
September 18, 2015

Technische Universität Dresden
Fakultät Informatik

OWL 2 Profiles

An Introduction to
Lightweight Ontology Languages

Markus Krötzsch
TU Dresden

ICCL Summer School 2015

http://korrekt.org/

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 3

Plan

Goal:
Learn about the lightweight ontology languages,
and understand why they are lightweight.

1) Review: OWL and DLs
2) Overview: OWL 2 Profiles
3) Reasoning in OWL RL: Instance Retrieval
4) Reasoning in OWL EL: Classification
5) Reasoning in OWL QL: Query Answering
6) Limits of Tractability
7) Advanced Features

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 4

The Web Ontology Language OWL

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 5

The OWL Language

 W3C standard since 2004, updated in 2009

 An ontology language with two sides:
 Descriptive: express expert knowledge formally
 Logical: draw conclusions from this knowledge

 reasoning→

 Compatibility with important technology standards
 Unicode, IRI, XML Schema, RDF, RDF Schema

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 6

The Data Model of OWL

 Ontologies use a vocabulary of entities
 Classes
 Properties
 Individuals and data literals

 Entities are combined to form expressions

 Relationships of expressions are described by axioms

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 7

Syntaxes and Semanticses

 5 official syntactic formats:
 Functional-Style Syntax
 Manchester Syntax
 OWL/XML Syntax
 RDF-based syntaxes (RDF/XML, Turtle)

 2 formal semantics:
 Direct Semantics
 RDF-Based Semantics

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 8

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 9

Reasoning Tasks

 Every ontology has infinitely many conclusions
 Which conclusions are we interested in?

 Instance checking
 Class subsumption
 Ontology consistency
 Class consistency (coherence)

 → Tasks can be reduced to each other with little effort

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 10

Hardness of Reasoning

 Main requirements:
 Soundness: only correct conclusions are computed
 Completeness: no correct conclusion is missed

 Reasoning is hard:
 Undecidable for RDF-Based Semantics
 N2ExpTime-complete for Direct Semantics

 → OWL Profiles: sub-languages with easier reasoning

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 11

OWL and Description Logics: Basic Features

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 12

Example Axioms in DL Syntax

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 13

OWL Direct Semantics

 Based on first-order logic interpretations

 Direct correspondences:
 classes sets→
 properties relations→
 individuals domain elements→

 Equivalent to translating OWL to first-order logic

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 14

OWL Direct Semantics

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 15

OWL RDF-Based Semantics

 Based on translating OWL ontologies to RDF graphs

 Interpretations defined on graphs
 Applicable to all RDF graphs, even if not from OWL

 Sometimes stronger (more entailments), sometimes
weaker (fewer entailments) than Direct Semantics

 Direct Semantics and RDF-Based Semantics agree
under reasonable conditions

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 16

Reasoning in the OWL Profiles

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 17

Defining Language Profiles by Grammars

 The OWL sublanguage introduced above is ALCI
 Can be described by a formal grammar:

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 18

A Tiny Version of OWL EL

 OWL EL is based on the description logic EL(++)
 Typical applications in ontology engineering

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 19

A Tiny Version of OWL RL

 OWL RL is a “rule language”
 Typical applications in data management

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 20

A Tiny Version of OWL QL

 OWL QL is a “query language”
 Typical applications in data access

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 21

Tiny OWL Profiles: Feature Overview

 RL and QL allow for inverse properties, EL doesn't.
 Features for sub- and superclasses:

Sub > ? u t : 9 9> 8 8?

RL × × × × ×
EL × × × × ×
QL × × ×

Sup > ? u t : 9 9> 8 8?

RL × × × × ×
EL × × × × ×
QL × × × × × ×

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 22

Rule-Based Instance Retrieval in RL

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 23

Rule-Based Instance Retrieval in RL

 Goal: for an ontology O, compute all entailments of
the form C(a) and P(a,b) for a class name C in O and a
property name P in O

 Approach: apply inference rules until no new
conclusions are found

 Known under many names: saturation, deductive
closure, materialisation, bottom-up reasoning, forward
chaining, consequence-based reasoning

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 24

Derivation Rules for RL

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 25

Derivation Calculus

 Saturate under the derivation rules
(this is uniquely defined: Section 3.3 lecture notes)

 An axiom is inferred if
 the axiom was derived by the rules, or
 ⊥(c) was derived for some constant c.

