pi}^{+} \quad \frac{D_{1}(c) \quad D_{2}(c)}{D_{1} \sqcap D_{2}(c)} : D_{1} \sqcap D_{2} \text{ occurs in } O$$

$$\mathbf{A}_{V}^{-} \quad \frac{\forall P.E(c) \quad P(c,d)}{E(d)} \qquad \mathbf{A}_{\exists}^{+} \quad \frac{P(c,d) \quad E(d)}{\exists P.E(c)} : \exists P.E \text{ occurs in } O$$

$$\mathbf{A}_{\Pi}^{-} \quad \frac{\neg D(c) \quad D(c)}{\bot(c)} \qquad \mathbf{A}_{\sqcup}^{+} \quad \frac{D(c)}{D_{1} \sqcup D_{2}(c)} : D = D_{1} \text{ or } D = D_{2}$$

$$\mathbf{A}_{\Pi}^{-} \quad \frac{P^{-}(c,d)}{P(d,c)} \qquad \mathbf{A}_{\operatorname{inv}}^{+} \quad \frac{P(c,d)}{P^{-}(d,c)} : P^{-} \text{ occurs in } O$$

Markus Krötzsch -- OWL 2 Profiles

Derivation Calculus

- Saturate under the derivation rules (this is uniquely defined: Section 3.3 lecture notes)
- An axiom is inferred if
 - the axiom was derived by the rules, or
 - \perp (c) was derived for some constant c.

→ Second case takes inconsistent ontologies into account

Example Derivation for RL

FelisCatus $\sqsubseteq \forall preysOn.(Animal \sqcap Small)$ Animal $\sqcap \exists preysOn.Animal \sqsubseteq Predator$ FelisCatus $\sqsubseteq Animal$ FelisCatus(silvester) preysOn(silvester, tweety)

$$\mathbf{A}_{\Xi} \quad \frac{D(c)}{E(c)} : D \sqsubseteq E \in O$$
$$\mathbf{A}_{\Pi}^{-} \quad \frac{D_{1} \sqcap D_{2}(c)}{D_{1}(c) \quad D_{2}(c)}$$
$$\mathbf{A}_{\nabla}^{-} \quad \frac{\forall P.E(c) \quad P(c, d)}{E(d)}$$
$$\mathbf{A}_{\Pi}^{+} \quad \frac{D_{1}(c) \quad D_{2}(c)}{D_{1} \sqcap D_{2}(c)} : D_{1} \sqcap D_{2} \text{ occus}$$
$$\mathbf{A}_{\exists}^{+} \quad \frac{P(c, d) \quad E(d)}{\exists P.E(c)} : \exists P.E \text{ occurs}$$

Example Derivation for RL

FelisCatus $\sqsubseteq \forall preysOn.(Animal \sqcap Small)$ Animal $\sqcap \exists preysOn.Animal \sqsubseteq Predator$ FelisCatus $\sqsubseteq Animal$ FelisCatus(silvester) preysOn(silvester, tweety)

Animal(silvester) ∀preysOn.(Animal Π Small)(silvester) Animal Π Small(tweety) Animal(tweety) Small(tweety) ∃preysOn.Animal(silvester) Animal Π ∃preysOn.Animal(silvester) Predator(silvester)

 $\mathbf{A}_{\sqsubseteq} \ \frac{D(c)}{E(c)} : \ D \sqsubseteq E \in O$ $\mathbf{A}_{\Pi}^{-} \frac{D_1 \sqcap D_2(c)}{D_1(c) \quad D_2(c)}$ $\mathbf{A}_{\forall}^{-} \frac{\forall P.E(c) \quad P(c,d)}{E(d)}$ $\mathbf{A}_{\sqcap}^{+} \frac{D_{1}(c) \quad D_{2}(c)}{D_{1} \sqcap D_{2}(c)} : D_{1} \sqcap D_{2} \text{ occu}$ $\mathbf{A}_{\exists}^{+} \frac{P(c, d) \quad E(d)}{\exists P.E(c)} : \exists P.E \text{ occurs}$

Correctness of the RL Rule Calculus

Markus Krötzsch -- OWL 2 Profiles

Correctness of the RL Rule Calculus

Soundness

Completeness

Termination

Markus Krötzsch -- OWL 2 Profiles

Soundness of the Calculus

Markus Krötzsch -- OWL 2 Profiles

Soundness of the Calculus

- Proof strategy:
 - Show that every single rule is sound
 - If we start with true statements, only true statements can be derived
 - (that's an induction argument)
 - Easy to see

Termination of the Calculus

Markus Krötzsch -- OWL 2 Profiles

Termination of the Calculus

- Proof strategy:
 - Show that only a limited number of inferences can be derived
 - $\hfill \$ Main observation: every derived axiom only uses expressions from the ontology (or \bot)
 - Only finite number of axioms possible (at most size^3 many)

Completeness of the Calculus (for instance retrieval!)

