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A Fundamental Limitation of FOL
Humans constantly face the necessity of making decisions:

What flight should I take?, What should I study?, What kind of surgery
does this patient need?, . . .

Ideally, we would
1. Start with sufficient information about the problem:

All direct and non-direct flights from London to Shanghai, their prices, flight
length, and seat availability

2. Apply logical reasoning to draw a conclusion:
The cheapest, shortest flight is with Virgin from LHR at 2pm.

3. Use the conclusion to make an informed decision:
Buy tickets for the relevant flight
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A Fundamental Limitation of FOL
FOL Knowledge Representation addresses this ideal situation:
1. We gather information
2. We represent it in a knowledge base
3. We pose queries and get answers using reasoning

But in reality, we may not have sufficient information.

Our decision making is sometimes based on common sense assumptions,
rather than on FOL derivable conclusions:
• If the LHR website shows no departing flight from London to Shanghai at 2pm,

then there is no such flight.

• Typically, the human heart is on the left side of the body.
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A Fundamental Limitation of FOL
Consider the statement

“Typically, humans have their heart on the left side of the body.”

If I am a doctor and meet Mary Jones for the first time, I would conclude in
the absence of additional information that

“Mary Jones’s heart is on the left side of her body.”

However, there is a rare condition, called situs inversus, in which the heart is
mirrored from its usual position (situs solitus).

If I examine her and discover that her heart is on the right, I should revise
my previous conclusion and deduce that she has situs inversus.

Non-monotonic Reasoning I (Lecture 7)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2022/23

Slide 4 of 19 Computational
Logic ∴ Group



A Fundamental Limitation of FOL
Suppose I try to model the previous situation in FOL:

∀x.(Human(x) → ∃y.(hasOrg(x, y)∧Heart( y)))
∀x.(Heart(x) ↔ SitSolHeart(x)∨ SitInvHeart(x))

∀x.(SitSolHeart(x) ↔ Heart(x)∧ hasLocation(x, left))
∀x.(SitInvHeart(x) ↔ Heart(x)∧ hasLocation(x, right))
∀x.(hasLocation(x, left)∧ hasLocation(x, right) → ⊥)

∀x.(SitInvPatient(x) ↔ Human(x)∧ ∃y.(hasOrg(x, y)∧ SitInvHeart( y))
Human(MaryJones)

KB does not entail either of the following (not enough info):
SitInvPatient(MaryJones) ¬SitInvPatient(MaryJones)

In particular, for MJHMary Jones’s heart, the KB entails neither of:
hasLocation(MJH, right) ¬hasLocation(MJH, right)
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A Fundamental Limitation of FOL
∀x.(Human(x) → ∃y.(hasOrg(x, y)∧Heart( y)))
∀x.(Heart(x) ↔ SitSolHeart(x)∨ SitInvHeart(x))

∀x.(SitSolHeart(x) ↔ Heart(x)∧ hasLocation(x, left))
∀x.(SitInvHeart(x) ↔ Heart(x)∧ hasLocation(x, right))
∀x.(hasLocation(x, left)∧ hasLocation(x, right) → ⊥)

∀x.(SitInvPatient(x) ↔ Human(x)∧ ∃y.(hasOrg(x, y)∧ SitInvHeart( y))
Human(MaryJones)

To deduce ¬SitInvPatient(MaryJones), we could add the facts:
Heart(MJH) hasOrg(MaryJones,MJH) hasLocation(MJH, left)

But then, when I examine the patient I should add new evidence
hasLocation(MJH, right)

Problem: The KB is now unsatisfiable.
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A Fundamental Limitation of FOL
In FOL, we cannot . . .
1. . . .draw “default” or “common sense” conclusions.
2. . . .withdraw conclusions when presented with new evidence.

Knowledge that is represented in FOL is “certain”.
• If a sentence is not entailed, it is not known

Nothing we can assume “by default”
• If new information contradicts existing, we get unsatisfiability

Our only choice is to modify the KB manually

This is due to a property of FOL called monotonicity.
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Monotonicity of FOL
Take sets of FOL sentences K and K′ with K ⊆ K′:
1. the set of models of K′ is contained in the set of models of K;
2. if K |= α, then K′ |= α.

Models of K (Added a
sentence)

(Added
another
sentence)

By adding FOL sentences to a knowledge base we gain knowledge:
• Reduce the number of models
• Increase the number of consequences (recall entailment definition)
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Introducing Non-monotonicity: CWA
Departures data for all London airports between 1pm and 2pm:

flight(LHR,Paris) flight(LGW , Johannesburg)
flight(LGW ,Doha) flight(LHR,Beijing)
flight(LUT ,Madrid) flight(STD, Athens)

Since the data do not include a Shanghai flight, reasonable to assume that
there is no such flight; so-called Closed World Assumption (CWA).

CWA can be thought of as a “rule” that produces new consequences:
“If something is not provably true, then assume that it is false.”

We can use CWA rule to deduce, for example, that ¬flight(LHR, Shanghai).
The CWA rule is non-monotonic:

If the data is extended with the fact flight(LHR, Shanghai), then the CWA no
longer allows for the above deduction.
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Introducing Non-monotonicity: Defaults
Consider our example about situs inversus. Suppose we extend our original
KB with the following Default Rule:

hasOrg(x, y)∧Heart( y) and not provably true ¬hasLocation( y, left)
deduce hasLocation( y, left)

It formalises the fact that “typically, the human heart is on the left side.”