 → Second case takes inconsistent ontologies into
account

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 26

Example Derivation for RL

FelisCatus preysOn.(Animal Small)⊑∀ ⊓
Animal preysOn.Animal Predator⊓∃ ⊑
FelisCatus Animal⊑
FelisCatus(silvester)
preysOn(silvester, tweety)

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 27

Example Derivation for RL

FelisCatus preysOn.(Animal Small)⊑∀ ⊓
Animal preysOn.Animal Predator⊓∃ ⊑
FelisCatus Animal⊑
FelisCatus(silvester)
preysOn(silvester, tweety)

Animal(silvester)
∀preysOn.(Animal Small)(silvester)⊓
Animal Small(tweety)⊓
Animal(tweety)
Small(tweety)
∃preysOn.Animal(silvester)
Animal preysOn.Animal(silvester)⊓∃
Predator(silvester)

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 28

Correctness of the RL Rule Calculus

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 29

Correctness of the RL Rule Calculus

Soundness

Completeness

Termination

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 30

Soundness of the Calculus

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 31

Soundness of the Calculus

 Proof strategy:
 Show that every single rule is sound
 If we start with true statements, only true

statements can be derived
(that's an induction argument)

 Easy to see

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 32

Termination of the Calculus

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 33

Termination of the Calculus

 Proof strategy:
 Show that only a limited number of inferences can

be derived
 Main observation: every derived axiom only uses

expressions from the ontology (or)⊥
 Only finite number of axioms possible

(at most size^3 many)

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 34

Completeness of the Calculus
(for instance retrieval!)

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 35

Completeness of the Calculus
(for instance retrieval!)
 Proof strategy:

 Show that, if a axiom is not inferred, then there is a
model of O here the axiom does not hold

 There even is a single universal model that refutes
every axiom that is not inferred

 Proof steps:
 Define this model
 Show that it is a model
 Show that it refutes non-inferred axioms

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 36

Defining a Universal Model

 Let O' be the saturation of O.
 We define an interpretation I:

 The domain ∆I of I is the set of all individual
symbols (w.l.o.g., we can assume that there is one).

 For every individual symbol c, define cI := c.
 For every class name A, define c A∈ I iff A(c) O' .∈
 For every property name P, define

<c, d> P∈ I iff P(c, d) O'.∈

 → I refutes atomic assertions that are not in O'

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 37

Example Derivation for RL

FelisCatus preysOn.(Animal Small)⊑∀ ⊓
Animal preysOn.Animal Predator⊓∃ ⊑
FelisCatus Animal⊑
FelisCatus(silvester)
preysOn(silvester, tweety)

Animal(silvester)
∀preysOn.(Animal Small)(silvester)⊓
Animal Small(tweety)⊓
Animal(tweety)
Small(tweety)
∃preysOn.Animal(silvester)
Animal preysOn.Animal(silvester)⊓∃
Predator(silvester)

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 38

Constructing a Universal Model

FelisCatus(silvester)
preysOn(silvester, tweety)

Animal(silvester)

Animal(tweety)
Small(tweety)

Predator(silvester)

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 39

Constructing a Universal Model

FelisCatus(silvester)
preysOn(silvester, tweety)

Animal(silvester)

Animal(tweety)
Small(tweety)

Predator(silvester)

silvester

tweety

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 40

Constructing a Universal Model

FelisCatus(silvester)
preysOn(silvester, tweety)

Animal(silvester)

Animal(tweety)
Small(tweety)

Predator(silvester)

FelisCatus
Animal
Predator

Animal
Small

preysOn

silvester

tweety

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 41

Constructing a Universal Model

FelisCatus preysOn.(Animal Small)⊑∀ ⊓
Animal preysOn.Animal Predator⊓∃ ⊑
FelisCatus Animal⊑
FelisCatus(silvester)
preysOn(silvester, tweety)

Animal(silvester)
∀preysOn.(Animal Small)(silvester)⊓
Animal Small(tweety)⊓
Animal(tweety)
Small(tweety)
∃preysOn.Animal(silvester)
Animal preysOn.Animal(silvester)⊓∃
Predator(silvester)

silvester

tweety

FelisCatus
Animal
Predator

Animal
Small

preysOn

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 42

Completing the Completeness Proof (1)

