DATABASE THEORY

Lecture 10: Conjunctive Query Optimisation

Markus Krötzsch
Knowledge-Based Systems

TU Dresden, 29th May 2018

Review

There are many well-defined static optimisation tasks that are independent of the database
\leadsto query equivalence, containment, emptiness
Unfortunately, all of them are undecidable for FO queries
\leadsto Slogan: "all interesting questions about FO queries are undecidable"
\leadsto Let's look at simpler query languages

Optimisation for Conjunctive Queries

Optimisation is simpler for conjunctive queries

Example 10.1: Conjunctive query containment:

$$
\begin{array}{ll}
Q_{1}: & \exists x, y, z \cdot R(x, y) \wedge R(y, y) \wedge R(y, z) \\
Q_{2}: & \exists u, v, w, t \cdot R(u, v) \wedge R(v, w) \wedge R(w, t)
\end{array}
$$

Q_{1} find R-paths of length two with a loop in the middle
Q_{2} find R-paths of length three
\leadsto in a loop one can find paths of any length
$\sim Q_{1} \sqsubseteq Q_{2}$

Deciding Conjunctive Query Containment

Consider conjunctive queries $Q_{1}\left[x_{1}, \ldots, x_{n}\right]$ and $Q_{2}\left[y_{1}, \ldots, y_{n}\right]$.

Definition 10.2: A query homomorphism from Q_{2} to Q_{1} is a mapping μ from terms (constants or variables) in Q_{2} to terms in Q_{1} such that:

- μ does not change constants, i.e., $\mu(c)=c$ for every constant c
- $x_{i}=\mu\left(y_{i}\right)$ for each $i=1, \ldots, n$
- if Q_{2} has a query atom $R\left(t_{1}, \ldots, t_{m}\right)$ then Q_{1} has a query atom $R\left(\mu\left(t_{1}\right), \ldots, \mu\left(t_{m}\right)\right)$

Deciding Conjunctive Query Containment

Consider conjunctive queries $Q_{1}\left[x_{1}, \ldots, x_{n}\right]$ and $Q_{2}\left[y_{1}, \ldots, y_{n}\right]$.

Definition 10.2: A query homomorphism from Q_{2} to Q_{1} is a mapping μ from terms (constants or variables) in Q_{2} to terms in Q_{1} such that:

- μ does not change constants, i.e., $\mu(c)=c$ for every constant c
- $x_{i}=\mu\left(y_{i}\right)$ for each $i=1, \ldots, n$
- if Q_{2} has a query atom $R\left(t_{1}, \ldots, t_{m}\right)$ then Q_{1} has a query atom $R\left(\mu\left(t_{1}\right), \ldots, \mu\left(t_{m}\right)\right)$

Theorem 10.3 (Homomorphism Theorem): $Q_{1} \sqsubseteq Q_{2}$ if and only if there is a query homomorphism $Q_{2} \rightarrow Q_{1}$.
\leadsto decidable (only need to check finitely many mappings from Q_{2} to Q_{1})

Example

$$
\begin{array}{lc}
Q_{1}: & \exists x, y, z \cdot R(x, y) \wedge R(y, y) \wedge R(y, z) \\
Q_{2}: & \exists u, v, w, t \cdot R(u, v) \wedge R(v, w) \wedge R(w, t)
\end{array}
$$

Review: CQs and Homomorphisms

If $\left\langle d_{1}, \ldots, d_{n}\right\rangle$ is a result of $Q_{1}\left[x_{1}, \ldots, x_{n}\right]$ over database I then:

- there is a mapping v from variables in Q_{1} to the domain of I
- $d_{i}=v\left(x_{i}\right)$ for all $i=1, \ldots, m$
- for all atoms $R\left(t_{1}, \ldots, t_{m}\right)$ of Q_{1}, we find $\left\langle v\left(t_{1}\right), \ldots, v\left(t_{m}\right)\right\rangle \in R^{I}$ (where we take $v(c)$ to mean c for constants c)
$\leadsto I \vDash Q_{1}\left[d_{1}, \ldots, d_{n}\right]$ if there is such a homomorphism v from Q_{1} to I
(Note: this is a slightly different formulation from the "homomorphism problem" discussed in a previous lecture, since we keep constants in queries here)