Markus Krötzsch -- OWL 2 Profiles

Completeness of the Calculus (for instance retrieval!)

- Proof strategy:
 - Show that, if a axiom is not inferred, then there is a model of O here the axiom does not hold
 - There even is a single universal model that refutes every axiom that is not inferred
 - Proof steps:
 - Define this model
 - Show that it is a model
 - Show that it refutes non-inferred axioms

Defining a Universal Model

- Let O' be the saturation of O.
- We define an interpretation I:
 - The domain Δ¹ of I is the set of all individual symbols (w.l.o.g., we can assume that there is one).
 - For every individual symbol c, define c¹ := c.
 - For every class name A, define $c \in A^{l}$ iff $A(c) \in O'$.
 - For every property name P, define $\langle c, d \rangle \in P^{1}$ iff $P(c, d) \in O'$.

\rightarrow I refutes atomic assertions that are not in O'

Example Derivation for RL

```
FelisCatus \sqsubseteq \forall preysOn.(Animal \sqcap Small)
Animal \sqcap \exists preysOn.Animal \sqsubseteq Predator
FelisCatus \sqsubseteq Animal
FelisCatus(silvester)
preysOn(silvester, tweety)
```

Animal(silvester) ∀preysOn.(Animal Π Small)(silvester) Animal Π Small(tweety) Animal(tweety) Small(tweety) ∃preysOn.Animal(silvester) Animal Π ∃preysOn.Animal(silvester) Predator(silvester)

FelisCatus(silvester) preysOn(silvester, tweety) Animal(silvester)

Animal(tweety) Small(tweety)

Predator(silvester)

Markus Krötzsch -- OWL 2 Profiles

September 18, 2015 Page 38

FelisCatus(silvester) preysOn(silvester, tweety) Animal(silvester)

Animal(tweety) Small(tweety)

Predator(silvester)

Markus Krötzsch -- OWL 2 Profiles

September 18, 2015 Page 39

Predator(silvester)

Completing the Completeness Proof (1)

- I and O' agree on class and property names.
- Extend this to complex expressions:
 - 1) P^- occurs in O and $\langle c, d \rangle \in P^{-1}$ iff $P^-(c, d) \in O'$
 - 2) If $E \in CL$ occurs in O, then $c \in E^{I}$ implies $E(c) \in O^{I}$
 - 3) If $E \in CR$ and $E(c) \in O'$, then E occurs in O and $c \in E'$
- Easy consequence: I satisfies O

Completing the Completeness Proof (2)

- Example Claim 2: If $E \in CL$ occurs in O, then $c \in E^{I}$ implies $E(c) \in O^{I}$
- Proof technique:

structural induction on the grammatical definition of CL

 $\mathbf{CL} \mathrel{\mathop:}= \mathbf{CName} \mid \perp \mid \mathbf{CL} \sqcap \mathbf{CL} \mid \mathbf{CL} \sqcup \mathbf{CL} \mid \exists \mathbf{P}.\mathbf{CL}$

• Not hard in each case; for example:

Case $E = D_1 \sqcap D_2$. By the semantics of \sqcap , we find $c \in D_1^I$ and $c \in D_2^I$. Clearly, D_1 and D_2 occur in O since E does. Thus, the induction hypothesis implies $D_1(c) \in O'$ and $D_2(c) \in O'$. Since E occurs in O, rule A_{\sqcap}^+ applies and $E(c) \in O'$ as required.

Markus Krötzsch -- OWL 2 Profiles

Rule-Based Classification in EL

Name: ellipsoid body

Actions on term

Definition: A doughnut shaped synaptic neuropil domain of the central body complex of the adult brain that lies just anterior to the fan-shaped body. Its hole (the ellipsoid body canal) points anteriorly and has an axon tract (the anterior bundle) running through it. It is divided into concentric layers and into 16 radial segments, 8 per hemisphere.

