

Artificial Intelligence, Computational Logic

# SEMINAR ABSTRACT ARGUMENTATION

#### Implementing Abstract Argumentation Frameworks

Sarah Gaggl

Dresden, 23rd October 2015



# Outline

- Direct- vs. Reduction-based Approach
- Propositional Logic
- Answer-Set Programming
- ASP Encodings of AF Semantics

# Motivation

- Argumentation Frameworks provide a formalism for a compact representation and evaluation of such scenarios.
- More complex semantics, especially in combination with an increasing amount of data, requires an automated computation of such solutions.
- Most of these problems are intractable, so implementing dedicated systems from the scratch is not the best idea.
- Distinction between direct implementation and reduction-based approach.
- We focus on reductions to propositional logic and Answer-Set Programming (ASP).

# Laziness and Implementations

## Alternative 1: The Japanese way

- Implement a separate algorithm for each reasoning task
- Implementation is complicated because most reasoning tasks are inherently intricate (reason the complexity results given before)
- Implementation, testing, etc. require much effort and time

# Laziness and Implementations

#### Alternative 1: The Japanese way

- Implement a separate algorithm for each reasoning task
- Implementation is complicated because most reasoning tasks are inherently intricate (
   the complexity results given before)
- Implementation, testing, etc. require much effort and time

#### Alternative : The southern way

- Life is short; try to keep your effort as small as possible
- · Let others work for you and use their results and software
- Be smart; apply what you have learned

# The rapid implementation approach (RIA)

#### We know:

- Any complete problem can be translated into any other complete problem of the same complexity class
- Moreover, there exists poly-time translations (reductions)
- Complexity results (incl. completeness) for many reasoning tasks

## We used already:

- e.g., the PTIME reduction from a CNF φ to an AF F(φ) such that φ is satisfiable iff F(φ) has an admissible set containing φ
- Can we "reverse" the reduction, i.e., from AFs to formulas?
- YES! Reduce to formalisms for which "good" solvers are available But we have to find the PTIME reduction!

# The rapid implementation approach (2)

- Reduce reasoning tasks for AF, e.g., to SAT problems of (Q)BFs
- Reductions are "cheap" (wrt runtime and implementation effort!)
- Good SAT and QSAT solvers are available; simply use them

#### Benefits:

- Reductions are much easier to implement than full-fledged algorithms especially for "hard" reasoning tasks
- Basic reductions can be combined and reused
- Different formalisms can be reduced to same target formalism
  - beneficial for comparative studies

# The rapid implementation approach (3)

## Target formalisms are:

- The SAT problem for propositional formulas
- The SAT problem for quantified Boolean formulas
- Answer-set programs

Tools are available to solve all these three formalisms Many developers are happy to give away their tool They work hard to improve the tool's performance (for you!)

# Required properties of reductions: Faithfulness

- Let  $\Pi$  be a decision problem
- $F_{\Pi}(\cdot)$  a reduction to a target formalism
- $F_{\Pi}(\cdot)$  has to satisfy the following three conditions:
  - **1**  $F_{\Pi}(\cdot)$  is faithful, i.e.,  $F_{\Pi}(K)$  is true iff *K* is a yes-instance of  $\Pi$
  - **2** For each instance K,  $F_{\Pi}(K)$  is poly-time computable wrt size of K
  - **3** Determining the truth of  $F_{\Pi}(K)$  is computationally not harder than deciding  $\Pi$

Faithfulness guarantees a correct "simulation" of K

# Reductions to Propositional Logic

Given an AF F = (A, R), for each  $a \in A$  a propositional variable  $v_a$  is constructed.

- $S \subseteq A$  is a  $\sigma$  extension of F iff  $\{v_a \mid a \in S\} \models \varphi$ ,
- with  $\varphi$  a propositional formula that evaluates *F* under semantics  $\sigma$ .