Proof of the Homomorphism Theorem

" $\Leftarrow ": Q_{1} \sqsubseteq Q_{2}$ if there is a query homomorphism $Q_{2} \rightarrow Q_{1}$.
(1) Let $\left\langle d_{1}, \ldots, d_{n}\right\rangle$ be a result of $Q_{1}\left[x_{1}, \ldots, x_{n}\right]$ over database I.
(2) Then there is a homomorphism v from Q_{1} to I.
(3) By assumption, there is a query homomorphism $\mu: Q_{2} \rightarrow Q_{1}$.
(4) But then the composition $v \circ \mu$, which maps each term t to $v(\mu(t)$), is a homomorphism from Q_{2} to I.
(5) Hence $\left\langle v\left(\mu\left(y_{1}\right)\right), \ldots, v\left(\mu\left(y_{n}\right)\right)\right\rangle$ is a result of $Q_{2}\left[y_{1}, \ldots, y_{n}\right]$ over I.
(6) Since $v\left(\mu\left(y_{i}\right)\right)=v\left(x_{i}\right)=d_{i}$, we find that $\left\langle d_{1}, \ldots, d_{n}\right\rangle$ is a result of $Q_{2}\left[y_{1}, \ldots, y_{n}\right]$ over I.

Since this holds for all results $\left\langle d_{1}, \ldots, d_{n}\right\rangle$ of Q_{1}, we have $Q_{1} \sqsubseteq Q_{2}$.
(See board for a sketch showing how we compose homomorphisms here)

Proof of the Homomorphism Theorem

" \Rightarrow ": there is a query homomorphism $Q_{2} \rightarrow Q_{1}$ if $Q_{1} \sqsubseteq Q_{2}$.
(1) Turn $Q_{1}\left[x_{1}, \ldots, x_{n}\right]$ into a database I_{1} in the natural way:

- The domain of I_{1} are the terms in Q_{1}
- For every relation R, we have $\left\langle t_{1}, \ldots, t_{m}\right\rangle \in R^{I_{1}}$ exactly if $R\left(t_{1}, \ldots, t_{m}\right)$ is an atom in Q_{1}
(2) Then Q_{1} has a result $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ over I_{1}
(the identity mapping is a homomorphism - actually even an isomorphism)
(3) Therefore, since $Q_{1} \sqsubseteq Q_{2},\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is also a result of Q_{2} over I_{1}
(4) Hence there is a homomorphism v from Q_{2} to I_{1}
(5) This homomorphism v is also a query homomorphism $Q_{2} \rightarrow Q_{1}$.

Implications of the Homomorphism Theorem

The proof has highlighted another useful fact:
The following two are equivalent:

- Finding a homomorphism from Q_{2} to Q_{1}
- Finding a query result for Q_{2} over I_{1}
\leadsto all complexity results for CQ query answering apply

Theorem 10.4: Deciding if $Q_{1} \sqsubseteq Q_{2}$ is NP-complete.
If Q_{2} is a tree query (or of bounded treewidth, or of bounded hypertree width) then deciding if $Q_{1} \sqsubseteq Q_{2}$ is polynomial (in fact LOGCFL-complete).

Note that even in the NP-complete case the problem size is rather small (only queries, no databases)

Application: CQ Minimisation

Definition 10.5: A conjunctive query Q is minimal if:

- for all subqueries Q^{\prime} of Q (that is, queries Q^{\prime} that are obtained by dropping one or more atoms from Q),
- we find that $Q^{\prime} \not \equiv Q$.

A minimal CQ is also called a core.

It is useful to minimise CQs to avoid unnecessary joins in query answering.

CQ Minimisation the Direct Way

A simple idea for minimising Q :

- Consider each atom of Q, one after the other
- Check if the subquery obtained by dropping this atom is contained in Q
(Observe that the subquery always contains the original query.)
- If yes, delete the atom; continue with the next atom

CQ Minimisation the Direct Way

A simple idea for minimising Q :

- Consider each atom of Q, one after the other
- Check if the subquery obtained by dropping this atom is contained in Q
(Observe that the subquery always contains the original query.)
- If yes, delete the atom; continue with the next atom

Example 10.6: Example query $Q[v, w]$:

$$
\exists x, y, z \cdot R(a, y) \wedge R(x, y) \wedge S(y, y) \wedge S(y, z) \wedge S(z, y) \wedge T(y, v) \wedge T(y, w)
$$

\sim Simpler notation: write as set and mark answer variables

$$
\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}
$$

CQ Minimisation Example

$$
\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}
$$

Can we map the left side homomorphically to the right side?