Synonyms:
* EB
* eb
Relationships:
* part_of central body
Check in FlyBase >>

Rule-Based Classification in EL

- - → Possible with similar inference rules as for RL

Derivation Rules for EL

Ignore assertions: assume we only have class inclusions here

$$\mathbf{T}_{\sqsubseteq} \quad \frac{C \sqsubseteq D}{C \sqsubseteq E} : D \sqsubseteq E \in O \qquad \mathbf{T}_{i}^{+} \quad \frac{C \sqsubseteq C \ \subseteq \Box}{C \sqsubseteq C} : C \sqsubseteq \Box} : C \text{ occurs in } O$$

$$\mathbf{T}_{\sqcap}^{-} \quad \frac{C \sqsubseteq D_{1} \ \sqcap D_{2}}{C \sqsubseteq D_{1} \ C \sqsubseteq D_{2}} \qquad \mathbf{T}_{\sqcap}^{+} \quad \frac{C \sqsubseteq D_{1} \ C \sqsubseteq D_{2}}{C \sqsubseteq D_{1} \ \sqcap D_{2}} : D_{1} \ \sqcap D_{2} \text{ occurs in } O$$

$$\mathbf{T}_{\dashv}^{-} \quad \frac{C \sqsubseteq \exists P.\bot}{C \sqsubseteq \bot} \qquad \mathbf{T}_{\dashv}^{+} \quad \frac{C \sqsubseteq \exists P.D \ D \sqsubseteq E}{C \sqsubseteq \exists P.E} : \exists P.E \text{ occurs in } O$$

Derivation Calculus

- Saturate under the derivation rules
- An axiom $A \sqsubseteq B$ is inferred if
 - A ⊑ B was derived by the rules, or
 - A $\sqsubseteq \bot$ was derived, or
 - $\top \sqsubseteq \bot$ was derived
 - → Second case takes inconsistent class into account
 → Third case takes inconsistent ontology into account

Correctness of the EL Rule Calculus

Soundness

Completeness

Termination

Markus Krötzsch -- OWL 2 Profiles

September 18, 2015 Page 48

Correctness of the EL Rule Calculus

- Soundness and termination as for RL
- Completeness similar to RL, but with different model I:
 - Introduce one representative domain element e_c
 - for every class name C that is not inconsistent
 - For class name A, define $e_c \in A^1$ iff $C \sqsubseteq A \in O'$.
 - For property name P, define $<e_{c'}e_{D}^{-}> \in P^{-}$ iff $C \sqsubseteq \exists P.D \in O'.$
 - → Not a universal model, but a "canonical" one

Towards a Practical Implementation

- Optimisation is essential
- Main aspects of optimisation:
 - Derivation rules: avoid redundant inferences
 - Control flow: avoid unnecessary rule applications
 - Engineering: fast rule matching
 - Concurrency: parallelise computation
- Important insight: main cost is in checking applicability of rules, not in actually applying them

ELK Reasoner

 Fastest OWL EL reasoner today (according to OWL Reasoner Evaluation 2013, 2014, 2015)

http://elk.semanticweb.org/

For further details see

Y. Kazakov, MK, F. Simancik: "The Incredible ELK" J Automated Reasoning 53:1, Springer, 2013. Available online.

Rewriting-Based Query Answering in QL

Querying ontologies

- DL is often not enough for data access:
 - "Who lives together with their parents?"
 - "Who has married parents?"
 - "Which properties connect Alice and Bob?"
 - \rightarrow Not expressible in DL
- More advanced query languages can be used, e.g., SPARQL
 - → Semantics not always clear
 - → Standard reasoning algorithms often not applicable

Ontology-Based Data Access (OBDA)

- The OBDA paradigm:
 - Query data from a database, taking ontological axioms into account
 - Models of ontology+database can be viewed as (possibly very large) completed database
 - Query answers in OBDA: certain answers (answers that hold in every model of the ontology)

→ Query answering under constraints (background knowledge), e.g., for data integration tasks

Conjunctive Queries (CQs)

- Most basic query language
- A query is a formula of the form

$\exists x 1 \dots \exists x n. C 1 \land \dots \land C m$

where C1, ..., Cm are atomic first-order formulae (in our case: predicates are only unary [class] or binary [property])

- A query can have free variables, called **distinguished**
- The bound variables x1, ..., xn are non-distinguished

Conjunctive Queries: Examples

Who lives together with their parents?

 \exists y. livesWith(x,y) \land hasParent(x,y)

Who has married parents?