#### Admissible Sets

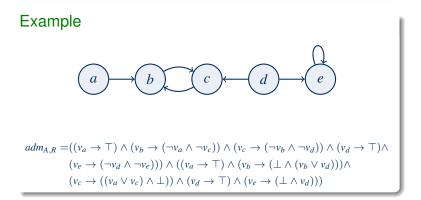
 $adm_{A,R} := \bigwedge_{a \in A} ((v_a \to \bigwedge_{(b,a) \in R} \neg v_b) \land (v_a \to \bigwedge_{(b,a) \in R} (\bigvee_{(c,b) \in R} v_c))$ 

Models of  $adm_{A,R}$  correspond to admissible sets of F [Besnard & Doutre 04].

# Reductions to Propositional Logic ctd.

#### Admissible Sets

$$adm_{A,R} := \bigwedge_{a \in A} ((v_a \to \bigwedge_{(b,a) \in R} \neg v_b) \land (v_a \to \bigwedge_{(b,a) \in R} (\bigvee_{(c,b) \in R} v_c))$$



# General Idea of Answer-Set Programming

#### Fundamental concept:

- Models = set of atoms
- Models, not proofs, represent solutions!
- Need techniques to compute models (not to compute proofs)
- Methodology to solve search problems

#### Solving search problems with ASP

- Given a problem  $\Pi$  and an instance K, reduce it to the problem of computing intended models of a logic program:

  - **1** Encode  $(\Pi, K)$  as a logic program *P* such that the solutions of  $\Pi$  for the instance K are represented by the intended models of P



- 2 Compute one intended model M (an "answer set") of P
- Beconstruct a solution for K from M
- Variant: Compute all intended models to obtain all solutions

# **ASP Solvers**

## Efficient solvers available

- gringo/clasp (University of Potsdam)
- dlv (TU Wien, University of Calabria)
- smodels, GnT (Aalto University, Finland)
- ASSAT (Hong Kong University of Science and Technology)

# Answer-Set Programming Syntax

- We assume a first-order vocabulary ∑ comprised of nonempty finite sets of constants, variables, and predicate symbols, but no function symbols
- A term is either a variable or a constant
- An atom is an expression of form  $p(t_1, \ldots, t_n)$ , where
  - p is a predicate symbol of arity  $n \ge 0$  from  $\Sigma$ , and
  - $t_1, \ldots, t_n$  are terms
- A literal is an atom p or a negated atom  $\neg p$ 
  - is called strong negation, or classical negation
- A literal is ground if it contains no variable.

# Answer-Set Programming Syntax ctd.

## ASP Syntax

A rule r is an expression of the form

$$a_1 \vee \cdots \vee a_n \leftarrow b_1, \ldots, b_k, \text{ not } b_{k+1}, \ldots, \text{ not } b_m,$$

with  $n \ge 0$ ,  $m \ge k \ge 0$ , n + m > 0, where  $a_1, \ldots, a_n, b_1, \ldots, b_m$  are atoms, and "not" stands for default negation.

We call

- $H(r) = \{a_1, ..., a_n\}$  the head of *r*;
- $B(r) = \{b_1, ..., b_k, not \ b_{k+1}, ..., not \ b_m\}$  the body of r;
- $B^+(r) = \{b_1, \ldots, b_k\}$  the positive body of r;
- $B^-(r) = \{b_{k+1}, \ldots, b_m\}$  the negative body of r.
- Intuitive meaning of r: if b<sub>1</sub>,..., b<sub>k</sub> are derivable, but b<sub>k+1</sub>,..., b<sub>m</sub> are not derivable, then one of a<sub>1</sub>,..., a<sub>n</sub> is asserted
- A program is a finite set of rules

# Answer-Set Programming Syntax ctd.

A rule  $a_1 \vee \cdots \vee a_n \leftarrow b_1, \ldots, b_k$ , not  $b_{k+1}, \ldots$ , not  $b_m$  is

- a fact if m = 0 and  $n \ge 1$
- a constraint if n = 0 (i.e., the head is empty)
- basic if m = k and  $n \ge 1$
- non-disjunctive if n = 1
- normal if it is non-disjunctive and contains no strong negation  $\neg$
- Horn if it is normal and basic
- ground if all its literals are ground

A program is basic, normal, etc., if all of its rules are

# **ASP Semantics**

- An interpretation *I* satisfies a ground rule *r* iff  $H(r) \cap I \neq \emptyset$  whenever
  - $B^+(r) \subseteq I$ ,
  - $B^-(r) \cap I = \emptyset$ .
- *I* satisfies a ground program  $\pi$ , if each  $r \in \pi$  is satisfied by *I*.
- A non-ground rule r (resp., a program π) is satisfied by an interpretation I iff I satisfies all groundings of r (resp., Gr(π)).