$R(a, y)$	$R(a, y)$
$R(x, y)$	$R(x, y)$
$S(y, y)$	$S(y, y)$
$S(y, z)$	$S(y, z)$
$S(z, y)$	$S(z, y)$
$T(y, \bar{v})$	$T(y, \bar{v})$
$T(y, \bar{w})$	$T(y, \bar{w})$

CQ Minimisation Example

$$
\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}
$$

Can we map the left side homomorphically to the right side?

$R(a, y)$	$R(a, y)$
$R(x, y)$	$R(x, y)$
$S(y, y)$	$S(y, y)$
$S(y, z)$	$S(y, z)$
$S(z, y)$	$S(z, y)$
$T(y, \bar{v})$	$T(y, \bar{v})$
$T(y, \bar{w})$	$T(y, \bar{w})$

CQ Minimisation Example

$$
\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}
$$

Can we map the left side homomorphically to the right side?

$R(a, y)$	$R(a, y) \quad$ Keep (cannot map constant a)
$R(x, y)$	$R(x, y)$
$S(y, y)$	$S(y, y)$
$S(y, z)$	$S(y, z)$
$S(z, y)$	$S(z, y)$
$T(y, \bar{v})$	$T(y, \bar{v})$
$T(y, \bar{w})$	$T(y, \bar{w})$

CQ Minimisation Example

$$
\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}
$$

Can we map the left side homomorphically to the right side?

$R(a, y)$	$R(a, y)$
$R(x, y)$	$R(x, y)$
$S(y, y)$	$S(y, y)$
$S(y, z)$	$S(y, z)$
$S(z, y)$	$S(z, y)$
$T(y, \bar{v})$	$T(y, \bar{v})$
$T(y, \bar{w})$	$T(y, \bar{w})$

CQ Minimisation Example

$$
\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}
$$

Can we map the left side homomorphically to the right side?

$R(a, y)$	$R(a, y)$	Keep (cannot map constant $a)$
$R(x, y)$	$R(x, y)$	Drop; map $R(x, y)$ to $R(a, y)$
$S(y, y)$	$S(y, y)$	
$S(y, z)$	$S(y, z)$	
$S(z, y)$	$S(z, y)$	
$T(y, \bar{v})$	$T(y, \bar{v})$	
$T(y, \bar{w})$	$T(y, \bar{w})$	

CQ Minimisation Example

$$
\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}
$$

Can we map the left side homomorphically to the right side?

$R(a, y)$	$R(a, y)$	$R(x, y)$
$R(x, y)$	Keep (cannot map constant $a)$	
$S(y, y)$	$S(y, y)$	
$S(y, z)$	$S(y, z)$	
$S(z, y)$	$S(z, y)$	
$T(y, \bar{v})$	$T(y, \bar{v})$	
$T(y, \bar{w})$	$T(y, \bar{w})$	

CQ Minimisation Example

$$
\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}
$$

Can we map the left side homomorphically to the right side?

$R(a, y)$	$R(a, y)$	Keep (cannot map constant a)
$R(x, y)$	$R(x, y)$	Drop; map $R(x, y)$ to $R(a, y)$
$S(y, y)$	$S(y, y)$	Keep (no other atom of form $S(t, t)$)
$S(y, z)$	$S(y, z)$	
$S(z, y)$	$S(z, y)$	
$T(y, \bar{v})$	$T(y, \bar{v})$	
$T(y, \bar{w})$	$T(y, \bar{w})$	

CQ Minimisation Example

$$
\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}
$$

Can we map the left side homomorphically to the right side?

$R(a, y)$	$R(a, y)$	Keep (cannot map constant $a)$
$R(x, y)$	$R(x, y)$	Drop; map $R(x, y)$ to $R(a, y)$
$S(y, y)$	$S(y, y)$	Keep (no other atom of form $S(t, t)$)
$S(y, z)$	$S(y, z)$	
$S(z, y)$	$S(z, y)$	
$T(y, \bar{v})$	$T(y, \bar{v})$	
$T(y, \bar{w})$	$T(y, \bar{w})$	

CQ Minimisation Example

$$
\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}
$$

Can we map the left side homomorphically to the right side?

