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Plan

Goal:
Learn about the lightweight ontology languages,
and understand why they are lightweight.
 

1) Review: OWL and DLs
2) Overview: OWL 2 Profiles
3) Reasoning in OWL RL: Instance Retrieval
4) Reasoning in OWL EL: Classification
5) Reasoning in OWL QL: Query Answering
6) Limits of Tractability
7) Advanced Features
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The Web Ontology Language OWL
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The OWL Language

 W3C standard since 2004, updated in 2009

 An ontology language with two sides:
 Descriptive: express expert knowledge formally
 Logical: draw conclusions from this knowledge

 reasoning→

 Compatibility with important technology standards
 Unicode, IRI, XML Schema, RDF, RDF Schema
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The Data Model of OWL

 Ontologies use a vocabulary of entities
 Classes
 Properties
 Individuals and data literals 

 Entities are combined to form expressions

 Relationships of expressions are described by axioms
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Syntaxes and Semanticses

 5 official syntactic formats:
 Functional-Style Syntax
 Manchester Syntax
 OWL/XML Syntax
 RDF-based syntaxes (RDF/XML, Turtle)

 2 formal semantics:
 Direct Semantics
 RDF-Based Semantics
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Reasoning Tasks

 Every ontology has infinitely many conclusions
 Which conclusions are we interested in?

 Instance checking
 Class subsumption 
 Ontology consistency
 Class consistency (coherence)

 → Tasks can be reduced to each other with little effort
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Hardness of Reasoning

 Main requirements:
 Soundness: only correct conclusions are computed
 Completeness: no correct conclusion is missed

 Reasoning is hard:
 Undecidable for RDF-Based Semantics
 N2ExpTime-complete for Direct Semantics

 → OWL Profiles: sub-languages with easier reasoning
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OWL and Description Logics: Basic Features
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Example Axioms in DL Syntax
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OWL Direct Semantics

 Based on first-order logic interpretations

 Direct correspondences:
 classes   sets→
 properties  relations→
 individuals  domain elements→

 Equivalent to translating OWL to first-order logic
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OWL Direct Semantics
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OWL RDF-Based Semantics

 Based on translating OWL ontologies to RDF graphs

 Interpretations defined on graphs
 Applicable to all RDF graphs, even if not from OWL

 Sometimes stronger (more entailments), sometimes 
weaker (fewer entailments) than Direct Semantics

 Direct Semantics and RDF-Based Semantics agree 
under reasonable conditions
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Reasoning in the OWL Profiles
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Defining Language Profiles by Grammars

 The OWL sublanguage introduced above is ALCI
 Can be described by a formal grammar:
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A Tiny Version of OWL EL

 OWL EL is based on the description logic EL(++)
 Typical applications in ontology engineering
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A Tiny Version of OWL RL

 OWL RL is a “rule language”
 Typical applications in data management
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A Tiny Version of OWL QL

 OWL QL is a “query language”
 Typical applications in data access
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Tiny OWL Profiles: Feature Overview

 RL and QL allow for inverse properties, EL doesn't.
 Features for sub- and superclasses:

Sub > ? u t : 9 9> 8 8?

RL × × × × ×
EL × × × × ×
QL × × ×

Sup > ? u t : 9 9> 8 8?

RL × × × × ×
EL × × × × ×
QL × × × × × ×
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Rule-Based Instance Retrieval in RL
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Rule-Based Instance Retrieval in RL

 Goal: for an ontology O, compute all entailments of 
the form C(a) and P(a,b) for a class name C in O and a 
property name P in O

 Approach: apply inference rules until no new 
conclusions are found

 Known under many names: saturation, deductive 
closure, materialisation, bottom-up reasoning, forward 
chaining, consequence-based reasoning
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Derivation Rules for RL
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Derivation Calculus

 Saturate under the derivation rules
(this is uniquely defined: Section 3.3 lecture notes)

 An axiom is inferred if
  the axiom was derived by the rules, or
  ⊥(c) was derived for some constant c.

