
COMPLEXITY THEORY

Lecture 18: Questions and Answers

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 20th Dec 2017

https://iccl.inf.tu-dresden.de/web/Complexity_Theory_(WS2018/19)
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en

The Power of Circuits

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 2 of 25

Review

What we learned in the previous lecture:

• Circuits provide an alternative model of computation

• P ⊆ P/poly

• Circuit-Sat is NP-complete

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 3 of 25

Is P = P/poly?

We showed P ⊆ P/poly. Does the converse also hold?

No!

Theorem 18.1: P/poly contains undecidable problems.

Proof: We define the unary Halting problem as the (undecidable) language:

UHalt := {1n | the binary encoding of n encodes a pair 〈M, w〉

whereM is a TM that halts on word w}

For a number 1n ∈ UHalt, let Cn be the circuit that computes a generalised AND of all
inputs. For all other numbers, let Cn be a circuit that always returns 0. The circuit family
C1, C2, C3, . . . accepts UHalt. �

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 4 of 25

Is P = P/poly?

We showed P ⊆ P/poly. Does the converse also hold?

No!

Theorem 18.1: P/poly contains undecidable problems.

Proof: We define the unary Halting problem as the (undecidable) language:

UHalt := {1n | the binary encoding of n encodes a pair 〈M, w〉

whereM is a TM that halts on word w}

For a number 1n ∈ UHalt, let Cn be the circuit that computes a generalised AND of all
inputs. For all other numbers, let Cn be a circuit that always returns 0. The circuit family
C1, C2, C3, . . . accepts UHalt. �

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 4 of 25

Is P = P/poly?

We showed P ⊆ P/poly. Does the converse also hold?

No!

Theorem 18.1: P/poly contains undecidable problems.

Proof: We define the unary Halting problem as the (undecidable) language:

UHalt := {1n | the binary encoding of n encodes a pair 〈M, w〉

whereM is a TM that halts on word w}

For a number 1n ∈ UHalt, let Cn be the circuit that computes a generalised AND of all
inputs. For all other numbers, let Cn be a circuit that always returns 0. The circuit family
C1, C2, C3, . . . accepts UHalt. �

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 4 of 25

Uniform Circuit Families

P/poly is too powerful, since we do not require the circuits to be computable.
We can add this requirement:

Definition 18.2: A circuit family C1, C2, C3, . . . is log-space-uniform if there is a
log-space computable function that maps words 1n to (an encoding of) Cn.

Note: We could also define similar notions of uniformity for other complexity classes.

Theorem 18.3: The class of all languages that are accepted by a log-space-
uniform circuit family of polynomial size is exactly P.

Proof sketch: A detailed analysis shows that our earlier reduction of polytime DTMs to
circuits is log-space-uniform. Conversely, a polynomial-time procedure can be obtained
by first computing a suitable circuit (in log-space) and then evaluating it (in polynomial
time). �

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 5 of 25

Uniform Circuit Families

P/poly is too powerful, since we do not require the circuits to be computable.
We can add this requirement:

Definition 18.2: A circuit family C1, C2, C3, . . . is log-space-uniform if there is a
log-space computable function that maps words 1n to (an encoding of) Cn.

Note: We could also define similar notions of uniformity for other complexity classes.

Theorem 18.3: The class of all languages that are accepted by a log-space-
uniform circuit family of polynomial size is exactly P.

Proof sketch: A detailed analysis shows that our earlier reduction of polytime DTMs to
circuits is log-space-uniform. Conversely, a polynomial-time procedure can be obtained
by first computing a suitable circuit (in log-space) and then evaluating it (in polynomial
time). �

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 5 of 25

Turing Machines That Take Advice

One can also describe P/poly using TMs that take “advice”:

Definition 18.4: Consider a function a : N → N. A language L is accepted by
a Turing Machine M with a bits of advice if there is a sequence of advice strings
α0,α1,α2, . . . of length |αi| = a(i) and M accepts inputs of the form (w#α|w|) if and
only if w ∈ L.

P/poly is equivalent to the class of problems that can be solved by a PTime TM that takes
a polynomial amount of “advice” (where the advice can be a description of a suitable
circuit).

(This is where the notation P/poly comes from.)

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 6 of 25

P/poly and NP

We showed P ⊆ P/poly. Does NP ⊆ P/poly also hold?

Nobody knows.

Theorem 18.5 (Karp-Lipton Theorem): If NP ⊆ P/poly then PH = Σ
p
2.

Proof sketch (see Arora/Barak Theorem 6.19):
• if NP ⊆ P/poly then there is a polysize circuit family solving Sat
• Using this, one can argue that there is also a polysize circuit family that computes the

lexicographically first satisfying assignment (k output bits for k variables)
• A Π2-QBF formula ∀~X.∃~Y.ϕ is true if, for all values of ~X, ϕ(~X) is satisfiable.
• In ΣP

2 , we can: (1) guess the polysize circuit for SAT, (2) check for all values of ~X if its output
is really a satisfying assignment (to verify the guess)

• This solves ΠP
2 -hard problems in ΣP

2

• But then the Polynomial Hierarchy collapses at ΣP
2 , as claimed. �

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 7 of 25

P/poly and NP

We showed P ⊆ P/poly. Does NP ⊆ P/poly also hold?
Nobody knows.