 I and O' agree on class and property names.
 Extend this to complex expressions:

1) P− occurs in O and <c, d> P∈ −I iff P−(c, d) O'∈
2) If E CL occurs in O, then c E∈ ∈ I implies E(c) O'∈
3) If E CR and E(c) O', then E occurs in O and c E∈ ∈ ∈ I

 Easy consequence: I satisfies O

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 43

Completing the Completeness Proof (2)

 Example Claim 2:
If E CL occurs in O, then c E∈ ∈ I implies E(c) O'∈

 Proof technique:
structural induction on the grammatical definition of CL

 Not hard in each case; for example:

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 44

Rule-Based Classification in EL

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 45

Rule-Based Classification in EL

 Goal: for an ontology O, compute all entailments of
the form A ⊑ B for class names A and B in O.

 → Possible with similar inference rules as for RL

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 46

Derivation Rules for EL

 Ignore assertions: assume we only have class
inclusions here

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 47

Derivation Calculus

 Saturate under the derivation rules

 An axiom A ⊑ B is inferred if
 A ⊑ B was derived by the rules, or
 A ⊑ was derived, or⊥
 ⊤ ⊑ ⊥ was derived

 → Second case takes inconsistent class into account
 Third case takes inconsistent ontology into account→

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 48

Correctness of the EL Rule Calculus

Soundness

Completeness

Termination

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 49

Correctness of the EL Rule Calculus

 Soundness and termination as for RL

 Completeness similar to RL, but with different model I:
 Introduce one representative domain element e

C

for every class name C that is not inconsistent
 For class name A, define e

C
 A∈ I iff C ⊑ A O'.∈

 For property name P, define
<e

C
,e

D
> P∈ I iff C ⊑ P.D O'.∃ ∈

 → Not a universal model, but a “canonical” one

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 50

Towards a Practical Implementation

 Optimisation is essential
 Main aspects of optimisation:

 Derivation rules: avoid redundant inferences
 Control flow: avoid unnecessary rule applications
 Engineering: fast rule matching
 Concurrency: parallelise computation

 Important insight: main cost is in checking
applicability of rules, not in actually applying them

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 59

ELK Reasoner

 Fastest OWL EL reasoner today
(according to OWL Reasoner Evaluation 2013, 2014, 2015)

http://elk.semanticweb.org/

 For further details see

Y. Kazakov, MK, F. Simancik: “The Incredible ELK”
J Automated Reasoning 53:1, Springer, 2013. Available online.

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 60

Rewriting-Based Query Answering in QL

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 61

Querying ontologies

 DL is often not enough for data access:
 “Who lives together with their parents?”
 “Who has married parents?”
 “Which properties connect Alice and Bob?”
 → Not expressible in DL

 More advanced query languages can be used, e.g.,
SPARQL

 Semantics not always clear→
 Standard reasoning algorithms often not applicable→

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 62

Ontology-Based Data Access (OBDA)

 The OBDA paradigm:
 Query data from a database, taking ontological

axioms into account
 Models of ontology+database can be viewed as

(possibly very large) completed database
 Query answers in OBDA: certain answers (answers

that hold in every model of the ontology)

 → Query answering under constraints (background
knowledge), e.g., for data integration tasks

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 63

Conjunctive Queries (CQs)

 Most basic query language
 A query is a formula of the form

∃x1… ∃xn. C1 ^ … ^ Cm

where C1, …, Cm are atomic first-order formulae
(in our case: predicates are only unary [class] or binary [property])

 A query can have free variables, called distinguished
 The bound variables x1, …, xn are non-distinguished

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 64

Conjunctive Queries: Examples

 Who lives together with their parents?

∃y. livesWith(x,y) ^ hasParent(x,y)

 Who has married parents?