 → Second case takes inconsistent ontologies into 
account
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Example Derivation for RL

FelisCatus   preysOn.(Animal  Small)⊑∀ ⊓
Animal  preysOn.Animal  Predator⊓∃ ⊑
FelisCatus  Animal⊑
FelisCatus(silvester)
preysOn(silvester, tweety) 
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Example Derivation for RL

FelisCatus   preysOn.(Animal  Small)⊑∀ ⊓
Animal  preysOn.Animal  Predator⊓∃ ⊑
FelisCatus  Animal⊑
FelisCatus(silvester)
preysOn(silvester, tweety) 

Animal(silvester)
∀preysOn.(Animal  Small)(silvester)⊓
Animal  Small(tweety)⊓
Animal(tweety)
Small(tweety)
∃preysOn.Animal(silvester)
Animal  preysOn.Animal(silvester)⊓∃
Predator(silvester)
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Correctness of the RL Rule Calculus
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Correctness of the RL Rule Calculus

Soundness

Completeness

Termination
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Soundness of the Calculus
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Soundness of the Calculus

 Proof strategy:
 Show that every single rule is sound
 If we start with true statements, only true 

statements can be derived
(that's an induction argument)

 Easy to see
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Termination of the Calculus
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Termination of the Calculus

 Proof strategy:
 Show that only a limited number of inferences can 

be derived
 Main observation: every derived axiom only uses 

expressions from the ontology (or )⊥
 Only finite number of axioms possible

(at most size^3 many)
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Completeness of the Calculus
(for instance retrieval!)
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Completeness of the Calculus
(for instance retrieval!)
 Proof strategy:

 Show that, if a axiom is not inferred, then there is a 
model of O here the axiom does not hold

 There even is a single universal model that refutes 
every axiom that is not inferred

 Proof steps:
 Define this model
 Show that it is a model
 Show that it refutes non-inferred axioms
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Defining a Universal Model

 Let O' be the saturation of O.
 We define an interpretation I:

 The domain ∆I of I is the set of all individual 
symbols (w.l.o.g., we can assume that there is one).

 For every individual symbol c, define cI := c.
 For every class name A, define c  A∈ I iff A(c)  O' .∈
 For every property name P, define

<c, d>  P∈ I iff P(c, d)  O'.∈

 → I refutes atomic assertions that are not in O'
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Example Derivation for RL

FelisCatus   preysOn.(Animal  Small)⊑∀ ⊓
Animal  preysOn.Animal  Predator⊓∃ ⊑
FelisCatus  Animal⊑
FelisCatus(silvester)
preysOn(silvester, tweety) 

Animal(silvester)
∀preysOn.(Animal  Small)(silvester)⊓
Animal  Small(tweety)⊓
Animal(tweety)
Small(tweety)
∃preysOn.Animal(silvester)
Animal  preysOn.Animal(silvester)⊓∃
Predator(silvester)
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Constructing a Universal Model

FelisCatus(silvester)
preysOn(silvester, tweety) 

Animal(silvester)

Animal(tweety)
Small(tweety)

Predator(silvester)
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Constructing a Universal Model

FelisCatus(silvester)
preysOn(silvester, tweety) 

Animal(silvester)

Animal(tweety)
Small(tweety)

Predator(silvester)

silvester

tweety
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Constructing a Universal Model

FelisCatus(silvester)
preysOn(silvester, tweety) 

Animal(silvester)

Animal(tweety)
Small(tweety)

Predator(silvester)

FelisCatus
Animal
Predator

Animal
Small

preysOn

silvester

tweety
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Constructing a Universal Model

FelisCatus   preysOn.(Animal  Small)⊑∀ ⊓
Animal  preysOn.Animal  Predator⊓∃ ⊑
FelisCatus  Animal⊑
FelisCatus(silvester)
preysOn(silvester, tweety) 

Animal(silvester)
∀preysOn.(Animal  Small)(silvester)⊓
Animal  Small(tweety)⊓
Animal(tweety)
Small(tweety)
∃preysOn.Animal(silvester)
Animal  preysOn.Animal(silvester)⊓∃
Predator(silvester)

silvester

tweety

FelisCatus
Animal
Predator

Animal
Small

preysOn
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Completing the Completeness Proof (1)

 I and O' agree on class and property names.
 Extend this to complex expressions:

1) P− occurs in O and <c, d>  P∈ −I iff P−(c, d)  O'∈
2) If E  CL occurs in O, then c  E∈ ∈ I implies E(c)  O'∈
3) If E  CR and E(c)  O', then E occurs in O and c  E∈ ∈ ∈ I

 Easy consequence: I satisfies O
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Completing the Completeness Proof (2)

 Example Claim 2:
If E  CL occurs in O, then c  E∈ ∈ I implies E(c)  O'∈

 Proof technique:
structural induction on the grammatical definition of CL

 Not hard in each case; for example: 
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Rule-Based Classification in EL
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Rule-Based Classification in EL

 Goal: for an ontology O, compute all entailments of 
the form A  ⊑ B for class names A and B in O.

 → Possible with similar inference rules as for RL
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Derivation Rules for EL

 Ignore assertions: assume we only have class 
inclusions here
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Derivation Calculus

 Saturate under the derivation rules

 An axiom A  ⊑ B is inferred if
  A  ⊑ B was derived by the rules, or
  A  ⊑  was derived, or⊥
  ⊤  ⊑  ⊥ was derived

 → Second case takes inconsistent class into account
 Third case takes inconsistent ontology into account→
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Correctness of the EL Rule Calculus

Soundness

Completeness

Termination
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Correctness of the EL Rule Calculus

 Soundness and termination as for RL

 Completeness similar to RL, but with different model I:
 Introduce one representative domain element e

C
 

for every class name C that is not inconsistent
 For class name A, define e

C
  A∈ I iff C  ⊑ A  O'.∈

 For property name P, define
<e

C
,e

D
>  P∈ I iff C  ⊑ P.D  O'.∃ ∈

 → Not a universal model, but a “canonical” one
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Towards a Practical Implementation

 Optimisation is essential
 Main aspects of optimisation:

 Derivation rules: avoid redundant inferences
 Control flow: avoid unnecessary rule applications
 Engineering: fast rule matching
 Concurrency: parallelise computation

 Important insight: main cost is in checking 
applicability of rules, not in actually applying them
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ELK Reasoner

 Fastest OWL EL reasoner today
(according to OWL Reasoner Evaluation 2013, 2014, 2015)

http://elk.semanticweb.org/

 For further details see

Y. Kazakov, MK, F. Simancik: “The Incredible ELK”
J Automated Reasoning 53:1, Springer, 2013. Available online.
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Rewriting-Based Query Answering in QL
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Querying ontologies

 DL is often not enough for data access:
 “Who lives together with their parents?”
 “Who has married parents?”
 “Which properties connect Alice and Bob?”
 → Not expressible in DL

 More advanced query languages can be used, e.g., 
SPARQL

 Semantics not always clear→
 Standard reasoning algorithms often not applicable→
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Ontology-Based Data Access (OBDA)

 The OBDA paradigm:
 Query data from a database, taking ontological 

axioms into account
 Models of ontology+database can be viewed as 

(possibly very large) completed database
 Query answers in OBDA: certain answers (answers 

that hold in every model of the ontology)

 → Query answering under constraints (background 
knowledge), e.g., for data integration tasks
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Conjunctive Queries (CQs)

 Most basic query language
 A query is a formula of the form

∃x1… ∃xn. C1 ^ … ^ Cm

where C1, …, Cm are atomic first-order formulae
(in our case: predicates are only unary [class] or binary [property])

 A query can have free variables, called distinguished
 The bound variables x1, …, xn are non-distinguished
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Conjunctive Queries: Examples

 Who lives together with their parents?

∃y. livesWith(x,y) ^ hasParent(x,y)

 Who has married parents?

