

DATABASE THEORY

Lecture 10: Conjunctive Query Optimisation

Markus Krötzsch Knowledge-Based Systems

TU Dresden, 29th May 2018

Review

There are many well-defined static optimisation tasks that are independent of the database

→ query equivalence, containment, emptiness

Unfortunately, all of them are undecidable for FO queries

- → Slogan: "all interesting questions about FO queries are undecidable"
- → Let's look at simpler query languages

Optimisation for Conjunctive Queries

Optimisation is simpler for conjunctive queries

Example 10.1: Conjunctive query containment:

$$Q_1$$
: $\exists x, y, z. \ R(x, y) \land R(y, y) \land R(y, z)$

$$Q_2$$
: $\exists u, v, w, t. \ R(u, v) \land R(v, w) \land R(w, t)$

 \mathcal{Q}_1 find $\mathit{R}\text{-paths}$ of length two with a loop in the middle

Q2 find R-paths of length three

→ in a loop one can find paths of any length

 $\rightsquigarrow Q_1 \sqsubseteq Q_2$

Deciding Conjunctive Query Containment

Consider conjunctive queries $Q_1[x_1, ..., x_n]$ and $Q_2[y_1, ..., y_n]$.

Definition 10.2: A query homomorphism from Q_2 to Q_1 is a mapping μ from terms (constants or variables) in Q_2 to terms in Q_1 such that:

- μ does not change constants, i.e., $\mu(c) = c$ for every constant c
- $x_i = \mu(y_i)$ for each $i = 1, \dots, n$
- if Q_2 has a query atom $R(t_1, ..., t_m)$ then Q_1 has a query atom $R(\mu(t_1), ..., \mu(t_m))$

Deciding Conjunctive Query Containment

Consider conjunctive queries $Q_1[x_1, ..., x_n]$ and $Q_2[y_1, ..., y_n]$.

Definition 10.2: A query homomorphism from Q_2 to Q_1 is a mapping μ from terms (constants or variables) in Q_2 to terms in Q_1 such that:

- μ does not change constants, i.e., $\mu(c) = c$ for every constant c
- $x_i = \mu(y_i)$ for each $i = 1, \dots, n$
- if Q₂ has a query atom R(t₁,...,t_m) then Q₁ has a query atom R(μ(t₁),...,μ(t_m))

Theorem 10.3 (Homomorphism Theorem): $Q_1 \subseteq Q_2$ if and only if there is a query homomorphism $Q_2 \to Q_1$.

 \rightarrow decidable (only need to check finitely many mappings from Q_2 to Q_1)

Example

$$Q_1$$
: $\exists x, y, z. \ R(x, y) \land R(y, y) \land R(y, z)$
 Q_2 : $\exists u, v, w, t. \ R(u, v) \land R(v, w) \land R(w, t)$

Review: CQs and Homomorphisms

If $\langle d_1, \ldots, d_n \rangle$ is a result of $Q_1[x_1, \ldots, x_n]$ over database I then:

- there is a mapping ν from variables in Q_1 to the domain of \mathcal{I}
- $d_i = v(x_i)$ for all $i = 1, \dots, m$
- for all atoms $R(t_1, \ldots, t_m)$ of Q_1 , we find $\langle v(t_1), \ldots, v(t_m) \rangle \in R^T$ (where we take v(c) to mean c for constants c)

 $\sim I \models Q_1[d_1,\ldots,d_n]$ if there is such a homomorphism ν from Q_1 to I

(Note: this is a slightly different formulation from the "homomorphism problem" discussed in a previous lecture, since we keep constants in queries here)

Proof of the Homomorphism Theorem

" \Leftarrow ": $Q_1 \sqsubseteq Q_2$ if there is a query homomorphism $Q_2 \to Q_1$.