 $\exists y. \exists z. hasMother(x,y) \land hasFather(x,z) \land married(y,z)$

Markus Krötzsch -- OWL 2 Profiles

September 18, 2015 Page 64

Conjunctive Queries: Relationships

CQs are essentially equivalent to:

- Basic Graph Patterns of SPARQL
- SELECT-PROJECT-JOIN fragment of SQL

→ Definition of distinguished/non-distinguished variables must be clarified in either case

- Unions of CQs (UCQs): allow disjunctions of CQs
- Path queries: allow regular expressions over properties

CQs and OBDA

Challenge:

Existence of unnamed individuals may be entailed → Can we query for these? How?

Solution: Distinguished variables can only bind to named ind's Non-distinguished variables can bind to anything

Example

FelisCatus(silvester)

FelisCatus(tom)

SerinusCanaria(tweety)

preysOn(silvester, tweety)

SerinusCanaria ⊑ Animal

 $FelisCatus \sqsubseteq \exists preysOn.Animal$

Example

FelisCatus(silvester)

FelisCatus(tom)

SerinusCanaria(tweety)

preysOn(silvester, tweety)

SerinusCanaria 🗆 Animal

 $FelisCatus \sqsubseteq \exists preysOn.Animal$

→ Only solution is x=silvester, y=tweety
→ No solution with x=tom (no named value for y)

Rewriting-Based Query Answering in QL

- Goal: for an ontology O, compute all certain answers for a conjunctive query over O
- Approach: rewrite input query into a union of many conjunctive queries that yield the result
 - Rewriting only depends on terminological axioms, not on assertions
 - Rewritten queries can be answered by relational DB systems (SQL)

QL Syntax Revisited

QLtiny

Axiom \coloneqq CL \sqsubseteq CR | CR(IName) | P(IName, IName) CL \approx CName | \top | \perp | \exists P. \top CR \approx CName | \top | \perp | CR \sqcap CR | \neg CL | \exists P.CR P \approx PName | PName⁻

A Simpler Normal Form for Axioms

Axioms of QLtiny can be rewritten to a simpler form:

QL normal form:

$A \sqsubseteq B$	$A\sqsubseteq \bot$	$A \sqsubseteq \exists P.B$
$A\sqcap A'\sqsubseteq B$	$\top \sqsubseteq B$	$\exists P. \top \sqsubseteq B$
A(c)	P(c, d)	

where A, A', and B are class names, and P is a property or an inverse property

Rules for Rewriting Queries

Derive new queries by replacing atoms:

$$\mathbf{Q}_{\Xi} \quad \frac{E(x)}{D(x)} : D \sqsubseteq E \in O \qquad \qquad \mathbf{Q}_{\mathsf{inv}} \quad \frac{P(x, y)}{P^{-}(y, x)}$$
$$\mathbf{Q}_{\Pi} \quad \frac{D_{1} \sqcap D_{2}(x)}{D_{1}(x) \quad D_{2}(x)} \qquad \qquad \mathbf{Q}_{\Pi}^{-} \quad \frac{\top(x)}{D_{1}(x)}$$

$$\mathbf{Q}_{\exists}^{+} \frac{\exists P. \top(x) \quad \exists P^{-}. \top(y) \quad P(x, y) \quad P^{-}(y, x) \quad B(y)}{\exists P. B(x)} :$$

y a non-distinguished variable that occurs only in the query atoms in the premise; $\exists P.B$ occurs in O

plus any rule obtained from \mathbf{Q}_{\exists}^{+} by leaving away some (but not all) of the premises

Markus Krötzsch -- OWL 2 Profiles

September 18, 2015 Page 72

Example Rewriting for QL

FelisCatus ⊑ ∃preysOn.Animal SerinusCanaria ⊑ Animal FelisCatus(silvester) FelisCatus(tom) SerinusCanaria(tweety) preysOn(silvester, tweety)

Example Rewriting for QL

FelisCatus ⊑ ∃preysOn.Animal SerinusCanaria ⊑ Animal FelisCatus(silvester) FelisCatus(tom) SerinusCanaria(tweety) preysOn(silvester, tweety)

∃y.FelisCatus(x) ∧ preysOn(x, y) ∧ Animal(y)
∃y.FelisCatus(x) ∧ preysOn(x, y) ∧ SerinusCanaria(y)
∃y.FelisCatus(x) ∧ preysOn⁻(y, x) ∧ Animal(y)
∃y.FelisCatus(x) ∧ preysOn⁻(y, x) ∧ SerinusCanaria(y)
FelisCatus(x) ∧ ∃preysOn.Animal(x)
FelisCatus(x)