$R(a, y)$	$R(a, y)$	Keep (cannot map constant $a)$
$R(x, y)$	$R(x, y)$	Drop; map $R(x, y)$ to $R(a, y)$
$S(y, y)$	$S(y, y)$	Keep (no other atom of form $S(t, t)$)
$S(y, z)$	$S(y, z)$	Drop; map $S(y, z)$ to $S(y, y)$
$S(z, y)$	$S(z, y)$	
$T(y, \bar{v})$	$T(y, \bar{v})$	
$T(y, \bar{w})$	$T(y, \bar{w})$	

CQ Minimisation Example

$$
\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}
$$

Can we map the left side homomorphically to the right side?

$R(a, y)$	$R(a, y)$	Keep (cannot map constant $a)$
$R(x, y)$	$R(x, y)$	Drop; map $R(x, y)$ to $R(a, y)$
$S(y, y)$	$S(y, y)$	Keep (no other atom of form $S(t, t)$)
$S(y, z)$	$S(y, z)$	Drop; map $S(y, z)$ to $S(y, y)$
$S(z, y)$		$S(z, y)$
$T(y, \bar{v})$	$T(y, \bar{v})$	
$T(y, \bar{w})$	$T(y, \bar{w})$	

CQ Minimisation Example

$$
\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}
$$

Can we map the left side homomorphically to the right side?

$R(a, y)$	$R(a, y)$	Keep (cannot map constant $a)$
$R(x, y)$	$R(x, y)$	Drop; map $R(x, y)$ to $R(a, y)$
$S(y, y)$	$S(y, y)$	Keep (no other atom of form $S(t, t))$
$S(y, z)$	$S(y, z)$	Drop; map $S(y, z)$ to $S(y, y)$
$S(z, y)$	$S(z, y)$	Drop; map $S(z, y)$ to $S(y, y)$
$T(y, \bar{v})$	$T(y, \bar{v})$	
$T(y, \bar{w})$	$T(y, \bar{w})$	

CQ Minimisation Example

$$
\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}
$$

Can we map the left side homomorphically to the right side?

$R(a, y)$	$R(a, y)$	Keep (cannot map constant a)
$R(x, y)$	$R(x, y)$	Drop; map $R(x, y)$ to $R(a, y)$
$S(y, y)$	$S(y, y)$	Keep (no other atom of form $S(t, t)$)
$S(y, z)$	S (y, z)	Drop; map $S(y, z)$ to $S(y, y)$
$S(z, y)$	$S(z, y)$	Drop; map $S(z, y)$ to $S(y, y)$
$T(y, \bar{v})$	$T(y, \bar{v})$	
$T(y, \bar{w})$	$T(y, \bar{w})$	

CQ Minimisation Example

$$
\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}
$$

Can we map the left side homomorphically to the right side?

$R(a, y)$	$R(a, y)$	Keep (cannot map constant $a)$
$R(x, y)$	$R(x, y)$	Drop; map $R(x, y)$ to $R(a, y)$
$S(y, y)$	$S(y, y)$	Keep (no other atom of form $S(t, t))$
$S(y, z)$	$S(y, z)$	Drop; map $S(y, z)$ to $S(y, y)$
$S(z, y)$	$S(z, y)$	Drop; map $S(z, y)$ to $S(y, y)$
$T(y, \bar{v})$	$T(y, \bar{v})$	Keep (cannot map answer variable)
$T(y, \bar{w})$	$T(y, \bar{w})$	

CQ Minimisation Example

$$
\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}
$$

Can we map the left side homomorphically to the right side?

$R(a, y)$	$R(a, y)$	Keep (cannot map constant a)
$\mathrm{P}(\mathrm{x}, \mathrm{y})$	$R(x, y)$	Drop; map $R(x, y)$ to $R(a, y)$
$S(y, y)$	$S(y, y)$	Keep (no other atom of form $S(t, t)$)
S $S(y, z)$	$S(y, z)$	Drop; map $S(y, z)$ to $S(y, y)$
S $S(z, y)$	$S(z, y)$	Drop; map $S(z, y)$ to $S(y, y)$
$T(y, \bar{v})$	$T(y, \bar{v})$	Keep (cannot map answer variable)
$T(y, \bar{w})$	$\cdots(y, m)$	

CQ Minimisation Example

$$
\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}
$$

Can we map the left side homomorphically to the right side?