- (1) Let $\langle d_1, \ldots, d_n \rangle$ be a result of $Q_1[x_1, \ldots, x_n]$ over database \mathcal{I} .
- (2) Then there is a homomorphism ν from Q_1 to I.
- (3) By assumption, there is a query homomorphism $\mu: Q_2 \to Q_1$.
- (4) But then the composition $v \circ \mu$, which maps each term t to $v(\mu(t))$, is a homomorphism from Q_2 to I.
- (5) Hence $\langle \nu(\mu(y_1)), \dots, \nu(\mu(y_n)) \rangle$ is a result of $Q_2[y_1, \dots, y_n]$ over I.
- (6) Since $\nu(\mu(y_i)) = \nu(x_i) = d_i$, we find that $\langle d_1, \dots, d_n \rangle$ is a result of $Q_2[y_1, \dots, y_n]$ over I.

Since this holds for all results $\langle d_1, \dots, d_n \rangle$ of Q_1 , we have $Q_1 \sqsubseteq Q_2$.

(See board for a sketch showing how we compose homomorphisms here)

Proof of the Homomorphism Theorem

"⇒": there is a query homomorphism $Q_2 \rightarrow Q_1$ if $Q_1 \sqsubseteq Q_2$.

- (1) Turn $Q_1[x_1, \ldots, x_n]$ into a database \mathcal{I}_1 in the natural way:
 - The domain of I_1 are the terms in Q_1
 - For every relation R, we have $\langle t_1, \dots, t_m \rangle \in R^{\mathcal{I}_1}$ exactly if $R(t_1, \dots, t_m)$ is an atom in Q_1
- (2) Then Q_1 has a result $\langle x_1, \dots, x_n \rangle$ over \mathcal{I}_1 (the identity mapping is a homomorphism actually even an isomorphism)
- (3) Therefore, since $Q_1 \sqsubseteq Q_2, \langle x_1, \dots, x_n \rangle$ is also a result of Q_2 over I_1
- (4) Hence there is a homomorphism ν from Q_2 to I_1
- (5) This homomorphism ν is also a query homomorphism $Q_2 \to Q_1$.

Implications of the Homomorphism Theorem

The proof has highlighted another useful fact:

The following two are equivalent:

- Finding a homomorphism from Q_2 to Q_1
- Finding a query result for Q_2 over \mathcal{I}_1

→ all complexity results for CQ query answering apply

Theorem 10.4: Deciding if $Q_1 \sqsubseteq Q_2$ is NP-complete.

If Q_2 is a tree query (or of bounded treewidth, or of bounded hypertree width) then deciding if $Q_1 \sqsubseteq Q_2$ is polynomial (in fact LOGCFL-complete).

Note that even in the NP-complete case the problem size is rather small (only queries, no databases)

Application: CQ Minimisation

Definition 10.5: A conjunctive query *Q* is minimal if:

- for all subqueries Q' of Q (that is, queries Q' that are obtained by dropping one or more atoms from Q),
- we find that $Q' \not\equiv Q$.

A minimal CQ is also called a core.

It is useful to minimise CQs to avoid unnecessary joins in query answering.

CQ Minimisation the Direct Way

A simple idea for minimising *Q*:

- Consider each atom of Q, one after the other
- Check if the subquery obtained by dropping this atom is contained in Q
 - (Observe that the subquery always contains the original query.)
- If yes, delete the atom; continue with the next atom

CQ Minimisation the Direct Way

A simple idea for minimising *Q*:

- Consider each atom of Q, one after the other
- Check if the subquery obtained by dropping this atom is contained in Q

(Observe that the subquery always contains the original query.)

• If yes, delete the atom; continue with the next atom

Example 10.6: Example query Q[v, w]:

$$\exists x, y, z. R(a, y) \land R(x, y) \land S(y, y) \land S(y, z) \land S(z, y) \land T(y, v) \land T(y, w)$$

→ Simpler notation: write as set and mark answer variables

$$\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}\$$

$$\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}\$$

R(a, y)	R(a, y)

$$R(x, y)$$
 $R(x, y)$

$$S(y,y)$$
 $S(y,y)$

$$S(y,z)$$
 $S(y,z)$

$$S(z, y)$$
 $S(z, y)$

$$T(y, \bar{v})$$
 $T(y, \bar{v})$

$$T(y, \bar{w})$$
 $T(y, \bar{w})$

$$\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}\$$

R(a, y)	R(a,y) ?
R(x, y)	R(x, y)
S(y, y)	S(y, y)
S(y, z)	S(y,z)
S(z, y)	S(z, y)
$T(y, \bar{v})$	$T(y, \bar{v})$
$T(y, \bar{w})$	$T(y, \bar{w})$

$$\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}\$$

Can we map the left side homomorphically to the right side?

