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Plan

Goal:
Learn about the lightweight ontology languages,
and understand why they are lightweight.
 

1) Review: OWL and DLs
2) Overview: OWL 2 Profiles
3) Reasoning in OWL RL: Instance Retrieval
4) Reasoning in OWL EL: Classification
5) Reasoning in OWL QL: Query Answering
6) Limits of Tractability
7) Advanced Features
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The Web Ontology Language OWL
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The OWL Language

 W3C standard since 2004, updated in 2009

 An ontology language with two sides:
 Descriptive: express expert knowledge formally
 Logical: draw conclusions from this knowledge

 reasoning→

 Compatibility with important technology standards
 Unicode, IRI, XML Schema, RDF, RDF Schema
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The Data Model of OWL

 Ontologies use a vocabulary of entities
 Classes
 Properties
 Individuals and data literals 

 Entities are combined to form expressions

 Relationships of expressions are described by axioms
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Syntaxes and Semanticses

 5 official syntactic formats:
 Functional-Style Syntax
 Manchester Syntax
 OWL/XML Syntax
 RDF-based syntaxes (RDF/XML, Turtle)

 2 formal semantics:
 Direct Semantics
 RDF-Based Semantics
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Reasoning Tasks

 Every ontology has infinitely many conclusions
 Which conclusions are we interested in?

 Instance checking
 Class subsumption 
 Ontology consistency
 Class consistency (coherence)

 → Tasks can be reduced to each other with little effort
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Hardness of Reasoning

 Main requirements:
 Soundness: only correct conclusions are computed
 Completeness: no correct conclusion is missed

 Reasoning is hard:
 Undecidable for RDF-Based Semantics
 N2ExpTime-complete for Direct Semantics

 → OWL Profiles: sub-languages with easier reasoning
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OWL and Description Logics: Basic Features
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Example Axioms in DL Syntax
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OWL Direct Semantics

 Based on first-order logic interpretations

 Direct correspondences:
 classes   sets→
 properties  relations→
 individuals  domain elements→

 Equivalent to translating OWL to first-order logic
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OWL Direct Semantics
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OWL RDF-Based Semantics

 Based on translating OWL ontologies to RDF graphs

 Interpretations defined on graphs
 Applicable to all RDF graphs, even if not from OWL

 Sometimes stronger (more entailments), sometimes 
weaker (fewer entailments) than Direct Semantics

 Direct Semantics and RDF-Based Semantics agree 
under reasonable conditions
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Reasoning in the OWL Profiles
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Defining Language Profiles by Grammars

 The OWL sublanguage introduced above is ALCI
 Can be described by a formal grammar:
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A Tiny Version of OWL EL

 OWL EL is based on the description logic EL(++)
 Typical applications in ontology engineering
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A Tiny Version of OWL RL

 OWL RL is a “rule language”
 Typical applications in data management
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A Tiny Version of OWL QL

 OWL QL is a “query language”
 Typical applications in data access
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Tiny OWL Profiles: Feature Overview

 RL and QL allow for inverse properties, EL doesn't.
 Features for sub- and superclasses:

Sub > ? u t : 9 9> 8 8?

RL × × × × ×
EL × × × × ×
QL × × ×

Sup > ? u t : 9 9> 8 8?

RL × × × × ×
EL × × × × ×
QL × × × × × ×
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Rule-Based Instance Retrieval in RL
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Rule-Based Instance Retrieval in RL

 Goal: for an ontology O, compute all entailments of 
the form C(a) and P(a,b) for a class name C in O and a 
property name P in O

 Approach: apply inference rules until no new 
conclusions are found

 Known under many names: saturation, deductive 
closure, materialisation, bottom-up reasoning, forward 
chaining, consequence-based reasoning
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Derivation Rules for RL
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Derivation Calculus

 Saturate under the derivation rules
(this is uniquely defined: Section 3.3 lecture notes)

 An axiom is inferred if
  the axiom was derived by the rules, or
  ⊥(c) was derived for some constant c.