∃y.∃z. hasMother(x,y) ^ hasFather(x,z) ^ married(y,z)
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Conjunctive Queries: Relationships

 CQs are essentially equivalent to:
 Basic Graph Patterns of SPARQL
 SELECT-PROJECT-JOIN fragment of SQL

 → Definition of distinguished/non-distinguished 
variables must be clarified in either case

 Unions of CQs (UCQs): allow disjunctions of CQs
 Path queries: allow regular expressions over properties
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CQs and OBDA

 Challenge:
Existence of unnamed individuals may be entailed

 Can we query for these? How?→

 Solution:
Distinguished variables can only bind to named ind's
Non-distinguished variables can bind to anything
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Example

 Query: FelisCatus(x) ^ preysOn(x,y) ^ Animal(y)



September 18, 2015Markus Krötzsch -- OWL 2 Profiles
Page 68

Example

 Query: FelisCatus(x) ^ preysOn(x,y) ^ Animal(y)

 Only solution is x=silvester, y=tweety→
 → No solution with x=tom (no named value for y)

http://elk.semanticweb.org/
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Rewriting-Based Query Answering in QL

 Goal: for an ontology O, compute all certain answers 
for a conjunctive query over O

 Approach: rewrite input query into a union of many 
conjunctive queries that yield the result

 Rewriting only depends on terminological axioms, 
not on assertions

 Rewritten queries can be answered by relational 
DB systems (SQL)
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QL Syntax Revisited
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A Simpler Normal Form for Axioms

 Axioms of QLtiny can be rewritten to a simpler form:
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Rules for Rewriting Queries

 Derive new queries by replacing atoms:
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Example Rewriting for QL

FelisCatus   preysOn.Animal⊑∃
SerinusCanaria  Animal⊑
FelisCatus(silvester)
FelisCatus(tom)
SerinusCanaria(tweety)
preysOn(silvester, tweety) 
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Example Rewriting for QL

FelisCatus   preysOn.Animal⊑∃
SerinusCanaria  Animal⊑
FelisCatus(silvester)
FelisCatus(tom)
SerinusCanaria(tweety)
preysOn(silvester, tweety) 

∃y.FelisCatus(x)  preysOn(x, y)  Animal(y)∧ ∧
∃y.FelisCatus(x)  preysOn(x, y)  SerinusCanaria(y)∧ ∧
∃y.FelisCatus(x)  preysOn∧ -(y, x)  Animal(y)∧
∃y.FelisCatus(x)  preysOn∧ -(y, x)  SerinusCanaria(y)∧
      FelisCatus(x)  preysOn.Animal(x)∧ ∃
      FelisCatus(x) 
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Missing Bits 

 Check if ontology is consistent

 Check if the “query”  y. (y) is entailed→ ∃ ⊥

 Allow query simplification by unification

 → Factorise query atoms
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Correctness of the QL Rewriting Calculus

 Soundness: easy
 Termination: not hard (query building blocks finite)
 Correctness: not entirely trivial

 Construct a universal model, step by step
(may be infinite now!)

 Every query match can be found in this model
 can also be found in the partially constructed model after →

some number n of construction steps
 Show that there is a rewritten query that has a match after 

only n-1 construction steps
 Induction: some rewriting matches at n=0 (assertions in O) 
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The Limits of Lightweight Ontologies
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Tiny OWL Profiles: Possible Extensions

 OWL RL and QL allow inverse properties, EL doesn't.
 Features for sub- and superclasses:

Sub > ? u t : 9 9> 8 8?

RL × × × × ×
EL × × × × ×
QL × × ×

Sup > ? u t : 9 9> 8 8?

RL × × × × ×
EL × × × × ×
QL × × × × × ×
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Tiny OWL Profiles: Possible Extensions

 OWL RL and QL allow inverse properties, EL doesn't.
 Features for sub- and superclasses: more is possible

Sub > ? u t : 9 9> 8 8?

RL × × × × × ×
EL × × × × × ×
QL × × × × ×

Sup > ? u t : 9 9> 8 8?

RL × × × × × ×
EL × × × × × × ×
QL × × × × × × ×
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Unions are Hard

 No tractable language can have  in subclasses and⊓
 in superclasses⊔

 Proof idea:
Show NP-hardness by expressing 3SAT in OWL

 Try it at home (solution in Section 4.3 lecture notes)
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Universal + Existential = Exponential

 Reasoning in any ontology language with
  ∃ and  in subclasses, and⊓
  ∀ and  in superclasses∃

is ExpTime-hard.