∃y.∃z. hasMother(x,y) ^ hasFather(x,z) ^ married(y,z)

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 65

Conjunctive Queries: Relationships

 CQs are essentially equivalent to:
 Basic Graph Patterns of SPARQL
 SELECT-PROJECT-JOIN fragment of SQL

 → Definition of distinguished/non-distinguished
variables must be clarified in either case

 Unions of CQs (UCQs): allow disjunctions of CQs
 Path queries: allow regular expressions over properties

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 66

CQs and OBDA

 Challenge:
Existence of unnamed individuals may be entailed

 Can we query for these? How?→

 Solution:
Distinguished variables can only bind to named ind's
Non-distinguished variables can bind to anything

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 67

Example

 Query: FelisCatus(x) ^ preysOn(x,y) ^ Animal(y)

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 68

Example

 Query: FelisCatus(x) ^ preysOn(x,y) ^ Animal(y)

 Only solution is x=silvester, y=tweety→
 → No solution with x=tom (no named value for y)

http://elk.semanticweb.org/

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 69

Rewriting-Based Query Answering in QL

 Goal: for an ontology O, compute all certain answers
for a conjunctive query over O

 Approach: rewrite input query into a union of many
conjunctive queries that yield the result

 Rewriting only depends on terminological axioms,
not on assertions

 Rewritten queries can be answered by relational
DB systems (SQL)

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 70

QL Syntax Revisited

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 71

A Simpler Normal Form for Axioms

 Axioms of QLtiny can be rewritten to a simpler form:

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 72

Rules for Rewriting Queries

 Derive new queries by replacing atoms:

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 73

Example Rewriting for QL

FelisCatus preysOn.Animal⊑∃
SerinusCanaria Animal⊑
FelisCatus(silvester)
FelisCatus(tom)
SerinusCanaria(tweety)
preysOn(silvester, tweety)

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 74

Example Rewriting for QL

FelisCatus preysOn.Animal⊑∃
SerinusCanaria Animal⊑
FelisCatus(silvester)
FelisCatus(tom)
SerinusCanaria(tweety)
preysOn(silvester, tweety)

∃y.FelisCatus(x) preysOn(x, y) Animal(y)∧ ∧
∃y.FelisCatus(x) preysOn(x, y) SerinusCanaria(y)∧ ∧
∃y.FelisCatus(x) preysOn∧ -(y, x) Animal(y)∧
∃y.FelisCatus(x) preysOn∧ -(y, x) SerinusCanaria(y)∧
 FelisCatus(x) preysOn.Animal(x)∧ ∃
 FelisCatus(x)

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 75

Missing Bits

 Check if ontology is consistent

 Check if the “query” y. (y) is entailed→ ∃ ⊥

 Allow query simplification by unification

 → Factorise query atoms

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 76

Correctness of the QL Rewriting Calculus

 Soundness: easy
 Termination: not hard (query building blocks finite)
 Correctness: not entirely trivial

 Construct a universal model, step by step
(may be infinite now!)

 Every query match can be found in this model
 can also be found in the partially constructed model after →

some number n of construction steps
 Show that there is a rewritten query that has a match after

only n-1 construction steps
 Induction: some rewriting matches at n=0 (assertions in O)

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 77

The Limits of Lightweight Ontologies

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 78

Tiny OWL Profiles: Possible Extensions

 OWL RL and QL allow inverse properties, EL doesn't.
 Features for sub- and superclasses:

Sub > ? u t : 9 9> 8 8?

RL × × × × ×
EL × × × × ×
QL × × ×

Sup > ? u t : 9 9> 8 8?

RL × × × × ×
EL × × × × ×
QL × × × × × ×

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 79

Tiny OWL Profiles: Possible Extensions

 OWL RL and QL allow inverse properties, EL doesn't.
 Features for sub- and superclasses: more is possible

Sub > ? u t : 9 9> 8 8?

RL × × × × × ×
EL × × × × × ×
QL × × × × ×

Sup > ? u t : 9 9> 8 8?

RL × × × × × ×
EL × × × × × × ×
QL × × × × × × ×

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 80

Unions are Hard

 No tractable language can have in subclasses and⊓
 in superclasses⊔

 Proof idea:
Show NP-hardness by expressing 3SAT in OWL

 Try it at home (solution in Section 4.3 lecture notes)

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 81

Universal + Existential = Exponential

 Reasoning in any ontology language with
 ∃ and in subclasses, and⊓
 ∀ and in superclasses∃

is ExpTime-hard.

 This covers the union of RL and EL and
the union of RL and QL

 How can we show this?