 → Second case takes inconsistent ontologies into 
account
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Example Derivation for RL

FelisCatus   preysOn.(Animal  Small)⊑∀ ⊓
Animal  preysOn.Animal  Predator⊓∃ ⊑
FelisCatus  Animal⊑
FelisCatus(silvester)
preysOn(silvester, tweety) 
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Example Derivation for RL

FelisCatus   preysOn.(Animal  Small)⊑∀ ⊓
Animal  preysOn.Animal  Predator⊓∃ ⊑
FelisCatus  Animal⊑
FelisCatus(silvester)
preysOn(silvester, tweety) 

Animal(silvester)
∀preysOn.(Animal  Small)(silvester)⊓
Animal  Small(tweety)⊓
Animal(tweety)
Small(tweety)
∃preysOn.Animal(silvester)
Animal  preysOn.Animal(silvester)⊓∃
Predator(silvester)
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Correctness of the RL Rule Calculus
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Correctness of the RL Rule Calculus

Soundness

Completeness

Termination
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Soundness of the Calculus
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Soundness of the Calculus

 Proof strategy:
 Show that every single rule is sound
 If we start with true statements, only true 

statements can be derived
(that's an induction argument)

 Easy to see
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Termination of the Calculus
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Termination of the Calculus

 Proof strategy:
 Show that only a limited number of inferences can 

be derived
 Main observation: every derived axiom only uses 

expressions from the ontology (or )⊥
 Only finite number of axioms possible

(at most size^3 many)
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Completeness of the Calculus
(for instance retrieval!)
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Completeness of the Calculus
(for instance retrieval!)
 Proof strategy:

 Show that, if a axiom is not inferred, then there is a 
model of O here the axiom does not hold

 There even is a single universal model that refutes 
every axiom that is not inferred

 Proof steps:
 Define this model
 Show that it is a model
 Show that it refutes non-inferred axioms
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Defining a Universal Model

 Let O' be the saturation of O.
 We define an interpretation I:

 The domain ∆I of I is the set of all individual 
symbols (w.l.o.g., we can assume that there is one).

 For every individual symbol c, define cI := c.
 For every class name A, define c  A∈ I iff A(c)  O' .∈
 For every property name P, define

<c, d>  P∈ I iff P(c, d)  O'.∈

 → I refutes atomic assertions that are not in O'
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Example Derivation for RL

FelisCatus   preysOn.(Animal  Small)⊑∀ ⊓
Animal  preysOn.Animal  Predator⊓∃ ⊑
FelisCatus  Animal⊑
FelisCatus(silvester)
preysOn(silvester, tweety) 

Animal(silvester)
∀preysOn.(Animal  Small)(silvester)⊓
Animal  Small(tweety)⊓
Animal(tweety)
Small(tweety)
∃preysOn.Animal(silvester)
Animal  preysOn.Animal(silvester)⊓∃
Predator(silvester)
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Constructing a Universal Model

FelisCatus(silvester)
preysOn(silvester, tweety) 

Animal(silvester)

Animal(tweety)
Small(tweety)

Predator(silvester)
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Constructing a Universal Model

FelisCatus(silvester)
preysOn(silvester, tweety) 

Animal(silvester)

Animal(tweety)
Small(tweety)

Predator(silvester)

silvester

tweety
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Constructing a Universal Model

FelisCatus(silvester)
preysOn(silvester, tweety) 

Animal(silvester)

Animal(tweety)
Small(tweety)

Predator(silvester)

FelisCatus
Animal
Predator

Animal
Small

preysOn

silvester

tweety
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Constructing a Universal Model

FelisCatus   preysOn.(Animal  Small)⊑∀ ⊓
Animal  preysOn.Animal  Predator⊓∃ ⊑
FelisCatus  Animal⊑
FelisCatus(silvester)
preysOn(silvester, tweety) 

Animal(silvester)
∀preysOn.(Animal  Small)(silvester)⊓
Animal  Small(tweety)⊓
Animal(tweety)
Small(tweety)
∃preysOn.Animal(silvester)
Animal  preysOn.Animal(silvester)⊓∃
Predator(silvester)

silvester

tweety

FelisCatus
Animal
Predator

Animal
Small

preysOn
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Completing the Completeness Proof (1)

 I and O' agree on class and property names.
 Extend this to complex expressions:

1) P− occurs in O and <c, d>  P∈ −I iff P−(c, d)  O'∈
2) If E  CL occurs in O, then c  E∈ ∈ I implies E(c)  O'∈
3) If E  CR and E(c)  O', then E occurs in O and c  E∈ ∈ ∈ I

 Easy consequence: I satisfies O
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Completing the Completeness Proof (2)

 Example Claim 2:
If E  CL occurs in O, then c  E∈ ∈ I implies E(c)  O'∈

 Proof technique:
structural induction on the grammatical definition of CL

 Not hard in each case; for example: 
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Rule-Based Classification in EL
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Rule-Based Classification in EL

 Goal: for an ontology O, compute all entailments of 
the form A  ⊑ B for class names A and B in O.

 → Possible with similar inference rules as for RL
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Derivation Rules for EL

 Ignore assertions: assume we only have class 
inclusions here
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Derivation Calculus

 Saturate under the derivation rules

 An axiom A  ⊑ B is inferred if
  A  ⊑ B was derived by the rules, or
  A  ⊑  was derived, or⊥
  ⊤  ⊑  ⊥ was derived

 → Second case takes inconsistent class into account
 Third case takes inconsistent ontology into account→
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Correctness of the EL Rule Calculus

Soundness

Completeness

Termination
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Correctness of the EL Rule Calculus

 Soundness and termination as for RL

 Completeness similar to RL, but with different model I:
 Introduce one representative domain element e

C
 

for every class name C that is not inconsistent
 For class name A, define e

C
  A∈ I iff C  ⊑ A  O'.∈

 For property name P, define
<e

C
,e

D
>  P∈ I iff C  ⊑ P.D  O'.∃ ∈

 → Not a universal model, but a “canonical” one
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Towards a Practical Implementation

 Optimisation is essential
 Main aspects of optimisation:

 Derivation rules: avoid redundant inferences
 Control flow: avoid unnecessary rule applications
 Engineering: fast rule matching
 Concurrency: parallelise computation

 Important insight: main cost is in checking 
applicability of rules, not in actually applying them
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ELK Reasoner

 Fastest OWL EL reasoner today
(according to OWL Reasoner Evaluation 2013, 2014, 2015)

http://elk.semanticweb.org/

 For further details see

Y. Kazakov, MK, F. Simancik: “The Incredible ELK”
J Automated Reasoning 53:1, Springer, 2013. Available online.
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Rewriting-Based Query Answering in QL
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Querying ontologies

 DL is often not enough for data access:
 “Who lives together with their parents?”
 “Who has married parents?”
 “Which properties connect Alice and Bob?”
 → Not expressible in DL

 More advanced query languages can be used, e.g., 
SPARQL

 Semantics not always clear→
 Standard reasoning algorithms often not applicable→
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Ontology-Based Data Access (OBDA)

 The OBDA paradigm:
 Query data from a database, taking ontological 

axioms into account
 Models of ontology+database can be viewed as 

(possibly very large) completed database
 Query answers in OBDA: certain answers (answers 

that hold in every model of the ontology)

 → Query answering under constraints (background 
knowledge), e.g., for data integration tasks
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Conjunctive Queries (CQs)

 Most basic query language
 A query is a formula of the form

∃x1… ∃xn. C1 ^ … ^ Cm

where C1, …, Cm are atomic first-order formulae
(in our case: predicates are only unary [class] or binary [property])

 A query can have free variables, called distinguished
 The bound variables x1, …, xn are non-distinguished



September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 64

Conjunctive Queries: Examples

 Who lives together with their parents?

∃y. livesWith(x,y) ^ hasParent(x,y)

 Who has married parents?