Theorem 18.5 (Karp-Lipton Theorem): If NP ⊆ P/poly then PH = Σ
p
2.

Proof sketch (see Arora/Barak Theorem 6.19):
• if NP ⊆ P/poly then there is a polysize circuit family solving Sat
• Using this, one can argue that there is also a polysize circuit family that computes the

lexicographically first satisfying assignment (k output bits for k variables)
• A Π2-QBF formula ∀~X.∃~Y.ϕ is true if, for all values of ~X, ϕ(~X) is satisfiable.
• In ΣP

2 , we can: (1) guess the polysize circuit for SAT, (2) check for all values of ~X if its output
is really a satisfying assignment (to verify the guess)

• This solves ΠP
2 -hard problems in ΣP

2

• But then the Polynomial Hierarchy collapses at ΣP
2 , as claimed. �

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 7 of 25

P/poly and NP

We showed P ⊆ P/poly. Does NP ⊆ P/poly also hold?
Nobody knows.

Theorem 18.5 (Karp-Lipton Theorem): If NP ⊆ P/poly then PH = Σ
p
2.

Proof sketch (see Arora/Barak Theorem 6.19):
• if NP ⊆ P/poly then there is a polysize circuit family solving Sat
• Using this, one can argue that there is also a polysize circuit family that computes the

lexicographically first satisfying assignment (k output bits for k variables)
• A Π2-QBF formula ∀~X.∃~Y.ϕ is true if, for all values of ~X, ϕ(~X) is satisfiable.
• In ΣP

2 , we can: (1) guess the polysize circuit for SAT, (2) check for all values of ~X if its output
is really a satisfying assignment (to verify the guess)

• This solves ΠP
2 -hard problems in ΣP

2

• But then the Polynomial Hierarchy collapses at ΣP
2 , as claimed. �

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 7 of 25

P/poly and ExpTime

We showed P ⊆ P/poly. Does ExpTime ⊆ P/poly also hold?

Nobody knows.

Theorem 18.6 (Meyer’s Theorem):
If ExpTime ⊆ P/poly then ExpTime = PH = Σ

p
2.

See [Arora/Barak, Theorem 6.20] for a proof sketch.

Corollary 18.7: If ExpTime ⊆ P/poly then P , NP.

Proof: If ExpTime ⊆ P/poly then ExpTime = Σ
p
2 (Meyer’s Theorem).

By the Time Hierarchy Theorem, P , ExpTime, so P , Σ
p
2.

So the Polynomial Hierarchy doesn’t collapse completely, and P , NP. �

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 8 of 25

P/poly and ExpTime

We showed P ⊆ P/poly. Does ExpTime ⊆ P/poly also hold?
Nobody knows.

Theorem 18.6 (Meyer’s Theorem):
If ExpTime ⊆ P/poly then ExpTime = PH = Σ

p
2.

See [Arora/Barak, Theorem 6.20] for a proof sketch.

Corollary 18.7: If ExpTime ⊆ P/poly then P , NP.

Proof: If ExpTime ⊆ P/poly then ExpTime = Σ
p
2 (Meyer’s Theorem).

By the Time Hierarchy Theorem, P , ExpTime, so P , Σ
p
2.

So the Polynomial Hierarchy doesn’t collapse completely, and P , NP. �

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 8 of 25

P/poly and ExpTime

We showed P ⊆ P/poly. Does ExpTime ⊆ P/poly also hold?
Nobody knows.

Theorem 18.6 (Meyer’s Theorem):
If ExpTime ⊆ P/poly then ExpTime = PH = Σ

p
2.

See [Arora/Barak, Theorem 6.20] for a proof sketch.

Corollary 18.7: If ExpTime ⊆ P/poly then P , NP.

Proof: If ExpTime ⊆ P/poly then ExpTime = Σ
p
2 (Meyer’s Theorem).

By the Time Hierarchy Theorem, P , ExpTime, so P , Σ
p
2.

So the Polynomial Hierarchy doesn’t collapse completely, and P , NP. �

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 8 of 25

How Big a Circuit Could We Need?

We should not be surprised that P/poly is so powerful:
exponential circuit families are already enough to accept any language

Exercise: show that every Boolean function over n variables can be expressed by a circuit of size ≤ n2n.

It turns out that these exponential circuits are really needed:

Theorem 18.8 (Shannon 1949 (!)): For every n, there is a function {0, 1}n →
{0, 1} that cannot be computed by any circuit of size 2n/(10n).

In fact, one can even show: almost every Boolean function requires circuits of size
> 2n/(10n) – and is therefore not in P/poly

Is any of these functions in NP? Or at least in Exp? Or at least in NExp?
Nobody knows.

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 9 of 25

How Big a Circuit Could We Need?

We should not be surprised that P/poly is so powerful:
exponential circuit families are already enough to accept any language

Exercise: show that every Boolean function over n variables can be expressed by a circuit of size ≤ n2n.

It turns out that these exponential circuits are really needed:

Theorem 18.8 (Shannon 1949 (!)): For every n, there is a function {0, 1}n →
{0, 1} that cannot be computed by any circuit of size 2n/(10n).