 This covers the union of RL and EL and
the union of RL and QL

 How can we show this?
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Alternation (1)

 An Alternating Turing Machine (ATM) is a non-
deterministic TM whose states are partitioned into 
two sets of existential states and universal states.

 Intuition:
 Existential state: the ATM nondeterministically 

picks one possible transition to move on
 Universal state: the ATM branches into many ATMs 

that explore each possible transition
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Alternation (2)

 A configuration of an ATM is accepting if:
 it is in an existential state and one of the possible 

transitions leads to an accepting state, or
 it is in a universal state and all of the possible 

transitions lead to an accepting state.
(note: inductive definition; universal states with no 
transitions are accepting)

 An ATM accepts an input if the initial state is accepting 
on this input.
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Alternation (3)

 Time and space complexity for ATMs defined as usual 
(considering the time/space used by a single 
sequence of choices, whether existential or universal)

 What makes ATMs so interesting for us:
 ALogSpace = PTime 
 APTime = PSpace 
 APSpace = ExpTime
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Simulating a PSpace ATM with OWL

 Input: an ATM and an input word

 Goal:
 Construct an OWL ontology that derives a certain 

entailment iff the ATM can accept the input in 
polynomial space.

 The construction should only take polynomial time
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Simulating a PSpace ATM with OWL

 Idea: individuals represent ATM configurations, classes 
describe configurations, properties model transitions

 Encoding:
 Aq: the ATM is in state q
 Hi: the ATM head is at position i 
 Cσ,i: the tape position i contains symbol σ
 Acc: the configuration is accepting
 Iw: the initial configuration for input word w
 Sδ: property linking to configuration obtained by 

applying transition δ
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Simulating a PSpace ATM with OWL
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Simulating a PSpace ATM with OWL

 Finally, we define the initial configuration for input w:
(p defines the polynomial space bound for the ATM)

 One can show (Section 4.5 of lecture notes):
The ontology implies Iw  ⊑Acc iff the ATM accepts w in 
polynomial space.
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EL + QL = ExpTime

 Only a small change is needed in the ATM simulation.

Replace:

By:
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Advanced Features
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Further Features of all OWL Profiles

 Datatypes
 Many types (numbers, strings, dates, …)
 Used with DataProperties
 Datatype expressions usable like class expressions
 Restrictions to avoid non-determinism

 Property Hierarchies
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Further Features of OWL EL and OWL RL

 Property Chains
 Generalisation of transitivity
 Example: hasParent o hasBrother  hasUncle⊑
 Subject to global restrictions in OWL DL

 Equality
 State that two individuals are the same or different

 Nominals
 Classes with exactly one instance, given by an individual
 Example:  livesIn.{europe}  European∃ ⊑
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Further Features of OWL EL and OWL RL

 Functional Properties
 Properties that have at most one value
 Limited to DataProperties in OWL EL
 Missing in lecture notes

 Keys
 “Rules” that imply the equality of individuals
 Semantics restricted to named individuals
 No description logic syntax
 Example: HasKey( Person hasName birthday )
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Further Features of OWL EL

 Local Reflexivity (Self)
 Example: CEO   supervisedBy.Self⊑∃
 Can be used to refer to classes in property chains:

       Man   manProperty.Self⊑∃
manProperty o hasChild  fatherOf⊑

 Not in OWL RL (no technical reason) or
OWL QL (technical status not known, but should work)
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Sugar

 Many OWL features can also be expressed by using 
other features  Syntactic sugar→

 Can be more efficient for encoding something

 What is sugar depends on the available features
(for example:  is sugar if  and ¬ are available)⊓ ⊔
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Summary & Conclusions
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Summary: Reasoning in the Profiles

 Reasoning with the OWL 2 Profiles
 Saturation (bottom-up): EL and RL
 Rewriting (top-down): QL
 → other approaches possible in each case!

 Completeness of inference methods:
 Relate computation to (canonical/universal) models
 Main tool: (structural) induction

 Optimisation on several levels is important
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Summary: Extending the Profiles

 Various features can be added

 Some features are generally problematic
 Unions (in superclasses)
 Combination of universals and existentials
 Combination of inverses and existentials

 Hardness by simulating hard problems in OWL
 ATMs as a powerful tool
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Conclusions
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