∃y.∃z. hasMother(x,y) ^ hasFather(x,z) ^ married(y,z)
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Conjunctive Queries: Relationships

 CQs are essentially equivalent to:
 Basic Graph Patterns of SPARQL
 SELECT-PROJECT-JOIN fragment of SQL

 → Definition of distinguished/non-distinguished 
variables must be clarified in either case

 Unions of CQs (UCQs): allow disjunctions of CQs
 Path queries: allow regular expressions over properties



September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 66

CQs and OBDA

 Challenge:
Existence of unnamed individuals may be entailed

 Can we query for these? How?→

 Solution:
Distinguished variables can only bind to named ind's
Non-distinguished variables can bind to anything
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Example

 Query: FelisCatus(x) ^ preysOn(x,y) ^ Animal(y)
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Example

 Query: FelisCatus(x) ^ preysOn(x,y) ^ Animal(y)

 Only solution is x=silvester, y=tweety→
 → No solution with x=tom (no named value for y)

http://elk.semanticweb.org/
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Rewriting-Based Query Answering in QL

 Goal: for an ontology O, compute all certain answers 
for a conjunctive query over O

 Approach: rewrite input query into a union of many 
conjunctive queries that yield the result

 Rewriting only depends on terminological axioms, 
not on assertions

 Rewritten queries can be answered by relational 
DB systems (SQL)
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QL Syntax Revisited
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A Simpler Normal Form for Axioms

 Axioms of QLtiny can be rewritten to a simpler form:



September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 72

Rules for Rewriting Queries

 Derive new queries by replacing atoms:
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Example Rewriting for QL

FelisCatus   preysOn.Animal⊑∃
SerinusCanaria  Animal⊑
FelisCatus(silvester)
FelisCatus(tom)
SerinusCanaria(tweety)
preysOn(silvester, tweety) 
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Example Rewriting for QL

FelisCatus   preysOn.Animal⊑∃
SerinusCanaria  Animal⊑
FelisCatus(silvester)
FelisCatus(tom)
SerinusCanaria(tweety)
preysOn(silvester, tweety) 

∃y.FelisCatus(x)  preysOn(x, y)  Animal(y)∧ ∧
∃y.FelisCatus(x)  preysOn(x, y)  SerinusCanaria(y)∧ ∧
∃y.FelisCatus(x)  preysOn∧ -(y, x)  Animal(y)∧
∃y.FelisCatus(x)  preysOn∧ -(y, x)  SerinusCanaria(y)∧
      FelisCatus(x)  preysOn.Animal(x)∧ ∃
      FelisCatus(x) 
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Missing Bits 

 Check if ontology is consistent

 Check if the “query”  y. (y) is entailed→ ∃ ⊥

 Allow query simplification by unification

 → Factorise query atoms
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Correctness of the QL Rewriting Calculus

 Soundness: easy
 Termination: not hard (query building blocks finite)
 Correctness: not entirely trivial

 Construct a universal model, step by step
(may be infinite now!)

 Every query match can be found in this model
 can also be found in the partially constructed model after →

some number n of construction steps
 Show that there is a rewritten query that has a match after 

only n-1 construction steps
 Induction: some rewriting matches at n=0 (assertions in O) 
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The Limits of Lightweight Ontologies
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Tiny OWL Profiles: Possible Extensions

 OWL RL and QL allow inverse properties, EL doesn't.
 Features for sub- and superclasses:

Sub > ? u t : 9 9> 8 8?

RL × × × × ×
EL × × × × ×
QL × × ×

Sup > ? u t : 9 9> 8 8?

RL × × × × ×
EL × × × × ×
QL × × × × × ×
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Tiny OWL Profiles: Possible Extensions

 OWL RL and QL allow inverse properties, EL doesn't.
 Features for sub- and superclasses: more is possible

Sub > ? u t : 9 9> 8 8?

RL × × × × × ×
EL × × × × × ×
QL × × × × ×

Sup > ? u t : 9 9> 8 8?

RL × × × × × ×
EL × × × × × × ×
QL × × × × × × ×
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Unions are Hard

 No tractable language can have  in subclasses and⊓
 in superclasses⊔

 Proof idea:
Show NP-hardness by expressing 3SAT in OWL

 Try it at home (solution in Section 4.3 lecture notes)
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Universal + Existential = Exponential

 Reasoning in any ontology language with
  ∃ and  in subclasses, and⊓
  ∀ and  in superclasses∃

is ExpTime-hard.

 This covers the union of RL and EL and
the union of RL and QL

 How can we show this?
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Alternation (1)

 An Alternating Turing Machine (ATM) is a non-
deterministic TM whose states are partitioned into 
two sets of existential states and universal states.