Missing Bits

Check if ontology is consistent

→ Check if the "query" $\exists y. \bot(y)$ is entailed

- Allow query simplification by unification
 - → Factorise query atoms

Markus Krötzsch -- OWL 2 Profiles

September 18, 2015 Page 75

Correctness of the QL Rewriting Calculus

- Soundness: easy
- Termination: not hard (query building blocks finite)
- Correctness: not entirely trivial
 - Construct a universal model, step by step (may be infinite now!)
 - Every query match can be found in this model
 → can also be found in the partially constructed model after
 some number n of construction steps
 - Show that there is a rewritten query that has a match after only n-1 construction steps
 - Induction: some rewriting matches at n=0 (assertions in O)

The Limits of Lightweight Ontologies

Markus Krötzsch -- OWL 2 Profiles

September 18, 2015 Page 77

Tiny OWL Profiles: Possible Extensions

- OWL RL and QL allow inverse properties, EL doesn't.
- Features for sub- and superclasses:

Sub	Т	\perp	П	Ш	-	Э	ΤE	\forall	$\forall \top$
RL		×	×	×		×	×		
EL	×	×	×			×	×		
QL	×	×					×		
Sup	Т	T	П	Ц	-	Э	ΤE	A	$\forall \top$
Sup RL	Т	⊥ ×	⊓ ×	L	ר ×	Э	TE	∀ ×	×
Sup RL EL	T ×	⊥ × ×	□ × ×	L	ר ×	E ×	TE	×	×

Tiny OWL Profiles: Possible Extensions

- OWL RL and QL allow inverse properties, EL doesn't.
- Features for sub- and superclasses: more is possible

Sub	Т	T	П	Ц	-	Э	ЭТ	A	$\forall \top$
RL	×	×	×	×		×	×		
EL	×	×	×	×		×	×		
QL	×	×	×	×			×		
Sup	Т	\bot	П	Ш	-	Э	ΤE	A	$\forall \top$
RL	×	×	×		×			×	×
EL	×	×	×		×	×	×		×
QL	×	×	×		×	×	×		×

Unions are Hard

- No tractable language can have □ in subclasses and □ in superclasses
- Proof idea: Show NP-hardness by expressing 3SAT in OWL
- Try it at home (solution in Section 4.3 lecture notes)

Universal + Existential = Exponential

- Reasoning in any ontology language with
 - ∃ and П in subclasses, and
 - \forall and \exists in superclasses
 - is ExpTime-hard.
- This covers the union of RL and EL and the union of RL and QL
- How can we show this?

Markus Krötzsch -- OWL 2 Profiles

Alternation (1)

 An Alternating Turing Machine (ATM) is a nondeterministic TM whose states are partitioned into two sets of existential states and universal states.

Intuition:

- Existential state: the ATM nondeterministically picks one possible transition to move on
- Universal state: the ATM branches into many ATMs that explore each possible transition

Alternation (2)

- A configuration of an ATM is **accepting** if:
 - it is in an existential state and one of the possible transitions leads to an accepting state, or
 - it is in a universal state and all of the possible transitions lead to an accepting state.
 (note: inductive definition; universal states with no transitions are accepting)
- An ATM accepts an input if the initial state is accepting on this input.

Alternation (3)

- Time and space complexity for ATMs defined as usual (considering the time/space used by a single sequence of choices, whether existential or universal)
- What makes ATMs so interesting for us:
 - ALogSpace = PTime
 - APTime = PSpace
 - APSpace = ExpTime

- Input: an ATM and an input word
- Goal:
 - Construct an OWL ontology that derives a certain entailment iff the ATM can accept the input in polynomial space.
 - The construction should only take polynomial time

- Idea: individuals represent ATM configurations, classes describe configurations, properties model transitions
- Encoding:
 - Aq: the ATM is in state q
 - Hi: the ATM head is at position i
 - $\hfill \ensuremath{^\circ}$ C σ ,i: the tape position i contains symbol σ
 - Acc: the configuration is accepting
 - Iw: the initial configuration for input word w
 - S\delta: property linking to configuration obtained by applying transition δ

(1) Left and right transition rules

$$A_q \sqcap H_i \sqcap C_{\sigma,i} \sqsubseteq \exists S_{\delta}.(A_{q'} \sqcap H_{i-1} \sqcap C_{\sigma',i})$$

(2) Memory

 $H_i \sqcap C_{\sigma,i} \sqsubseteq \forall S_{\delta}.C_{\sigma,i}$

- (3) Final configurations
 - $A_q \sqcap H_i \sqcap C_{\sigma,i} \sqsubseteq Acc$
- (4) Existential acceptance