In fact, one can even show: almost every Boolean function requires circuits of size
> 2n/(10n) – and is therefore not in P/poly

Is any of these functions in NP? Or at least in Exp? Or at least in NExp?
Nobody knows.

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 9 of 25

How Big a Circuit Could We Need?

We should not be surprised that P/poly is so powerful:
exponential circuit families are already enough to accept any language

Exercise: show that every Boolean function over n variables can be expressed by a circuit of size ≤ n2n.

It turns out that these exponential circuits are really needed:

Theorem 18.8 (Shannon 1949 (!)): For every n, there is a function {0, 1}n →
{0, 1} that cannot be computed by any circuit of size 2n/(10n).

In fact, one can even show: almost every Boolean function requires circuits of size
> 2n/(10n) – and is therefore not in P/poly

Is any of these functions in NP? Or at least in Exp? Or at least in NExp?

Nobody knows.

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 9 of 25

How Big a Circuit Could We Need?

We should not be surprised that P/poly is so powerful:
exponential circuit families are already enough to accept any language

Exercise: show that every Boolean function over n variables can be expressed by a circuit of size ≤ n2n.

It turns out that these exponential circuits are really needed:

Theorem 18.8 (Shannon 1949 (!)): For every n, there is a function {0, 1}n →
{0, 1} that cannot be computed by any circuit of size 2n/(10n).

In fact, one can even show: almost every Boolean function requires circuits of size
> 2n/(10n) – and is therefore not in P/poly

Is any of these functions in NP? Or at least in Exp? Or at least in NExp?
Nobody knows.

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 9 of 25

Question 1: The Logarithmic Hierarchy

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 10 of 25

Q1: The Logarithmic Hierarchy

The Polynomial Hierarchy is based on polynomially time-bounded TMs

It would also be interesting to study the Logarithmic Hierarchy
obtained by considering logarithmically space-bounded TMs instead

,
wouldnt’t it?

In detail, we can define:

• ΣL
0 = ΠL

0 = L

• ΣL
i+1 = NLΣL

i alternatively: languages of log-space bounded Σi+1 ATMs

• ΠL
i+1 = coNLΣL

i alternatively: languages of log-space bounded Πi+1 ATMs

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 11 of 25

Q1: The Logarithmic Hierarchy

The Polynomial Hierarchy is based on polynomially time-bounded TMs

It would also be interesting to study the Logarithmic Hierarchy
obtained by considering logarithmically space-bounded TMs instead,

wouldnt’t it?

In detail, we can define:

• ΣL
0 = ΠL

0 = L

• ΣL
i+1 = NLΣL

i alternatively: languages of log-space bounded Σi+1 ATMs

• ΠL
i+1 = coNLΣL

i alternatively: languages of log-space bounded Πi+1 ATMs

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 11 of 25

Q1: The Logarithmic Hierarchy

The Polynomial Hierarchy is based on polynomially time-bounded TMs

It would also be interesting to study the Logarithmic Hierarchy
obtained by considering logarithmically space-bounded TMs instead,

wouldnt’t it?

In detail, we can define:

• ΣL
0 = ΠL

0 = L

• ΣL
i+1 = NLΣL

i alternatively: languages of log-space bounded Σi+1 ATMs

• ΠL
i+1 = coNLΣL

i alternatively: languages of log-space bounded Πi+1 ATMs

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 11 of 25

Q1: What is the Logarithmic Hierarchy?

How do the levels of this hierarchy look?

• ΣL
0 = ΠL

0 = L

• ΣL
1 = NLL = NL

• ΠL
1 = coNLL = coNL = NL (why?)

• ΣL
2 = NLΣL

1 = NLNL = NL (why?)

• ΠL
2 = coNLΣL

1 = coNLNL = NL (why?)

Therefore ΣL
i = ΠL

i = NL for all i ≥ 1.

The Logarithmic Hierarchy collapses on the first level.

Historic note: In 1987, just before the Immerman-Szelepcsényi Theorem was published, Klaus-Jörn Lange, Birgit Jenner, and Bernd Kirsig showed
that the Logarithmic Hierarchy collapses on the second level [ICALP 1987].

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 12 of 25

Q1: What is the Logarithmic Hierarchy?

How do the levels of this hierarchy look?

• ΣL
0 = ΠL

0 = L

• ΣL
1 = NLL =

NL

• ΠL
1 = coNLL = coNL = NL (why?)

• ΣL
2 = NLΣL

1 = NLNL = NL (why?)

• ΠL
2 = coNLΣL

1 = coNLNL = NL (why?)

Therefore ΣL
i = ΠL

i = NL for all i ≥ 1.

The Logarithmic Hierarchy collapses on the first level.

Historic note: In 1987, just before the Immerman-Szelepcsényi Theorem was published, Klaus-Jörn Lange, Birgit Jenner, and Bernd Kirsig showed
that the Logarithmic Hierarchy collapses on the second level [ICALP 1987].

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 12 of 25

Q1: What is the Logarithmic Hierarchy?

How do the levels of this hierarchy look?

• ΣL
0 = ΠL

0 = L

• ΣL
1 = NLL = NL

• ΠL
1 = coNLL = coNL = NL (why?)