R(a, y)	R(a, y)	Keep (cannot map constant a)
R(x, y)	R(x, y)	
S(y, y)	S(y, y)	
S(y, z)	S(y, z)	
S(z, y)	S(z, y)	
$T(y, \bar{v})$	$T(y, \bar{v})$	

 $T(y, \bar{w})$

 $T(y, \bar{w})$

$$\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}\$$

R(a, y)	R(a, y)	Keep (cannot map constant a)
R(x, y)	R(x, y)	?
S(y, y)	S(y, y)	
S(y, z)	S(y, z)	
S(z, y)	S(z, y)	
$T(y, \bar{v})$	$T(y, \bar{v})$	
$T(y, \bar{w})$	$T(y, \bar{w})$	

$$\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}\$$

R(a, y)	R(a, y)	Keep (cannot map constant a)
R(x, y)	R(x, y)	Drop; map $R(x, y)$ to $R(a, y)$
S(y, y)	S(y, y)	
S(y,z)	S(y, z)	
S(z, y)	S(z, y)	
$T(y, \bar{v})$	$T(y, \bar{v})$	
$T(y, \bar{w})$	$T(y, \bar{w})$	

$$\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}\$$

R(a, y)	R(a, y)	Keep (cannot map constant a)
R(x, y)	R(x, y)	Drop; map $R(x, y)$ to $R(a, y)$
S(y, y)	S(y,y)	?
S(y, z)	S(y, z)	
S(z, y)	S(z, y)	
$T(y, \bar{v})$	$T(y, \bar{v})$	
$T(y, \bar{w})$	$T(y, \bar{w})$	

$$\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}\$$

R(a, y)	R(a, y)	Keep (cannot map constant a)
R(x, y)	R(x, y)	Drop; map $R(x, y)$ to $R(a, y)$
S(y, y)	S(y, y)	Keep (no other atom of form $S(t,t)$)
S(y,z)	S(y, z)	
S(z, y)	S(z, y)	
$T(y, \bar{v})$	$T(y, \bar{v})$	
$T(y, \bar{w})$	$T(y, \bar{w})$	

$$\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}\$$

R(a, y)	R(a, y)	Keep (cannot map constant a)
R(x, y)	R(x, y)	Drop; map $R(x, y)$ to $R(a, y)$
S(y, y)	S(y, y)	Keep (no other atom of form $S(t,t)$)
S(y, z)	S(y,z)	?
S(z, y)	S(z, y)	
$T(y, \bar{v})$	$T(y, \bar{v})$	
$T(y, \bar{w})$	$T(y, \bar{w})$	

$$\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}\$$

R(a, y)	R(a, y)	Keep (cannot map constant a)
R(x, y)	R(x, y)	Drop; map $R(x, y)$ to $R(a, y)$
S(y, y)	S(y, y)	Keep (no other atom of form $S(t,t)$)
S(y,z)	S(y,z)	Drop; map $S(y, z)$ to $S(y, y)$
S(z, y)	S(z, y)	
$T(y, \bar{v})$	$T(y, \bar{v})$	
$T(y, \bar{w})$	$T(y, \bar{w})$	

$$\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}\$$

$$R(a,y)$$
 $R(a,y)$ Keep (cannot map constant a)

 $R(x,y)$ Drop; map $R(x,y)$ to $R(a,y)$
 $S(y,y)$ S(y,y) Keep (no other atom of form $S(t,t)$)

 $S(y,z)$ Drop; map $S(y,z)$ to $S(y,y)$
 $S(z,y)$ $S(z,y)$?

 $S(z,y)$?