## Gelfond-Lifschitz reduct

An interpretation I is an answer set of  $\pi$  iff it is a subset-minimal set satisfying

$$\pi^{I} = \{ H(r) \leftarrow B^{+}(r) \mid I \cap B^{-}(r) = \emptyset, r \in Gr(\pi) \}.$$

# Programming methodology

## Simplest technique: Guess and check

- Guess: Generate candidates for answer sets in the first step
- Check: Filter the answer sets and delete undesirable ones

## Example (Graph coloring)

 $\begin{array}{ll} {\rm node}(a).{\rm node}(b).{\rm node}(c).{\rm edge}(a,b).{\rm edge}(b,c). & \ensuremath{\} {\rm facts}} \\ {\rm col}(red,X) \lor {\rm col}(green,X) \lor {\rm col}(blue,X) \leftarrow {\rm node}(X). & \ensuremath{\} {\rm guess}} \\ \leftarrow {\rm edge}(X,Y), {\rm col}(C,X), {\rm col}(C,Y). & \ensuremath{\} {\rm check}} \end{array}$ 

- G: Generate all possible coloring candidates
- C: Delete all candidates where adjacent nodes have same color

# Corresponding Complexity Results

| nplexity of Argumentation |       |           |              |                 |                 |         |  |  |  |  |
|---------------------------|-------|-----------|--------------|-----------------|-----------------|---------|--|--|--|--|
|                           |       | adm       | pref         | semi            | stage           | grd*    |  |  |  |  |
|                           | Cred  | NP-c      | NP-c         | $\Sigma_2^p$ -c | $\Sigma_2^p$ -c | NP-c    |  |  |  |  |
|                           | Skept | (trivial) | $\Pi_2^p$ -c | $\Pi_2^p$ -c    | $\Pi_2^p$ -c    | co-NP-c |  |  |  |  |

[Baroni et al. 11; Dimopoulos & Torres 96; Dunne & Bench-Capon 02; Dvořák & Woltran 10]

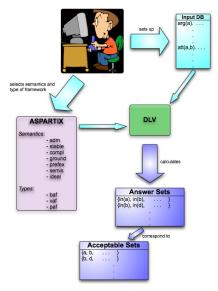
## Recall: Data-Complexity of Datalog

|             | normal programs | disjunctive program | optimization programs |  |
|-------------|-----------------|---------------------|-----------------------|--|
|             | NP              | $\Sigma_2^p$        | $\Sigma_2^p$          |  |
| $\models_s$ | co-NP           | $\Pi_2^p$           | $\Pi_2^p$             |  |

#### [Dantsin, Eiter, Gottlob, Voronkov 01]

Com

# **ASPARTIX - System Description**



Seminar Abstract Argumentation

# **ASP Encodings**

## **Conflict-free Set**

Given an AF (A, R). A set  $S \subseteq A$  is conflict-free in F, if, for each  $a, b \in S$ ,  $(a, b) \notin R$ .

# Encoding for F = (A, R) $\widehat{F} = \{ \arg(a) \mid a \in A \} \cup \{ \operatorname{att}(a, b) \mid (a, b) \in R \}$ $\pi_{cf} = \begin{cases} \operatorname{in}(X) \leftarrow not \operatorname{out}(X), \operatorname{arg}(X) \\ \operatorname{out}(X) \leftarrow not \operatorname{in}(X), \operatorname{arg}(X) \\ \leftarrow \operatorname{in}(X), \operatorname{in}(Y), \operatorname{att}(X, Y) \end{cases}$ Result: For each AF $F, cf(F) \equiv \mathcal{AS}(\pi_{cf}(\widehat{F}))$

# ASP Encodings cont.

## Admissible Sets

Given an AF F = (A, R). A set  $S \subseteq A$  is admissible in F, if

- S is conflict-free in F
- each  $a \in S$  is defended by S in F
  - *a* ∈ *A* is defended by *S* in *F*, if for each *b* ∈ *A* with (*b*, *a*) ∈ *R*, there exists a *c* ∈ *S*, such that (*c*, *b*) ∈ *R*.