$R(a, y)$	$R(a, y)$	Keep (cannot map constant $a)$
$R(x, y)$	$R(x, y)$	Drop; map $R(x, y)$ to $R(a, y)$
$S(y, y)$	$S(y, y)$	Keep (no other atom of form $S(t, t))$
$S(y, z)$	$S(y, z)$	Drop; map $S(y, z)$ to $S(y, y)$
$S(z, y)$	$S(z, y)$	Drop; map $S(z, y)$ to $S(y, y)$
$T(y, \bar{v})$	$T(y, \bar{v})$	Keep (cannot map answer variable)
$T(y, \bar{w})$	$T(y, \bar{w})$	Keep (cannot map answer variable)

CQ Minimisation Example

$$
\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}
$$

Can we map the left side homomorphically to the right side?

$R(a, y)$	$R(a, y)$	Keep (cannot map constant $a)$
$R(x, y)$	$R(x, y)$	Drop; map $R(x, y)$ to $R(a, y)$
$S(y, y)$	$S(y, y)$	Keep (no other atom of form $S(t, t)$)
$S(y, z)$	$S(y, z)$	Drop; map $S(y, z)$ to $S(y, y)$
$S(z, y)$	$S(z, y)$	Drop; map $S(z, y)$ to $S(y, y)$
$T(y, \bar{v})$	$T(y, \bar{v})$	Keep (cannot map answer variable)
$T(y, \bar{w})$	$T(y, \bar{w})$	Keep (cannot map answer variable)

Core: $\exists y . R(a, y) \wedge S(y, y) \wedge T(y, v) \wedge T(y, w)$

CQ Minimisation

Does this algorithm work?

- Is the result minimal?

Or could it be that some atom that was kept can be dropped later, after some other atoms were dropped?

- Is the result unique?

Or does the order in which we consider the atoms matter?

CQ Minimisation

Does this algorithm work?

- Is the result minimal?

Or could it be that some atom that was kept can be dropped later, after some other atoms were dropped?

- Is the result unique?

Or does the order in which we consider the atoms matter?
Theorem 10.7: The CQ minimisation algorithm always produces a core, and this result is unique up to query isomorphisms (bijective renaming of non-result variables).

Proof: exercise

How hard is CQ Minimisation?

Even when considering single atoms, the homomorphism question is NP-hard:
Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \backslash\{A\}$.

How hard is CQ Minimisation?

Even when considering single atoms, the homomorphism question is NP-hard:
Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \backslash\{A\}$.

Proof: We reduce 3-colourability of connected graphs to this special kind of homomorphism problem. (If a graph consists of several connected components, then 3 -colourability can be solved independently for each, hence 3-colourability is NP-hard when considering only connected graphs.)

How hard is CQ Minimisation?

Even when considering single atoms, the homomorphism question is NP-hard:
Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \backslash\{A\}$.

Proof: We reduce 3-colourability of connected graphs to this special kind of homomorphism problem. (If a graph consists of several connected components, then 3 -colourability can be solved independently for each, hence 3-colourability is NP-hard when considering only connected graphs.)

Let G be a connected, undirected graph. Let < be an arbitrary total order on G 's vertices. Query Q is defined as follows:

How hard is CQ Minimisation?

Even when considering single atoms, the homomorphism question is NP-hard:
Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \backslash\{A\}$.

Proof: We reduce 3-colourability of connected graphs to this special kind of homomorphism problem. (If a graph consists of several connected components, then 3 -colourability can be solved independently for each, hence 3-colourability is NP-hard when considering only connected graphs.)

Let G be a connected, undirected graph. Let < be an arbitrary total order on G 's vertices. Query Q is defined as follows:

- Q contains atoms $R(r, g), R(g, r), R(r, b), R(b, r), R(g, b)$, and $R(b, r)$ (the colouring template)

How hard is CQ Minimisation?

Even when considering single atoms, the homomorphism question is NP-hard:
Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \backslash\{A\}$.

Proof: We reduce 3-colourability of connected graphs to this special kind of homomorphism problem. (If a graph consists of several connected components, then 3 -colourability can be solved independently for each, hence 3-colourability is NP-hard when considering only connected graphs.)