• ΣL
2 = NLΣL

1 = NLNL = NL (why?)

• ΠL
2 = coNLΣL

1 = coNLNL = NL (why?)

Therefore ΣL
i = ΠL

i = NL for all i ≥ 1.

The Logarithmic Hierarchy collapses on the first level.

Historic note: In 1987, just before the Immerman-Szelepcsényi Theorem was published, Klaus-Jörn Lange, Birgit Jenner, and Bernd Kirsig showed
that the Logarithmic Hierarchy collapses on the second level [ICALP 1987].

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 12 of 25

Q1: What is the Logarithmic Hierarchy?

How do the levels of this hierarchy look?

• ΣL
0 = ΠL

0 = L

• ΣL
1 = NLL = NL

• ΠL
1 = coNLL =

coNL = NL (why?)

• ΣL
2 = NLΣL

1 = NLNL = NL (why?)

• ΠL
2 = coNLΣL

1 = coNLNL = NL (why?)

Therefore ΣL
i = ΠL

i = NL for all i ≥ 1.

The Logarithmic Hierarchy collapses on the first level.

Historic note: In 1987, just before the Immerman-Szelepcsényi Theorem was published, Klaus-Jörn Lange, Birgit Jenner, and Bernd Kirsig showed
that the Logarithmic Hierarchy collapses on the second level [ICALP 1987].

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 12 of 25

Q1: What is the Logarithmic Hierarchy?

How do the levels of this hierarchy look?

• ΣL
0 = ΠL

0 = L

• ΣL
1 = NLL = NL

• ΠL
1 = coNLL = coNL

= NL (why?)

• ΣL
2 = NLΣL

1 = NLNL = NL (why?)

• ΠL
2 = coNLΣL

1 = coNLNL = NL (why?)

Therefore ΣL
i = ΠL

i = NL for all i ≥ 1.

The Logarithmic Hierarchy collapses on the first level.

Historic note: In 1987, just before the Immerman-Szelepcsényi Theorem was published, Klaus-Jörn Lange, Birgit Jenner, and Bernd Kirsig showed
that the Logarithmic Hierarchy collapses on the second level [ICALP 1987].

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 12 of 25

Q1: What is the Logarithmic Hierarchy?

How do the levels of this hierarchy look?

• ΣL
0 = ΠL

0 = L

• ΣL
1 = NLL = NL

• ΠL
1 = coNLL = coNL = NL (why?)

• ΣL
2 = NLΣL

1 = NLNL = NL (why?)

• ΠL
2 = coNLΣL

1 = coNLNL = NL (why?)

Therefore ΣL
i = ΠL

i = NL for all i ≥ 1.

The Logarithmic Hierarchy collapses on the first level.

Historic note: In 1987, just before the Immerman-Szelepcsényi Theorem was published, Klaus-Jörn Lange, Birgit Jenner, and Bernd Kirsig showed
that the Logarithmic Hierarchy collapses on the second level [ICALP 1987].

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 12 of 25

Q1: What is the Logarithmic Hierarchy?

How do the levels of this hierarchy look?

• ΣL
0 = ΠL

0 = L

• ΣL
1 = NLL = NL

• ΠL
1 = coNLL = coNL = NL (why?)

• ΣL
2 = NLΣL

1 = NLNL

= NL (why?)

• ΠL
2 = coNLΣL

1 = coNLNL = NL (why?)

Therefore ΣL
i = ΠL

i = NL for all i ≥ 1.

The Logarithmic Hierarchy collapses on the first level.

Historic note: In 1987, just before the Immerman-Szelepcsényi Theorem was published, Klaus-Jörn Lange, Birgit Jenner, and Bernd Kirsig showed
that the Logarithmic Hierarchy collapses on the second level [ICALP 1987].

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 12 of 25

Q1: What is the Logarithmic Hierarchy?

How do the levels of this hierarchy look?

• ΣL
0 = ΠL

0 = L

• ΣL
1 = NLL = NL

• ΠL
1 = coNLL = coNL = NL (why?)

• ΣL
2 = NLΣL

1 = NLNL = NL (why?)

• ΠL
2 = coNLΣL

1 = coNLNL = NL (why?)

Therefore ΣL
i = ΠL

i = NL for all i ≥ 1.

The Logarithmic Hierarchy collapses on the first level.

Historic note: In 1987, just before the Immerman-Szelepcsényi Theorem was published, Klaus-Jörn Lange, Birgit Jenner, and Bernd Kirsig showed
that the Logarithmic Hierarchy collapses on the second level [ICALP 1987].

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 12 of 25

Q1: What is the Logarithmic Hierarchy?

How do the levels of this hierarchy look?

• ΣL
0 = ΠL

0 = L

• ΣL
1 = NLL = NL

• ΠL
1 = coNLL = coNL = NL (why?)

• ΣL
2 = NLΣL

1 = NLNL = NL (why?)

• ΠL
2 = coNLΣL

1 = coNLNL

= NL (why?)

Therefore ΣL
i = ΠL

i = NL for all i ≥ 1.

The Logarithmic Hierarchy collapses on the first level.

Historic note: In 1987, just before the Immerman-Szelepcsényi Theorem was published, Klaus-Jörn Lange, Birgit Jenner, and Bernd Kirsig showed
that the Logarithmic Hierarchy collapses on the second level [ICALP 1987].