If we extended our KB with such a rule we would infer

¬SitInvPatient(MaryJones)

Default rules are non-monotonic:
If we find out that hasLocation(MJH, right) is true, then the previous
entailment no longer holds w.r.t. our KB and default rule.
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The Need for Non-monotonic Logics
In formal terms,
• FOL has a monotonic entailment relation |=:

K ⊆ K′ and K |= α implies K′ |= α

• A non-monotonic entailment relation |≈ is one such that there exist K′,
K ⊆ K′ and α such that K |≈ α, but K′ |̸≈ α.

There is nothing esoteric about non-monotonic reasoning.
In fact our everyday reasoning is often non-monotonic!

But as logicians we should insist on:
• well defined syntax and semantics,
• well understood computational properties,
• semantics that induce a “reasonable” non-monotonic entailment relation

– one that is consistent with our intuitions.
Our next question is, how to define such a logic?
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The Semantics of FOL Entailment
There are many ways to define a non-monotonic logic from (a fragment of)
FOL. We will focus only on one of them.

Idea: Take into account only a subset of preferred models of K (instead of
all models) when checking whether K |= α.
• Monotonic entailment:

K |= α iff every (FOL) model of K is a model of α.
• Non-monotonic entailment:

K |≈ α iff every preferred (FOL) model of K is a model of α.

The non-monotonic entailment relation |≈ is supra-classical:
Using |≈ we will always derive more consequences than using |=.

Key problem: How to specify which models are preferred?
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Preferred Models
Coming back to our flight knowledge base K:

flight(LHR,Paris) flight(LGW , Johannesburg)
flight(LGW ,Doha) flight(LHR,Beijing)
flight(LUT ,Madrid) flight(STD, Athens)

This set of ground literals has infinitely many FOL models, and

K ̸|= ¬flight(LHR, Shanghai)

Here is a (Herbrand) counter-model I ̸|= ¬flight(LHR, Shanghai):

flight
I = { (LHR,Paris), (LGW , Johannesburg),

(LGW ,Doha), (LHR,Beijing),
(LUT ,Madrid), (STD, Athens),
(LHR, Shanghai) }
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Preferred Models
Note, however, that there is a special Herbrand model, namely the one that
coincides with the set of facts:

flight
Imin = { (LHR,Paris), (LGW , Johannesburg),

(LGW ,Doha), (LHR,Beijing),
(LUT ,Madrid), (STD, Athens) }

This model Imin is the intersection of all Herbrand models of K, and it is
called the least Herbrand model of K.

Suppose we specify |≈ by defining the set of preferred models as

Preferred(K) = {Imin}

Clearly K |≈ ¬flight(LHR, Shanghai).
More generally, our entailment relation |≈ captures the CWA.
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Preferred Models
Our strategy of selecting the least Herbrand model as preferred seemed
plausible: We correctly captured the CWA (in this example).
Our example was, however, a bit too simplistic:

The KB only contained positive, ground literals.

Problem: FOL KBs may not have least Herbrand models
∀x.(Heart(x) → SitSolHeart(x)∨ SitInvHeart(x))

∀x.(SitSolHeart(x)∧ SitInvHeart(x) → ⊥)
Heart(a)

We have only two Herbrand models:
I1 : Heart

I1 = {a}, SitSolHeartI1 = {a}
I2 : Heart

I2 = {a}, SitInvHeartI2 = {a}

Their intersection is not a model of our KB.
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Coming Back to Datalog
Bad news: Things could get much more complicated.
Good news: Datalog is a nice logic with least Herbrand Models.

∀x.( JuvArthritis(x) → JuvDisease(x))
∀x.(∀y.( JuvDisease(x)∧ Affects(x, y) → Child( y)))

JuvArthritis( JRA)
Affects( JRA, John)

The above KB has a least Herbrand model:

Imin : JuvArthritis
Imin = { JRA}, AffectsImin = {( JRA, John)},

JuvDisease
Imin = { JRA}, ChildImin = { John}

And we have a way to compute it: forward-chaining.
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Coming Back to Datalog
So, what is the difference with Datalog under monotonic semantics?

∀x.( JuvArthritis(x) → JuvDisease(x))
∀x.(∀y.( JuvDisease(x)∧ Affects(x, y) → Child( y)))

JuvArthritis( JRA)
Affects( JRA, John)

Imin : JuvArthritis
Imin = { JRA}, AffectsImin = {( JRA, John)},

JuvDisease
Imin = { JRA}, ChildImin = { John}

No difference with respect to entailment of positive literals:

K

|=

Child( John) K

|≈

Child( John)

Very different w.r.t. entailment of negative literals (CWA):

K

̸|=

¬Child( JRA) K

|≈

¬Child( JRA)
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Limitations
We have successfully formalised CWA in a useful FOL fragment.

However, we have just seen the tip of the iceberg:
1. We still do not know what to do with FOL fragments not having least

Herbrand models
2. Datalog with non-monotonic semantics is not sufficiently expressive to

represent default statements

hasOrg(x, y)∧Heart( y) & not provably true ¬hasLocation( y, left)
deduce hasLocation( y, left)

So, we have reached a crossroads:
1. We need logics beyond Datalog to express defaults.
2. It is not clear how to define |≈ for those fragments.
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Conclusion

• Entailment in “classical” first-order predicate logic is monotonic.
• This makes it hard to model making and withdrawing assumptions.
• A model theory for non-monotonic reasoning can be obtained by

restricting |≈ to preferred models.
• A natural way to define preferred models is using the least Herbrand

model if it exists.
• We used this fact to formalise the closed world assumption for Datalog.
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