Let G be a connected, undirected graph. Let < be an arbitrary total order on G 's vertices. Query Q is defined as follows:

- Q contains atoms $R(r, g), R(g, r), R(r, b), R(b, r), R(g, b)$, and $R(b, r)$ (the colouring template)
- For every undirected edge $\{e, f\}$ in G with $e<f, Q$ contains an atom $R(e, f)$

How hard is CQ Minimisation?

Even when considering single atoms, the homomorphism question is NP-hard:
Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \backslash\{A\}$.

Proof: We reduce 3-colourability of connected graphs to this special kind of homomorphism problem. (If a graph consists of several connected components, then 3 -colourability can be solved independently for each, hence 3-colourability is NP-hard when considering only connected graphs.)

Let G be a connected, undirected graph. Let < be an arbitrary total order on G 's vertices. Query Q is defined as follows:

- Q contains atoms $R(r, g), R(g, r), R(r, b), R(b, r), R(g, b)$, and $R(b, r)$ (the colouring template)
- For every undirected edge $\{e, f\}$ in G with $e<f, Q$ contains an atom $R(e, f)$
- For a single (arbitrarily chosen) edge $\{e, f\}$ in G with $e<f, Q$ contains an atom $A=R(f, e)$

How hard is CQ Minimisation?

Even when considering single atoms, the homomorphism question is NP-hard:
Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \backslash\{A\}$.

Proof: We reduce 3-colourability of connected graphs to this special kind of homomorphism problem. (If a graph consists of several connected components, then 3 -colourability can be solved independently for each, hence 3-colourability is NP-hard when considering only connected graphs.)

Let G be a connected, undirected graph. Let < be an arbitrary total order on G 's vertices.

Query Q is defined as follows:

- Q contains atoms $R(r, g), R(g, r), R(r, b), R(b, r), R(g, b)$, and $R(b, r)$ (the colouring template)
- For every undirected edge $\{e, f\}$ in G with $e<f, Q$ contains an atom $R(e, f)$
- For a single (arbitrarily chosen) edge $\{e, f\}$ in G with $e<f, Q$ contains an atom

$$
A=R(f, e)
$$

Claim: G is 3-colourable if and only if there is a homomorphism $Q \rightarrow Q \backslash\{A\}$

Proof

Even when considering single atoms, the homomorphism question is NP-hard:
Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \backslash\{A\}$.

Proof (continued): (\Rightarrow) If G is 3-colourable then there is a homomorphism $Q \rightarrow Q \backslash\{A\}$.

Proof

Even when considering single atoms, the homomorphism question is NP-hard:
Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \backslash\{A\}$.

Proof (continued): (\Rightarrow) If G is 3-colourable then there is a homomorphism $Q \rightarrow Q \backslash\{A\}$.

- Then there is a homomorphism μ from G to the colouring template
- We can extend μ to the colouring template (mapping each colour to itself)
- Then μ is a homomorphism $Q \rightarrow Q \backslash\{A\}$

Proof

Even when considering single atoms, the homomorphism question is NP-hard:
Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \backslash\{A\}$.

Proof (continued): (\Rightarrow) If G is 3-colourable then there is a homomorphism $Q \rightarrow Q \backslash\{A\}$.

- Then there is a homomorphism μ from G to the colouring template
- We can extend μ to the colouring template (mapping each colour to itself)
- Then μ is a homomorphism $Q \rightarrow Q \backslash\{A\}$
(\Leftarrow) If there is a homomorphism $Q \rightarrow Q \backslash\{A\}$ then G is 3-colourable.

Proof

Even when considering single atoms, the homomorphism question is NP-hard:
Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \backslash\{A\}$.

Proof (continued): (\Rightarrow) If G is 3-colourable then there is a homomorphism $Q \rightarrow Q \backslash\{A\}$.

- Then there is a homomorphism μ from G to the colouring template
- We can extend μ to the colouring template (mapping each colour to itself)
- Then μ is a homomorphism $Q \rightarrow Q \backslash\{A\}$
(\Leftarrow) If there is a homomorphism $Q \rightarrow Q \backslash\{A\}$ then G is 3-colourable.
- Let μ be such a homomorphism, and let $A=R(f, e)$.