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 12 of 25

Q1: What is the Logarithmic Hierarchy?

How do the levels of this hierarchy look?

• ΣL
0 = ΠL

0 = L

• ΣL
1 = NLL = NL

• ΠL
1 = coNLL = coNL = NL (why?)

• ΣL
2 = NLΣL

1 = NLNL = NL (why?)

• ΠL
2 = coNLΣL

1 = coNLNL = NL (why?)

Therefore ΣL
i = ΠL

i = NL for all i ≥ 1.

The Logarithmic Hierarchy collapses on the first level.

Historic note: In 1987, just before the Immerman-Szelepcsényi Theorem was published, Klaus-Jörn Lange, Birgit Jenner, and Bernd Kirsig showed
that the Logarithmic Hierarchy collapses on the second level [ICALP 1987].

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 12 of 25

Q1: What is the Logarithmic Hierarchy?

How do the levels of this hierarchy look?

• ΣL
0 = ΠL

0 = L

• ΣL
1 = NLL = NL

• ΠL
1 = coNLL = coNL = NL (why?)

• ΣL
2 = NLΣL

1 = NLNL = NL (why?)

• ΠL
2 = coNLΣL

1 = coNLNL = NL (why?)

Therefore ΣL
i = ΠL

i = NL for all i ≥ 1.

The Logarithmic Hierarchy collapses on the first level.

Historic note: In 1987, just before the Immerman-Szelepcsényi Theorem was published, Klaus-Jörn Lange, Birgit Jenner, and Bernd Kirsig showed
that the Logarithmic Hierarchy collapses on the second level [ICALP 1987].

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 12 of 25

Question 2: The Hardest Problems in P

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 13 of 25

Q2: The hardest problems in P

What we know about P and NP:

• We don’t know if any problem in NP is really harder than any problem in P.

• But we do know that NP is at least as challenging as P, i.e., P ⊆ NP.

So all problems that are hard for NP are also hard for P, aren’t they?

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 14 of 25

Q2: The hardest problems in P

What we know about P and NP:

• We don’t know if any problem in NP is really harder than any problem in P.

• But we do know that NP is at least as challenging as P, i.e., P ⊆ NP.

So all problems that are hard for NP are also hard for P

, aren’t they?

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 14 of 25

Q2: The hardest problems in P

What we know about P and NP:

• We don’t know if any problem in NP is really harder than any problem in P.

• But we do know that NP is at least as challenging as P, i.e., P ⊆ NP.

So all problems that are hard for NP are also hard for P, aren’t they?

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 14 of 25

Q2: Is NP-hard as hard as P-hard?

Let’s first recall the definitions:

Definition: A problem L is NP-hard if, for all problems M ∈ NP, there is a polyno-
mial many-one reduction M ≤m L.

Definition: A problem L is P-hard if, for all problems M ∈ P, there is a log-space
reduction M ≤L L.

How to show “NP-hard implies P-hard”?

• Assume that L is NP-hard.

• Consider any language M ∈ P.

• Then M ∈ NP.

• So there is a polynomial many-one reduction f from M to L

• Hence, . . . well. . . , nothing much, really.

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 15 of 25

Q2: Is NP-hard as hard as P-hard?

Let’s first recall the definitions:

Definition: A problem L is NP-hard if, for all problems M ∈ NP, there is a polyno-
mial many-one reduction M ≤m L.

Definition: A problem L is P-hard if, for all problems M ∈ P, there is a log-space
reduction M ≤L L.

How to show “NP-hard implies P-hard”?

• Assume that L is NP-hard.

• Consider any language M ∈ P.

• Then M ∈ NP.

• So there is a polynomial many-one reduction f from M to L

• Hence, . . . well. . . , nothing much, really.

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 15 of 25

Q2: Is NP-hard as hard as P-hard?

Let’s first recall the definitions:

Definition: A problem L is NP-hard if, for all problems M ∈ NP, there is a polyno-
mial many-one reduction M ≤m L.

Definition: A problem L is P-hard if, for all problems M ∈ P, there is a log-space
reduction M ≤L L.

How to show “NP-hard implies P-hard”?

• Assume that L is NP-hard.

• Consider any language M ∈ P.

• Then M ∈ NP.

• So there is a polynomial many-one reduction f from M to L

• Hence, . . . well. . . , nothing much, really.

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 15 of 25

Q2: Is NP-hard as hard as P-hard?

Let’s first recall the definitions:

Definition: A problem L is NP-hard if, for all problems M ∈ NP, there is a polyno-
mial many-one reduction M ≤m L.

Definition: A problem L is P-hard if, for all problems M ∈ P, there is a log-space
reduction M ≤L L.

How to show “NP-hard implies P-hard”?

• Assume that L is NP-hard.

• Consider any language M ∈ P.

• Then M ∈ NP.

• So there is a polynomial many-one reduction f from M to L

• Hence, . . . well. . . , nothing much, really.

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 15 of 25

Q2: Is NP-hard as hard as P-hard?

Let’s first recall the definitions:

Definition: A problem L is NP-hard if, for all problems M ∈ NP, there is a polyno-
mial many-one reduction M ≤m L.