 Intuition:
 Existential state: the ATM nondeterministically 

picks one possible transition to move on
 Universal state: the ATM branches into many ATMs 

that explore each possible transition
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Alternation (2)

 A configuration of an ATM is accepting if:
 it is in an existential state and one of the possible 

transitions leads to an accepting state, or
 it is in a universal state and all of the possible 

transitions lead to an accepting state.
(note: inductive definition; universal states with no 
transitions are accepting)

 An ATM accepts an input if the initial state is accepting 
on this input.
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Alternation (3)

 Time and space complexity for ATMs defined as usual 
(considering the time/space used by a single 
sequence of choices, whether existential or universal)

 What makes ATMs so interesting for us:
 ALogSpace = PTime 
 APTime = PSpace 
 APSpace = ExpTime
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Simulating a PSpace ATM with OWL

 Input: an ATM and an input word

 Goal:
 Construct an OWL ontology that derives a certain 

entailment iff the ATM can accept the input in 
polynomial space.

 The construction should only take polynomial time
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Simulating a PSpace ATM with OWL

 Idea: individuals represent ATM configurations, classes 
describe configurations, properties model transitions

 Encoding:
 Aq: the ATM is in state q
 Hi: the ATM head is at position i 
 Cσ,i: the tape position i contains symbol σ
 Acc: the configuration is accepting
 Iw: the initial configuration for input word w
 Sδ: property linking to configuration obtained by 

applying transition δ



September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 88

Simulating a PSpace ATM with OWL
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Simulating a PSpace ATM with OWL

 Finally, we define the initial configuration for input w:
(p defines the polynomial space bound for the ATM)

 One can show (Section 4.5 of lecture notes):
The ontology implies Iw  ⊑Acc iff the ATM accepts w in 
polynomial space.
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EL + QL = ExpTime

 Only a small change is needed in the ATM simulation.

Replace:

By:
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Advanced Features
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Further Features of all OWL Profiles

 Datatypes
 Many types (numbers, strings, dates, …)
 Used with DataProperties
 Datatype expressions usable like class expressions
 Restrictions to avoid non-determinism

 Property Hierarchies
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Further Features of OWL EL and OWL RL

 Property Chains
 Generalisation of transitivity
 Example: hasParent o hasBrother  hasUncle⊑
 Subject to global restrictions in OWL DL

 Equality
 State that two individuals are the same or different

 Nominals
 Classes with exactly one instance, given by an individual
 Example:  livesIn.{europe}  European∃ ⊑
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Further Features of OWL EL and OWL RL

 Functional Properties
 Properties that have at most one value
 Limited to DataProperties in OWL EL
 Missing in lecture notes

 Keys
 “Rules” that imply the equality of individuals
 Semantics restricted to named individuals
 No description logic syntax
 Example: HasKey( Person hasName birthday )
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Further Features of OWL EL

 Local Reflexivity (Self)
 Example: CEO   supervisedBy.Self⊑∃
 Can be used to refer to classes in property chains:

       Man   manProperty.Self⊑∃
manProperty o hasChild  fatherOf⊑

 Not in OWL RL (no technical reason) or
OWL QL (technical status not known, but should work)
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Sugar

 Many OWL features can also be expressed by using 
other features  Syntactic sugar→

 Can be more efficient for encoding something

 What is sugar depends on the available features
(for example:  is sugar if  and ¬ are available)⊓ ⊔
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Summary & Conclusions
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Summary: Reasoning in the Profiles

 Reasoning with the OWL 2 Profiles
 Saturation (bottom-up): EL and RL
 Rewriting (top-down): QL
 → other approaches possible in each case!

 Completeness of inference methods:
 Relate computation to (canonical/universal) models
 Main tool: (structural) induction

 Optimisation on several levels is important
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Summary: Extending the Profiles

 Various features can be added

 Some features are generally problematic
 Unions (in superclasses)
 Combination of universals and existentials
 Combination of inverses and existentials

 Hardness by simulating hard problems in OWL
 ATMs as a powerful tool



September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 100

Conclusions
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