Proof

Even when considering single atoms, the homomorphism question is NP-hard:
Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \backslash\{A\}$.

Proof (continued): (\Rightarrow) If G is 3-colourable then there is a homomorphism $Q \rightarrow Q \backslash\{A\}$.

- Then there is a homomorphism μ from G to the colouring template
- We can extend μ to the colouring template (mapping each colour to itself)
- Then μ is a homomorphism $Q \rightarrow Q \backslash\{A\}$
(\Leftarrow) If there is a homomorphism $Q \rightarrow Q \backslash\{A\}$ then G is 3-colourable.
- Let μ be such a homomorphism, and let $A=R(f, e)$.
- Since $Q \backslash\{A\}$ contains the pattern $R(s, t), R(t, s)$ only in the colouring template, $\mu(e) \in\{r, g, b\}$ and $\mu(f) \in\{r, g, b\}$.

Proof

Even when considering single atoms, the homomorphism question is NP-hard:
Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \backslash\{A\}$.

Proof (continued): (\Rightarrow) If G is 3-colourable then there is a homomorphism $Q \rightarrow Q \backslash\{A\}$.

- Then there is a homomorphism μ from G to the colouring template
- We can extend μ to the colouring template (mapping each colour to itself)
- Then μ is a homomorphism $Q \rightarrow Q \backslash\{A\}$
(\Leftarrow) If there is a homomorphism $Q \rightarrow Q \backslash\{A\}$ then G is 3-colourable.
- Let μ be such a homomorphism, and let $A=R(f, e)$.
- Since $Q \backslash\{A\}$ contains the pattern $R(s, t), R(t, s)$ only in the colouring template, $\mu(e) \in\{r, g, b\}$ and $\mu(f) \in\{r, g, b\}$.
- Since the colouring template is not connected to other atoms of Q, μ must therefore map all elements of Q to the colouring template.

Proof

Even when considering single atoms, the homomorphism question is NP-hard:
Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \backslash\{A\}$.

Proof (continued): (\Rightarrow) If G is 3-colourable then there is a homomorphism $Q \rightarrow Q \backslash\{A\}$.

- Then there is a homomorphism μ from G to the colouring template
- We can extend μ to the colouring template (mapping each colour to itself)
- Then μ is a homomorphism $Q \rightarrow Q \backslash\{A\}$
(\Leftarrow) If there is a homomorphism $Q \rightarrow Q \backslash\{A\}$ then G is 3-colourable.
- Let μ be such a homomorphism, and let $A=R(f, e)$.
- Since $Q \backslash\{A\}$ contains the pattern $R(s, t), R(t, s)$ only in the colouring template, $\mu(e) \in\{r, g, b\}$ and $\mu(f) \in\{r, g, b\}$.
- Since the colouring template is not connected to other atoms of Q, μ must therefore map all elements of Q to the colouring template.
- Hence, μ induces a 3-colouring.

CQ Minimisation: Complexity

Even when considering single atoms, the homomorphism question is NP-hard:
Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \backslash\{A\}$.

Proof (summary): For an arbitrary connected graph G, we constructed a query Q with atom A, such that

- G is 3 -colourable if and only if
- there is a homomorphism $Q \rightarrow Q \backslash\{A\}$.

Since the former problem is NP-hard, so is the latter.
Inclusion in NP is obvious (just guess the homomorphism).

CQ Minimisation: Complexity

Even when considering single atoms, the homomorphism question is NP-hard:
Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \backslash\{A\}$.

Proof (summary): For an arbitrary connected graph G, we constructed a query Q with atom A, such that

- G is 3 -colourable if and only if
- there is a homomorphism $Q \rightarrow Q \backslash\{A\}$.

Since the former problem is NP-hard, so is the latter.
Inclusion in NP is obvious (just guess the homomorphism).
Checking minimality is the dual problem, hence:
Theorem 10.9: Deciding if a conjunctive query Q is minimal (that is: a core) is coNP-complete.

However, the size of queries is usually small enough for minimisation to be feasible.

Summary and Outlook

Perfect query optimisation is possible for conjunctive queries
\leadsto Homomorphism problem, similar to query answering
\sim NP-complete

Using this, conjunctive queries can effectively be minimised

Open questions:

- How to really use EF games to get some results?
- If FO cannot express all tractable queries, what can?