Definition: A problem L is P-hard if, for all problems M ∈ P, there is a log-space
reduction M ≤L L.

How to show “NP-hard implies P-hard”?

• Assume that L is NP-hard.

• Consider any language M ∈ P.

• Then M ∈ NP.

• So there is a polynomial many-one reduction f from M to L

• Hence, . . . well. . . , nothing much, really.

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 15 of 25

Q2: Is NP-hard as hard as P-hard?

Let’s first recall the definitions:

Definition: A problem L is NP-hard if, for all problems M ∈ NP, there is a polyno-
mial many-one reduction M ≤m L.

Definition: A problem L is P-hard if, for all problems M ∈ P, there is a log-space
reduction M ≤L L.

How to show “NP-hard implies P-hard”?

• Assume that L is NP-hard.

• Consider any language M ∈ P.

• Then M ∈ NP.

• So there is a polynomial many-one reduction f from M to L

• Hence, . . . well. . . , nothing much, really.

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 15 of 25

Q2: Is NP-hard as hard as P-hard?

Let’s first recall the definitions:

Definition: A problem L is NP-hard if, for all problems M ∈ NP, there is a polyno-
mial many-one reduction M ≤m L.

Definition: A problem L is P-hard if, for all problems M ∈ P, there is a log-space
reduction M ≤L L.

How to show “NP-hard implies P-hard”?

• Assume that L is NP-hard.

• Consider any language M ∈ P.

• Then M ∈ NP.

• So there is a polynomial many-one reduction f from M to L

• Hence, . . . well. . . , nothing much, really.

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 15 of 25

Q2: Is NP-hard as hard as P-hard?

Let’s first recall the definitions:

Definition: A problem L is NP-hard if, for all problems M ∈ NP, there is a polyno-
mial many-one reduction M ≤m L.

Definition: A problem L is P-hard if, for all problems M ∈ P, there is a log-space
reduction M ≤L L.

How to show “NP-hard implies P-hard”?

• Assume that L is NP-hard.

• Consider any language M ∈ P.

• Then M ∈ NP.

• So there is a polynomial many-one reduction f from M to L

• Hence, . . .

well. . . , nothing much, really.

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 15 of 25

Q2: Is NP-hard as hard as P-hard?

Let’s first recall the definitions:

Definition: A problem L is NP-hard if, for all problems M ∈ NP, there is a polyno-
mial many-one reduction M ≤m L.

Definition: A problem L is P-hard if, for all problems M ∈ P, there is a log-space
reduction M ≤L L.

How to show “NP-hard implies P-hard”?

• Assume that L is NP-hard.

• Consider any language M ∈ P.

• Then M ∈ NP.

• So there is a polynomial many-one reduction f from M to L

• Hence, . . . well. . . ,

nothing much, really.

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 15 of 25

Q2: Is NP-hard as hard as P-hard?

Let’s first recall the definitions:

Definition: A problem L is NP-hard if, for all problems M ∈ NP, there is a polyno-
mial many-one reduction M ≤m L.

Definition: A problem L is P-hard if, for all problems M ∈ P, there is a log-space
reduction M ≤L L.

How to show “NP-hard implies P-hard”?

• Assume that L is NP-hard.

• Consider any language M ∈ P.

• Then M ∈ NP.

• So there is a polynomial many-one reduction f from M to L

• Hence, . . . well. . . , nothing much, really.

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 15 of 25

Q2: Is NP-hard as hard as P-hard?

Let’s first recall the definitions:

Definition: A problem L is NP-hard if, for all problems M ∈ NP, there is a polyno-
mial many-one reduction M ≤m L.

Definition: A problem L is P-hard if, for all problems M ∈ P, there is a log-space
reduction M ≤L L.

How to show “NP-hard implies P-hard”?

• Assume that L is NP-hard.

• Consider any language M ∈ P.

• Then M ∈ NP.

• So there is a polynomial many-one reduction f from M to L

• Hence, . . . well. . . , nothing much, really.

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 15 of 25

Q2: Is NP-hard as hard as P-hard?

For all we know today, it is perfectly possible that
there are NP-hard problems that are not P-hard.

Example 18.9: We know that L ⊆ P ⊆ NP but we do not know if any of these
subsumptions are proper. Suppose that the truth actually looks like this: L (P =

NP. Then all non-trivial problems in P are NP-hard (why?), but not every problem
would be P-hard (why?).

Note: This is really about the different notions of reduction used to define hardness. If
we used log-space reductions for P-hardness and NP-hardness, the claim would follow.

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 16 of 25

Q2: Is NP-hard as hard as P-hard?

For all we know today, it is perfectly possible that
there are NP-hard problems that are not P-hard.

Example 18.9: We know that L ⊆ P ⊆ NP but we do not know if any of these
subsumptions are proper. Suppose that the truth actually looks like this: L (P =

NP. Then all non-trivial problems in P are NP-hard (why?), but not every problem
would be P-hard (why?).

Note: This is really about the different notions of reduction used to define hardness. If
we used log-space reductions for P-hardness and NP-hardness, the claim would follow.