### Encoding

 $\pi_{adm} = \pi_{cf} \cup \left\{ \begin{array}{ccc} \text{defeated}(X) & \leftarrow & \text{in}(Y), \text{att}(Y, X) \\ & \leftarrow & \text{in}(X), \text{att}(Y, X), \text{not defeated}(Y) \end{array} \right\}$ 

**Result:** For each AF *F*,  $adm(F) \equiv \mathcal{AS}(\pi_{adm}(\widehat{F}))$ 

# ASP Encodings ctd.

## Stable Extensions

Given an AF F = (A, R). A set  $S \subseteq A$  is a stable extension of F, if

- S is conflict-free in F
- for each  $a \in A \setminus S$ , there exists a  $b \in S$ , such that  $(b, a) \in R$

## Encoding

$$\pi_{stable} = \pi_{cf} \cup \begin{cases} \text{defeated}(X) & \leftarrow \quad \text{in}(Y), \text{att}(Y, X) \\ & \leftarrow \quad \text{out}(X), not \text{ defeated}(X) \end{cases}$$

**Result:** For each AF *F*, *stable*(*F*)  $\equiv \mathcal{AS}(\pi_{stable}(\widehat{F}))$ 

# ASP Encodings ctd.

## Grounded Extension

Given an AF F = (A, R). The characteristic function  $\mathcal{F}_F : 2^A \to 2^A$  of F is defined as

 $\mathcal{F}_F(E) = \{x \in A \mid x \text{ is defended by } E\}.$ 

The least fixed point of  $\mathcal{F}_F$  is the grounded extension.

#### Order over domain

| (                   | $\operatorname{lt}(X,Y)$    | $\leftarrow$ | $\arg(X), \arg(Y), X < Y$       | ) |
|---------------------|-----------------------------|--------------|---------------------------------|---|
|                     | nsucc(X, Z)                 | $\leftarrow$ | lt(X, Y), lt(Y, Z)              |   |
|                     | $\operatorname{succ}(X, Y)$ | $\leftarrow$ | lt(X, Y), not nsucc(X, Y)       |   |
| $\pi_{<} = \langle$ | ninf(X)                     | $\leftarrow$ | lt(Y,X)                         | ł |
|                     | nsup(X)                     | $\leftarrow$ | lt(X, Y)                        |   |
|                     | $\inf(X)$                   | $\leftarrow$ | <i>not</i> $ninf(X)$ , $arg(X)$ |   |
| l                   | $\sup(X)$                   | $\leftarrow$ | <i>not</i> $nsup(X)$ , $arg(X)$ | J |
|                     |                             |              |                                 |   |

# ASP Encodings ctd.

## Grounded Extension

Given an AF F = (A, R). The characteristic function  $\mathcal{F}_F : 2^A \to 2^A$  of F is defined as

 $\mathcal{F}_F(E) = \{x \in A \mid x \text{ is defended by } E\}.$ 

The least fixed point of  $\mathcal{F}_F$  is the grounded extension.