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 82

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 83

Alternation (1)

 An Alternating Turing Machine (ATM) is a non-
deterministic TM whose states are partitioned into
two sets of existential states and universal states.

 Intuition:
 Existential state: the ATM nondeterministically

picks one possible transition to move on
 Universal state: the ATM branches into many ATMs

that explore each possible transition

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 84

Alternation (2)

 A configuration of an ATM is accepting if:
 it is in an existential state and one of the possible

transitions leads to an accepting state, or
 it is in a universal state and all of the possible

transitions lead to an accepting state.
(note: inductive definition; universal states with no
transitions are accepting)

 An ATM accepts an input if the initial state is accepting
on this input.

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 85

Alternation (3)

 Time and space complexity for ATMs defined as usual
(considering the time/space used by a single
sequence of choices, whether existential or universal)

 What makes ATMs so interesting for us:
 ALogSpace = PTime
 APTime = PSpace
 APSpace = ExpTime

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 86

Simulating a PSpace ATM with OWL

 Input: an ATM and an input word

 Goal:
 Construct an OWL ontology that derives a certain

entailment iff the ATM can accept the input in
polynomial space.

 The construction should only take polynomial time

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 87

Simulating a PSpace ATM with OWL

 Idea: individuals represent ATM configurations, classes
describe configurations, properties model transitions

 Encoding:
 Aq: the ATM is in state q
 Hi: the ATM head is at position i
 Cσ,i: the tape position i contains symbol σ
 Acc: the configuration is accepting
 Iw: the initial configuration for input word w
 Sδ: property linking to configuration obtained by

applying transition δ

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 88

Simulating a PSpace ATM with OWL

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 89

Simulating a PSpace ATM with OWL

 Finally, we define the initial configuration for input w:
(p defines the polynomial space bound for the ATM)

 One can show (Section 4.5 of lecture notes):
The ontology implies Iw ⊑Acc iff the ATM accepts w in
polynomial space.

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 90

EL + QL = ExpTime

 Only a small change is needed in the ATM simulation.

Replace:

By:

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 91

Advanced Features

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 92

Further Features of all OWL Profiles

 Datatypes
 Many types (numbers, strings, dates, …)
 Used with DataProperties
 Datatype expressions usable like class expressions
 Restrictions to avoid non-determinism

 Property Hierarchies

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 93

Further Features of OWL EL and OWL RL

 Property Chains
 Generalisation of transitivity
 Example: hasParent o hasBrother hasUncle⊑
 Subject to global restrictions in OWL DL

 Equality
 State that two individuals are the same or different

 Nominals
 Classes with exactly one instance, given by an individual
 Example: livesIn.{europe} European∃ ⊑

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 94

Further Features of OWL EL and OWL RL

 Functional Properties
 Properties that have at most one value
 Limited to DataProperties in OWL EL
 Missing in lecture notes

 Keys
 “Rules” that imply the equality of individuals
 Semantics restricted to named individuals
 No description logic syntax
 Example: HasKey(Person hasName birthday)

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 95

Further Features of OWL EL

 Local Reflexivity (Self)
 Example: CEO supervisedBy.Self⊑∃
 Can be used to refer to classes in property chains:

 Man manProperty.Self⊑∃
manProperty o hasChild fatherOf⊑

 Not in OWL RL (no technical reason) or
OWL QL (technical status not known, but should work)

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 96

Sugar

 Many OWL features can also be expressed by using
other features Syntactic sugar→

 Can be more efficient for encoding something

 What is sugar depends on the available features
(for example: is sugar if and ¬ are available)⊓ ⊔

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 97

Summary & Conclusions

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 98

Summary: Reasoning in the Profiles

 Reasoning with the OWL 2 Profiles
 Saturation (bottom-up): EL and RL
 Rewriting (top-down): QL
 → other approaches possible in each case!

 Completeness of inference methods:
 Relate computation to (canonical/universal) models
 Main tool: (structural) induction

 Optimisation on several levels is important

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 99

Summary: Extending the Profiles

 Various features can be added

 Some features are generally problematic
 Unions (in superclasses)
 Combination of universals and existentials
 Combination of inverses and existentials

 Hardness by simulating hard problems in OWL
 ATMs as a powerful tool

September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 100

Conclusions

	Efficient Reasoning for OWL EL
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100