 $S(y,z)$ $T(y,\bar{y})$ $T(y,\bar{y})$

$${R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})}$$

R(a, y)	R(a, y)	Keep (cannot map constant a)
R(x, y)	R(x, y)	Drop; map $R(x, y)$ to $R(a, y)$
S(y, y)	S(y, y)	Keep (no other atom of form $S(t,t)$)
S(y,z)	S(y,z)	Drop; map $S(y, z)$ to $S(y, y)$
S(z, y)	S(z,y)	Drop; map $S(z, y)$ to $S(y, y)$
$T(y, \bar{v})$	$T(y, \bar{v})$	
$T(y, \bar{w})$	$T(v, \bar{w})$	

$$\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}\$$

$$R(a,y)$$
 $R(a,y)$ Keep (cannot map constant a)

 $R(x,y)$ Drop; map $R(x,y)$ to $R(a,y)$
 $S(y,y)$ Keep (no other atom of form $S(t,t)$)

 $S(y,z)$ Drop; map $S(y,z)$ to $S(y,y)$
 $S(z,y)$ Drop; map $S(z,y)$ to $S(y,y)$
 $T(y,\bar{v})$ $T(y,\bar{v})$?

$$\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}\$$

R(a, y)	R(a, y)	Keep (cannot map constant a)
R(x, y)	R(x, y)	Drop; map $R(x, y)$ to $R(a, y)$
S(y, y)	S(y, y)	Keep (no other atom of form $S(t,t)$)
S(y,z)	S(y,z)	Drop; map $S(y, z)$ to $S(y, y)$
S(z, y)	S(z, y)	Drop; map $S(z, y)$ to $S(y, y)$
$T(y, \bar{v})$	$T(y, \bar{v})$	Keep (cannot map answer variable)
$T(y, \bar{w})$	$T(y, \bar{w})$	

$$\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}\$$

R(a, y)	R(a, y)	Keep (cannot map constant a)
R(x, y)	R(x, y)	Drop; map $R(x, y)$ to $R(a, y)$
S(y, y)	S(y, y)	Keep (no other atom of form $S(t,t)$)
S(y,z)	S(y,z)	Drop; map $S(y, z)$ to $S(y, y)$
S(z, y)	S(z,y)	Drop; map $S(z, y)$ to $S(y, y)$
$T(y, \bar{v})$	$T(y, \bar{v})$	Keep (cannot map answer variable)
$T(y, \bar{w})$	$T(y, \overline{w})$?

$$\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}\$$

R(a, y)	R(a, y)	Keep (cannot map constant a)
R(x, y)	R(x, y)	Drop; map $R(x, y)$ to $R(a, y)$
S(y, y)	S(y, y)	Keep (no other atom of form $S(t,t)$)
S(y,z)	S(y,z)	Drop; map $S(y, z)$ to $S(y, y)$
S(z,y)	S(z,y)	Drop; map $S(z, y)$ to $S(y, y)$
$T(y, \bar{v})$	$T(y, \bar{v})$	Keep (cannot map answer variable)
$T(y, \bar{w})$	$T(y, \bar{w})$	Keep (cannot map answer variable)

$$\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}\$$

Can we map the left side homomorphically to the right side?

R(a, y)	R(a, y)	Keep (cannot map constant a)
R(x, y)	R(x, y)	Drop; map $R(x, y)$ to $R(a, y)$
S(y, y)	S(y, y)	Keep (no other atom of form $S(t,t)$)
S(y,z)	S(y,z)	Drop; map $S(y, z)$ to $S(y, y)$
S(z, y)	S(z,y)	Drop; map $S(z, y)$ to $S(y, y)$
$T(y, \bar{v})$	$T(y, \bar{v})$	Keep (cannot map answer variable)
$T(y, \bar{w})$	$T(y, \bar{w})$	Keep (cannot map answer variable)

Core: $\exists y. R(a, y) \land S(y, y) \land T(y, v) \land T(y, w)$

CQ Minimisation

Does this algorithm work?

- Is the result minimal?
 Or could it be that some atom that was kept can be dropped later, after some other atoms were dropped?
- Is the result unique?
 Or does the order in which we consider the atoms matter?

CQ Minimisation

Does this algorithm work?