## **Encodings Grounded Extension**

$$\pi_{ground} = \begin{cases} \operatorname{def\_upto}(X, Y) &\leftarrow \operatorname{inf}(Y), \operatorname{arg}(X), \operatorname{not}\operatorname{att}(Y, X) \\ \operatorname{def\_upto}(X, Y) &\leftarrow \operatorname{inf}(Y), \operatorname{in}(Z), \operatorname{att}(Z, Y), \operatorname{att}(Y, X) \\ \operatorname{def\_upto}(X, Y) &\leftarrow \operatorname{succ}(Z, Y), \operatorname{def\_upto}(X, Z), \operatorname{not}\operatorname{att}(Y, X) \\ \operatorname{def\_upto}(X, Y) &\leftarrow \operatorname{succ}(Z, Y), \operatorname{def\_upto}(X, Z), \operatorname{in}(V), \\ &\quad \operatorname{att}(V, Y), \operatorname{att}(Y, X) \\ \operatorname{defended}(X) &\leftarrow \operatorname{sup}(Y), \operatorname{def\_upto}(X, Y) \\ \operatorname{in}(X) &\leftarrow \operatorname{defended}(X) \end{cases}$$

**Result**: For each AF *F*, *ground*(*F*)  $\equiv \mathcal{AS}(\pi_{ground}(\widehat{F}))$ 

# **ASP Encodings**

## Preferred Extensions

Given an AF F = (A, R). A set  $S \subseteq A$  is a preferred extension of F, if

- S is admissible in F
- for each  $T \subseteq A$  admissible in  $F, S \not\subset T$

## Encoding

- Preferred semantics needs subset maximization task.
- Can be encoded in standard ASP but requires insight and expertise.

# Saturation Encodings

## **Preferred Extension**

Given an AF (*A*, *R*). A set  $S \subseteq A$  is preferred in *F*, if *S* is admissible in *F* and for each  $T \subseteq A$  admissible in *T*,  $S \not\subset T$ .

#### Encoding $inN(X) \lor outN(X) \leftarrow out(X);$ inN(X) $\leftarrow$ in(X) fail $\leftarrow$ eq fail $\leftarrow$ inN(X), inN(Y), att(X, Y) fail $\leftarrow$ inN(X), outN(Y), att(Y, X), $\pi_{saturate}$ undefeated(Y) $\begin{array}{rcl} \operatorname{inN}(X) & \leftarrow & \operatorname{fail}, \operatorname{arg}(X) \\ \operatorname{outN}(X) & \leftarrow & \operatorname{fail}, \operatorname{arg}(X) \end{array}$ $\leftarrow$ not fail $\pi_{adm} \cup \pi_{helpers} \cup \pi_{saturate}$ $\pi_{pref}$ = **Result:** For each AF F, $pref(F) \equiv \mathcal{AS}(\pi_{pref}(\widehat{F}))$

# Metasp [Gebser et al., 2011]

- Recently proposed metasp front-end for the gringo/claspD package.
- The problem encoding is first grounded with the reify option, which outputs ground program as facts.
- Next the meta encodings mirror answer-set generation.
- Meta encodings also implement subset minimization for the #minimize-statement.



# Metasp Encoding

 Together with the module admissibility, the remaining encoding for subset maximization reduces to

#### Preferred Extensions

 $\pi_{adm} \cup \{\# \text{minimize}[\text{out}(X)]\}.$ 

- This relocates the optimization encoding to the meta-encodings.
- Enables simple encodings and performes surprisingly well.

# Additional info on encodings and extensions

## ASPARTIX (ASP Argumentation Reasoning Tool)

- · Encodings are used together with an ASP-solver, like clasp or dvl
- Implements all prominent argumentation semantics
- Even for extended frameworks like PAFs, VAFs, BAPs, ...
- Easy to use
- Web-interface available: http://rull.dbai.tuwien.ac.at:8080/ASPARTIX/

#### Info and encodings are available under:

http://www.dbai.tuwien.ac.at/research/project/argumentation/

# Related work

### Other encodings

- by [Nieves et al., 2008] and follow-up papers; mostly a new program has to be constructed for each instance
- Related approaches: reductions to SAT/QSAT [Besnard and Doutre, 2004, Egly and Woltran, 2006]
- DIAMOND (DIAlectical MOdels eNcoDing) is a software system to compute different ADF models (see

https://isysrv.informatik.uni-leipzig.de/diamond)

 ConArg is a tool, based on Constraint Programming [Bistarelli and Santini, 2012] (see http://www.dmi.unipg.it/conarg/)

## Other systems

• Collection:

http://wyner.info/LanguageLogicLawSoftware/index.php/software/

• System Demos at COMMA 2014:

http://comma2014.arg.dundee.ac.uk/demoprogram

# Summary

#### What did we learn today?

- •

- .