 $A_q \sqcap \exists S_{\delta}.Acc \sqsubseteq Acc$

(5) Universal acceptance

 $A_q \sqcap H_i \sqcap C_{\sigma,i} \sqcap \prod_{\delta \in \Delta(q,\sigma)} \exists S_{\delta}. Acc \sqsubseteq Acc \text{ if } q \in U \text{ and where } \Delta(q,\sigma) \text{ is the set of}$

 $A_a \sqcap H_i \sqcap C_{\sigma,i} \sqsubseteq \exists S_{\delta}.(A_{a'} \sqcap H_{i+1} \sqcap C_{\sigma',i})$ if $\delta = \langle q, \sigma, q', \sigma', r \rangle$ and i < p(|w|) - 1if $\delta = \langle q, \sigma, q', \sigma', l \rangle$ and i > 0

if $i \neq j$

if there is no transition from q and σ

if $q \in E$

all transitions from q and σ

Markus Krötzsch -- OWL 2 Profiles

 Finally, we define the initial configuration for input w: (p defines the polynomial space bound for the ATM)

 $I_{w} \coloneqq A_{q_{0}} \sqcap H_{0} \sqcap C_{\sigma_{0},0} \sqcap \ldots \sqcap C_{\sigma_{|w|-1},|w|-1} \sqcap C_{\Box,|w|} \sqcap \ldots \sqcap C_{\Box,p(|w|)-1},$

 One can show (Section 4.5 of lecture notes): The ontology implies Iw ⊆ Acc iff the ATM accepts w in polynomial space.

EL + QL = ExpTime

Only a small change is needed in the ATM simulation.

Replace:

(2) Memory $H_j \sqcap C_{\sigma,i} \sqsubseteq \forall S_{\delta}.C_{\sigma,i}$ if $i \neq j$

By:

$$\exists S_{\delta}^{-}.(H_{j} \sqcap C_{\sigma,i}) \sqsubseteq C_{\sigma,i} \quad \text{if } i \neq j$$

Markus Krötzsch -- OWL 2 Profiles

Advanced Features

Markus Krötzsch -- OWL 2 Profiles

Further Features of all OWL Profiles

Datatypes

- Many types (numbers, strings, dates, ...)
- Used with DataProperties
- Datatype expressions usable like class expressions
- Restrictions to avoid non-determinism
- Property Hierarchies

Further Features of OWL EL and OWL RL

Property Chains

- Generalisation of transitivity
- Example: hasParent o hasBrother ⊑ hasUncle
- Subject to global restrictions in OWL DL
- Equality
 - State that two individuals are the same or different

Nominals

- Classes with exactly one instance, given by an individual
- Example: ∃ livesIn.{europe} ⊑ European

Further Features of OWL EL and OWL RL

Functional Properties

- Properties that have at most one value
- Limited to DataProperties in OWL EL
- Missing in lecture notes
- Keys
 - "Rules" that imply the equality of individuals
 - Semantics restricted to named individuals
 - No description logic syntax
 - Example: HasKey(Person hasName birthday)

Further Features of OWL EL

Local Reflexivity (Self)

- Can be used to refer to classes in property chains:

 $Man \sqsubseteq \exists manProperty.Self \\manProperty o hasChild \sqsubseteq fatherOf$

 Not in OWL RL (no technical reason) or OWL QL (technical status not known, but should work)

Markus Krötzsch -- OWL 2 Profiles

Sugar

- Many OWL features can also be expressed by using other features → Syntactic sugar
- Can be more efficient for encoding something
- What is sugar depends on the available features (for example: □ is sugar if □ and ¬ are available)

Summary & Conclusions

Markus Krötzsch -- OWL 2 Profiles

Summary: Reasoning in the Profiles

- Reasoning with the OWL 2 Profiles
 - Saturation (bottom-up): EL and RL
 - Rewriting (top-down): QL
 - \rightarrow other approaches possible in each case!
- Completeness of inference methods:
 - Relate computation to (canonical/universal) models
 - Main tool: (structural) induction
- Optimisation on several levels is important

Summary: Extending the Profiles

- Various features can be added
- Some features are generally problematic
 - Unions (in superclasses)
 - Combination of universals and existentials
 - Combination of inverses and existentials
- Hardness by simulating hard problems in OWL
 ATMs as a powerful tool

Conclusions

Markus Krötzsch -- OWL 2 Profiles