- Is the result minimal?
 Or could it be that some atom that was kept can be dropped later, after some other atoms were dropped?
- Is the result unique?
 Or does the order in which we consider the atoms matter?

Theorem 10.7: The CQ minimisation algorithm always produces a core, and this result is unique up to query isomorphisms (bijective renaming of non-result variables).

Proof: exercise

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof: We reduce 3-colourability of connected graphs to this special kind of homomorphism problem. (If a graph consists of several connected components, then 3-colourability can be solved independently for each, hence 3-colourability is NP-hard when considering only connected graphs.)

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof: We reduce 3-colourability of connected graphs to this special kind of homomorphism problem. (If a graph consists of several connected components, then 3-colourability can be solved independently for each, hence 3-colourability is NP-hard when considering only connected graphs.)

Let G be a connected, undirected graph. Let \prec be an arbitrary total order on G's vertices. Query Q is defined as follows:

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof: We reduce 3-colourability of connected graphs to this special kind of homomorphism problem. (If a graph consists of several connected components, then 3-colourability can be solved independently for each, hence 3-colourability is NP-hard when considering only connected graphs.)

Let G be a connected, undirected graph. Let \prec be an arbitrary total order on G's vertices. Query Q is defined as follows:

• Q contains atoms R(r,g), R(g,r), R(r,b), R(b,r), R(g,b), and R(b,r) (the colouring template)

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof: We reduce 3-colourability of connected graphs to this special kind of homomorphism problem. (If a graph consists of several connected components, then 3-colourability can be solved independently for each, hence 3-colourability is NP-hard when considering only connected graphs.)

Let G be a connected, undirected graph. Let \prec be an arbitrary total order on G's vertices. Query Q is defined as follows:

- Q contains atoms R(r,g), R(g,r), R(r,b), R(b,r), R(g,b), and R(b,r) (the colouring template)
- For every undirected edge $\{e,f\}$ in G with e < f, Q contains an atom R(e,f)

How hard is CQ Minimisation?

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof: We reduce 3-colourability of connected graphs to this special kind of homomorphism problem. (If a graph consists of several connected components, then 3-colourability can be solved independently for each, hence 3-colourability is NP-hard when considering only connected graphs.)

Let G be a connected, undirected graph. Let \prec be an arbitrary total order on G's vertices. Query Q is defined as follows:

- Q contains atoms R(r,g), R(g,r), R(r,b), R(b,r), R(g,b), and R(b,r) (the colouring template)
- For every undirected edge $\{e, f\}$ in G with e < f, Q contains an atom R(e, f)
- For a single (arbitrarily chosen) edge $\{e,f\}$ in G with e < f, Q contains an atom A = R(f,e)

How hard is CQ Minimisation?

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof: We reduce 3-colourability of connected graphs to this special kind of homomorphism problem. (If a graph consists of several connected components, then 3-colourability can be solved independently for each, hence 3-colourability is NP-hard when considering only connected graphs.)

Let G be a connected, undirected graph. Let \prec be an arbitrary total order on G's vertices. Query Q is defined as follows:

- Q contains atoms R(r,g), R(g,r), R(r,b), R(b,r), R(g,b), and R(b,r) (the colouring template)
- For every undirected edge $\{e, f\}$ in G with e < f, Q contains an atom R(e, f)
- For a single (arbitrarily chosen) edge $\{e,f\}$ in G with e < f, Q contains an atom A = R(f,e)

Claim: G is 3-colourable if and only if there is a homomorphism $Q \rightarrow Q \setminus \{A\}$

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof (continued): (\Rightarrow) If G is 3-colourable then there is a homomorphism $Q \to Q \setminus \{A\}$.

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof (continued): (\Rightarrow) If G is 3-colourable then there is a homomorphism $Q \rightarrow Q \setminus \{A\}$.

- Then there is a homomorphism μ from G to the colouring template
- We can extend μ to the colouring template (mapping each colour to itself)
- Then μ is a homomorphism $Q \rightarrow Q \setminus \{A\}$

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof (continued): (\Rightarrow) If G is 3-colourable then there is a homomorphism $Q \rightarrow Q \setminus \{A\}$.