P. Baroni, P. E. Dunne, and M. Giacomin,

On the resolution-based family of abstract argumentation semantics and its grounded instance. Artif. Intell., 175(3-4):791-813, 2011.



#### Philippe Besnard and Sylvie Doutre.

Checking the acceptability of a set of arguments.

In Proceedings of the 10th International Workshop on Non-Monotonic Reasoning (NMR'02), pages 59-64, 2004.



S. Bistarelli, F. Santini, Conarg: a tool to solve (weighted) abstract argumentation frameworks with (soft) constraints. CoRR abs/1212.2857.



#### Dung, P. M. (1995).

On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell., 77(2):321-358.



Dvořák, W., Gaggl, S. A., Wallner, J., and Woltran, S. (2011).

Making use of advances in answer-set programming for abstract argumentation systems.



#### Uwe Egly and Stefan Woltran.

Reasoning in argumentation frameworks using quantified boolean formulas. In Proceedings of the 1st Conference on Computational Models of Argument (COMMA'06), pages 133-144, IOS Press, 2006,



Uwe Egly, Sarah Gaggl, and Stefan Woltran.

Answer-set programming encodings for argumentation frameworks. In Argument and Computation, 1(2):147-177, 2010.



Gebser, M., Kaminski, R., and Schaub, T. (2011). Complex optimization in answer set programming.

TPLP, 11(4-5):821-839.



Juan Carlos Nieves, Mauricio Osorio, and Ulises Cortés.

Preferred extensions as stable models.

Theory and Practice of Logic Programming, 8(4):527-543, July 2008.



P. M. Dung, P. Mancarella, and F. Toni.

Computing ideal sceptical argumentation. Artif. Intell. 171(10-15):642–674, 2007.



#### P. E. Dunne.

Computational properties of argument systems satisfying graph-theoretic constraints. Artif. Intell., 171(10-15):701–729, 2007.



#### P. E. Dunne.

The computational complexity of ideal semantics I: Abstract argumentation frameworks. In Proc. COMMA'08, pages 147–158. IOS Press, 2008.



P. E. Dunne and T. J. M. Bench-Capon.

Coherence in finite argument systems. Artif. Intell., 141(1/2):187–203, 2002.



P. E. Dunne and T. J. M. Bench-Capon.

Complexity in value-based argument systems. In Proc. JELIA 2004, pages 360–371. Springer, 2004.



#### W. Dvořák, P. Dunne, and S. Woltran.

Parametric properties of ideal semantics. In Proc. IJCAI 2011, pages 851–856, 2011.



#### W. Dvořák and S. Woltran

On the intertranslatability of argumentation semantics J. Artif. Intell. Res. 41:445–475, 2011



S. Gaggl and S. Woltran.

#### cf2 semantics revisited.

In Proc. COMMA 2010, pages 243-2540. IOS Press, 2010.



#### S. Gaggl and S. Woltran.

Strong equivalence for argumentation semantics based on conflict-free sets. In Proc. ECSQARU 2011, pages 38–49. Springer, 2011.

#### E. Oikarinen and S. Woltran.

Characterizing strong equivalence for argumentation frameworks. Artif. Intell. 175(14-15): 1985–2009, 2011.



#### B. Verheij.

Two approaches to dialectical argumentation: admissible sets and argumentation stages. In Proc. NAIC'96, pages 357–368, 1996.



#### M. Caminada.

#### Semi-stable semantics.

In Proc. COMMA 2006, pages 121-130. IOS Press, 2006.



#### M. Caminada.

Comparing two unique extension semantics for formal argumentation: ideal and eager In Proc. BNAIC 2007, pages 81–87, 2007.



#### P. Baroni, M. Giacomin, and G. Guida.

SCC-Recursiveness: A General Schema for Argumentation Semantics. Artif. Intell., 168(1-2): 162–210. Springer, 2005.