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 16 of 25

Question 3: Problems Harder than P

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 17 of 25

Q3: Problems harder than P

Polynomial time is an approximation of “practically tractable” problems:

• Many practical problems are in P, including many very simple ones (e.g., ∅)

• P-hard problems are as hard as any other problem in P, and
P-complete problems therefore are the hardest problems in P

• However, there are even harder problems that are no longer in P

So, clearly, problems that are not even in P must be P-hard, right?

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 18 of 25

Q3: Problems harder than P

Polynomial time is an approximation of “practically tractable” problems:

• Many practical problems are in P, including many very simple ones (e.g., ∅)

• P-hard problems are as hard as any other problem in P, and
P-complete problems therefore are the hardest problems in P

• However, there are even harder problems that are no longer in P

So, clearly, problems that are not even in P must be P-hard

, right?

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 18 of 25

Q3: Problems harder than P

Polynomial time is an approximation of “practically tractable” problems:

• Many practical problems are in P, including many very simple ones (e.g., ∅)

• P-hard problems are as hard as any other problem in P, and
P-complete problems therefore are the hardest problems in P

• However, there are even harder problems that are no longer in P

So, clearly, problems that are not even in P must be P-hard, right?

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 18 of 25

Q3: Are problems harder than P also hard for P?

Can we find any problem that is surely harder than P?

Yes, easily:

• The Halting Problem is undecidable and therefore not in P

• Any ExpTime-complete problem is not in P (Time Hierarchy Theorem); e.g., the
Word Problem for exponentially time-bounded DTMs

These concrete examples both are hard for P:

• The Word Problem for polynomially time-bounded DTMs is hard for P

• This polytime Word Problem log-space reduces to the Word Problem for
exponential TMs (reduction: the identity function)

• It also log-space reduces to the Halting problem: a reduction merely has to modify
the TM so that every rejecting halting configuration leads into an infinite loop

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 19 of 25

Q3: Are problems harder than P also hard for P?

Can we find any problem that is surely harder than P? Yes, easily:

• The Halting Problem is undecidable and therefore not in P

• Any ExpTime-complete problem is not in P (Time Hierarchy Theorem); e.g., the
Word Problem for exponentially time-bounded DTMs

These concrete examples both are hard for P:

• The Word Problem for polynomially time-bounded DTMs is hard for P

• This polytime Word Problem log-space reduces to the Word Problem for
exponential TMs (reduction: the identity function)

• It also log-space reduces to the Halting problem: a reduction merely has to modify
the TM so that every rejecting halting configuration leads into an infinite loop

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 19 of 25

Q3: Are problems harder than P also hard for P?

Can we find any problem that is surely harder than P? Yes, easily:

• The Halting Problem is undecidable and therefore not in P

• Any ExpTime-complete problem is not in P (Time Hierarchy Theorem); e.g., the
Word Problem for exponentially time-bounded DTMs

These concrete examples both are hard for P

:

• The Word Problem for polynomially time-bounded DTMs is hard for P

• This polytime Word Problem log-space reduces to the Word Problem for
exponential TMs (reduction: the identity function)

• It also log-space reduces to the Halting problem: a reduction merely has to modify
the TM so that every rejecting halting configuration leads into an infinite loop

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 19 of 25

Q3: Are problems harder than P also hard for P?

Can we find any problem that is surely harder than P? Yes, easily:

• The Halting Problem is undecidable and therefore not in P

• Any ExpTime-complete problem is not in P (Time Hierarchy Theorem); e.g., the
Word Problem for exponentially time-bounded DTMs

These concrete examples both are hard for P:

• The Word Problem for polynomially time-bounded DTMs is hard for P

• This polytime Word Problem log-space reduces to the Word Problem for
exponential TMs (reduction: the identity function)

• It also log-space reduces to the Halting problem: a reduction merely has to modify
the TM so that every rejecting halting configuration leads into an infinite loop

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 19 of 25

Q3: Are problems harder than P also hard for P?

Rephrasing the question: Are there problems that are not in P, yet not hard for P?

Some observations:

• ∅ is not P-hard (why?)

• Any ExpTime-complete problem L is not in P (why?)

• We can enumerate DTMs for all languages in P (how?)

• We can enumerate DTMs for all P-hard languages in ExpTime (how?)

So, it’s clear what we have to do now . . .

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 20 of 25

Q3: Are problems harder than P also hard for P?

Rephrasing the question: Are there problems that are not in P, yet not hard for P?

Some observations:

• ∅ is not P-hard (why?)

• Any ExpTime-complete problem L is not in P (why?)

• We can enumerate DTMs for all languages in P (how?)

• We can enumerate DTMs for all P-hard languages in ExpTime (how?)

So, it’s clear what we have to do now . . .

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 20 of 25

Q3: Are problems harder than P also hard for P?

Rephrasing the question: Are there problems that are not in P, yet not hard for P?

Some observations:

• ∅ is not P-hard (why?)

• Any ExpTime-complete problem L is not in P (why?)

• We can enumerate DTMs for all languages in P (how?)

• We can enumerate DTMs for all P-hard languages in ExpTime (how?)

So, it’s clear what we have to do now . . .

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 20 of 25

Q3: Are problems harder than P also hard for P?

Rephrasing the question: Are there problems that are not in P, yet not hard for P?