- Then there is a homomorphism μ from G to the colouring template
- We can extend μ to the colouring template (mapping each colour to itself)
- Then μ is a homomorphism $Q \rightarrow Q \setminus \{A\}$

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof (continued): (\Rightarrow) If G is 3-colourable then there is a homomorphism $Q \rightarrow Q \setminus \{A\}$.

- Then there is a homomorphism μ from G to the colouring template
- We can extend μ to the colouring template (mapping each colour to itself)
- Then μ is a homomorphism $Q \to Q \setminus \{A\}$

(\Leftarrow) If there is a homomorphism $Q \to Q \setminus \{A\}$ then G is 3-colourable.

• Let μ be such a homomorphism, and let A = R(f, e).

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof (continued): (\Rightarrow) If G is 3-colourable then there is a homomorphism $Q \rightarrow Q \setminus \{A\}$.

- Then there is a homomorphism μ from G to the colouring template
- We can extend μ to the colouring template (mapping each colour to itself)
- Then μ is a homomorphism $Q \to Q \setminus \{A\}$

- Let μ be such a homomorphism, and let A = R(f, e).
- Since $Q \setminus \{A\}$ contains the pattern R(s,t), R(t,s) only in the colouring template, $\mu(e) \in \{r,g,b\}$ and $\mu(f) \in \{r,g,b\}$.

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof (continued): (\Rightarrow) If G is 3-colourable then there is a homomorphism $Q \rightarrow Q \setminus \{A\}$.

- Then there is a homomorphism μ from G to the colouring template
- We can extend μ to the colouring template (mapping each colour to itself)
- Then μ is a homomorphism $Q \to Q \setminus \{A\}$

- Let μ be such a homomorphism, and let A = R(f, e).
- Since $Q \setminus \{A\}$ contains the pattern R(s,t), R(t,s) only in the colouring template, $\mu(e) \in \{r,g,b\}$ and $\mu(f) \in \{r,g,b\}$.
- Since the colouring template is not connected to other atoms of Q, μ must therefore map all elements of Q to the colouring template.

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof (continued): (\Rightarrow) If G is 3-colourable then there is a homomorphism $Q \rightarrow Q \setminus \{A\}$.

- Then there is a homomorphism μ from G to the colouring template
- We can extend μ to the colouring template (mapping each colour to itself)
- Then μ is a homomorphism $Q \to Q \setminus \{A\}$

- Let μ be such a homomorphism, and let A = R(f, e).
- Since $Q \setminus \{A\}$ contains the pattern R(s,t), R(t,s) only in the colouring template, $\mu(e) \in \{r,g,b\}$ and $\mu(f) \in \{r,g,b\}$.
- Since the colouring template is not connected to other atoms of Q, μ must therefore map all elements of Q to the colouring template.
- Hence, μ induces a 3-colouring.

CQ Minimisation: Complexity

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof (summary): For an arbitrary connected graph G, we constructed a query Q with atom A, such that

- G is 3-colourable if and only if
- there is a homomorphism $Q \to Q \setminus \{A\}$.

Since the former problem is NP-hard, so is the latter.

Inclusion in NP is obvious (just guess the homomorphism).

CQ Minimisation: Complexity

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof (summary): For an arbitrary connected graph G, we constructed a query Q with atom A, such that

- G is 3-colourable if and only if
- there is a homomorphism $Q \to Q \setminus \{A\}$.

Since the former problem is NP-hard, so is the latter.

Inclusion in NP is obvious (just guess the homomorphism).

Checking minimality is the dual problem, hence:

Theorem 10.9: Deciding if a conjunctive query Q is minimal (that is: a core) is coNP-complete.

However, the size of queries is usually small enough for minimisation to be feasible.

Summary and Outlook

Perfect query optimisation is possible for conjunctive queries

- → Homomorphism problem, similar to query answering
- → NP-complete

Using this, conjunctive queries can effectively be minimised

Open questions:

- How to really use EF games to get some results?
- If FO cannot express all tractable queries, what can?