Some observations:

• ∅ is not P-hard (why?)

• Any ExpTime-complete problem L is not in P (why?)

• We can enumerate DTMs for all languages in P (how?)

• We can enumerate DTMs for all P-hard languages in ExpTime (how?)

So, it’s clear what we have to do now . . .

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 20 of 25

Q3: Are problems harder than P also hard for P?

Rephrasing the question: Are there problems that are not in P, yet not hard for P?

Some observations:

• ∅ is not P-hard (why?)

• Any ExpTime-complete problem L is not in P (why?)

• We can enumerate DTMs for all languages in P (how?)

• We can enumerate DTMs for all P-hard languages in ExpTime (how?)

So, it’s clear what we have to do now . . .

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 20 of 25

Q3: Are problems harder than P also hard for P?

Rephrasing the question: Are there problems that are not in P, yet not hard for P?

Some observations:

• ∅ is not P-hard (why?)

• Any ExpTime-complete problem L is not in P (why?)

• We can enumerate DTMs for all languages in P (how?)

• We can enumerate DTMs for all P-hard languages in ExpTime (how?)

So, it’s clear what we have to do now . . .

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 20 of 25

Q3: Are problems harder than P also hard for P?

Rephrasing the question: Are there problems that are not in P, yet not hard for P?

Some observations:

• ∅ is not P-hard (why?)

• Any ExpTime-complete problem L is not in P (why?)

• We can enumerate DTMs for all languages in P (how?)

• We can enumerate DTMs for all P-hard languages in ExpTime (how?)

So, it’s clear what we have to do now . . .

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 20 of 25

Q3: Are problems harder than P also hard for P?

Schöning to the rescue (see Theorem 15.2):

Corollary 18.10: Consider the classes C1 = ExpPHard (P-hard problems in Exp-
Time) and C2 = P. Both are classes of decidable languages. We find that for
either class Ck:

• We can effectively enumerate TMs Mk
0,M

k
1, . . . such that

Ck = {L(Mk
i) | i ≥ 0)}.

• If L ∈ Ck and L’ differs from L on only a finite number of words, then L’ ∈ Ck

Let L1 = ∅, and let L2 be some ExpTime-complete problem. Clearly, L1 <

ExpPHard and L2 < P (Time Hierarchy), hence there is a decidable language
Ld < ExpPHard ∪ P.
Moreover, as ∅ ∈ P and L2 is not trivial, Ld ≤p L2 and hence Ld ∈ ExpTime.
Therefore Ld < ExpPHard implies that Ld is not P-hard.

This idea of using Schöning’s Theorem has been put forward by Ryan Williams (link). Our version is a modification requiring C1 ⊆ ExpTime.

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 21 of 25

https://cstheory.stackexchange.com/a/8046/17577

Q3: Are problems harder than P also hard for P?

No, there are problems in ExpTime that are neither in P nor hard for P.

(Other arguments can even show the existence of undecidable sets that are not P-hard1)

Discussion:

• Considering Questions 2 and 3, the use of the word hard is misleading, since we
interpret it as difficult

• However, the actual meaning difficult would be “not in a given class” (e.g.,
problems not in P are clearly more difficult than those in P)

• Our formal notion of hard also implies that a problem is difficult in some sense, but
it also requires it to be universal in the sense that many other problems can be
solved through it

What we have seen is that there are difficult problems that are not universal.

1Related note: the undecidable UHalt is not NP-hard, since it is a so-called sparse language.
Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 22 of 25

Q3: Are problems harder than P also hard for P?

No, there are problems in ExpTime that are neither in P nor hard for P.

(Other arguments can even show the existence of undecidable sets that are not P-hard1)

Discussion:

• Considering Questions 2 and 3, the use of the word hard is misleading, since we
interpret it as difficult

• However, the actual meaning difficult would be “not in a given class” (e.g.,
problems not in P are clearly more difficult than those in P)

• Our formal notion of hard also implies that a problem is difficult in some sense, but
it also requires it to be universal in the sense that many other problems can be
solved through it

What we have seen is that there are difficult problems that are not universal.

1Related note: the undecidable UHalt is not NP-hard, since it is a so-called sparse language.
Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 22 of 25

Your Questions

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 23 of 25

Summary and Outlook
Nonuniform circuit families are very powerful, and even polynomial circuits can solve
undecidable problems

Log-space-uniform polynomial circuits capture P.

Most boolean functions cannot be expressed by polynomial circuits, yet we don’t know
of any such function that is even in NExp

Answer 1: The Logarithmic Hierarchy collapses.

Answer 2: We don’t know that NP-hard implies P-hard.

Answer 3: Being outside of P does not make a problem P-hard.

What’s next?

• Holidays

• More on circuits

• Randomness

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 24 of 25

Here’s wishing you

a Merry Christmas, a Happy Hanukkah,

a Joyous Yalda, a Cheerful Dōngzhì,

a Great Feast of Juul,

and a Wonderful Winter Solstice,

respectively!

Markus Krötzsch, 20th Dec 2017 Complexity Theory slide 25 of 25

	Questions and Answers
	The Power of Circuits
	Question 1: The Logarithmic Hierarchy
	Question 2: The Hardest Problems in P
	Question 3: Problems Harder than P

