
Complexity of language equations with one-sided

concatenation and all Boolean operations

Franz Baader1 and Alexander Okhotin2,3?

1 Theoretical Computer Science, Technical University of Dresden, Germany,
baader@tcs.inf.tu-dresden.de

2 Department of Mathematics, University of Turku, Finland
3 Research Group on Mathematical Linguistics, Rovira i Virgili University, Spain

alexander.okhotin@utu.fi

Abstract. Language equations are equations where both the constants
occurring in the equations and the solutions are formal languages. They
have first been introduced in formal language theory, but are now also
considered in other areas of computer science. In particular, they can
be seen as unification problems in the algebra of languages whose op-
erations are the Boolean operations and concatenation. They are also
closely related to monadic set constraints. In the present paper, we re-
strict the attention to language equations with one-sided concatenation,
but in contrast to previous work on these equations, we allow not just
union but all Boolean operations to be used when formulating them.
In addition, we are not just interested in deciding solvability of such
equations, but also in deciding other properties of the set of solutions,
like its cardinality (finite, infinite, uncountable) and whether it contains
least/greatest solutions. We show that all these decision problems are
ExpTime-complete.

1 Introduction

Unification in equational theories [5] can be seen as solving equations in the
free algebra with countably many generators induced by the theory in question.
In some cases, however, one also considers unification in arbitrary algebras, not
just free ones (see, e.g., [8,16]). In the present paper, the algebra over which
we want to solve equations consists of all languages (i.e., sets of words) over
a fixed finite alphabet, and the unification problems are built using Boolean
operations and (one-sided) concatenation. In unification theory, given a class
of unification problems, one is either interested in computing complete sets of
unifiers or in deciding solvability. For our language equations, we consider not
just solvability (i.e., whether the set of solutions is empty or not), but also more
general questions regarding the solution set: is it finite/countable or not; does it
contain least/greatest solutions?

? Supported by the Academy of Finland under grant 206039.

60 Franz Baader and Alexander Okhotin

In formal language theory, equations with formal languages as constant pa-
rameters and unknowns have been studied since the 1960s, when two basic con-
cepts of the theory of computation, finite automata and context-free grammars,
were respectively represented as systems of equations with union and one-sided
concatenation [7] and with union and unrestricted concatenation [12]. This topic
was further studied in the monographs on algebraic automata theory by Salo-
maa [23] and Conway [11]. For example, it is well-known that the equation
X = AX ∪B, where A,B are fixed formal languages, has A∗B as a solution. If
the empty word does not belong to A, then this is the only solution. Otherwise,
A∗B is the least solution (w.r.t. inclusion), and all solutions are of the form A∗C
for C ⊇ B. Depending on A, B and the available alphabet, the equation may
thus have finitely many, countably infinitely many, or even uncountably many
solutions. The above equation is an equation with one-sided concatenation since
concatenation occurs only on one side of the variable. In contrast, the equation
X = aXb ∪XX ∪ ε is not one-sided. Its least solution is the Dyck language of
balanced parentheses generated by the context-free grammar S → aSb | SS | ε,
whereas its greatest solution is {a, b}∗.

Both examples are resolved equations in the sense that their left-hand sides
consist of a single variable. If only monotonic operations (in the examples: union
and concatenation) are used, then such resolved equations always have a least
and greatest solution due to the Tarski-Knaster fixpoint theorem [26]. Once the
resolved form of equations is no longer required or non-monotonic operations
(like complement) are used, a given language equation need no longer have solu-
tions, and thus the problem of deciding solvability of such an equation becomes
non-trivial. The same is true for other decision problems, like asking for the ex-
istence of a least/greatest solution or determining the cardinality of the set of
solutions.

In the case of language equations with unrestricted concatenation, the solv-
ability problem becomes undecidable since the intersection emptiness problem
of context-free languages can easily be encoded [10]. A systematic study of the
hardness of decision problems for language equations with unrestricted concate-
nation (i.e., the position of these problems in the arithmetic hierarchy) was
carried out by Okhotin [19,20,21], who also characterized recursive and recur-
sively enumerable sets by solutions of language equations. A surprising proof of
the computational universality of very simple language equations of the form
LX = XL, where L is a finite constant language, has recently been given by
Kunc [14]. Though such equations are syntactically close to word equations (i.e.,
unification problems modulo associativity) [15], like the equation aX = Xa,
there is no strong relationship between the two types of equations since the
unknowns stand for different mathematical objects: a single word in the case of
word equations versus a set of words in the case of language equations. In princi-
ple, the relationship between word equations and languages equations is similar
to the relationship between syntactic unification problems and set constraints
[1], where instead of terms one considers sets of terms, and also allows (certain)
Boolean operations to occur in the equations.

Complexity of language equations with one-sided concatenation. . . 61

Language equations with one-sided concatenation usually do not have un-
decidable decision problems. In fact, many properties of the solution sets of
such equations, such as existence and uniqueness of their solutions, can be ex-
pressed in Rabin’s monadic second-order logic on infinite trees [22]. This implies
the decidability of these problems, but only yields a non-elementary complexity
upper-bound [25]. Language equations with one-sided concatenation can also be
regarded as a particular case set constraints, which received significant attention
in the literature [1,9,13] since they can, e.g., be used in program analysis. In fact,
language equations with one-sided concatenation correspond to monadic set con-
straints, where all function symbols are unary. Thus, decidability results for set
constraints also yield decidability results for the corresponding language equa-
tions. However, since set constraints are in general more complex than monadic
set constraints, this does not necessarily yield optimal complexity bounds. Lan-
guage equations with one-sided concatenation and union have been studied in
the context of unification problems in description logics: Baader and Narendran
[3] show that the existence of a finite solution (i.e., a solution where all unknowns
are replaced by finite languages) is an ExpTime-complete problem; Baader and
Küsters [2] show the same for the existence of an arbitrary (possibly infinite)
solution. In the latter work, it is also shown that a solvable equation always
has a greatest solution, and that this solution is regular (i.e., consists of regular
languages).

The present paper extends the results of [2] in two directions.4 On the
one hand, we consider language equations with one-sided concatenation and
all Boolean operations, and on the other hand we consider additional decision
problems, like determining the existence of least/greatest solutions and the cardi-
nality of the solution set. All these problems turn out to be ExpTime-complete
for language equations with one-sided concatenation and any set of available
Boolean operations between {∪} and {∪,∩,¬}. After a preliminary section in
which we give the relevant definitions, we first concentrate in Section 3 on show-
ing the ExpTime upper-bounds for the mentioned decision problems in the case
of the most general type of one-sided equations where all Boolean operations
are available. This is done by translating language equations into a special kind
of looping tree automata, showing a 1–1-relationship between the solutions of
the equation and the runs of the corresponding automaton, and then charac-
terizing the relevant properties of solution sets by decidable properties of the
automaton. Thus, we have a uniform approach for solving all decision prob-
lems by one automaton construction. The decision procedures for the respective
problems only differ in what property of the constructed automaton must be de-
cided. In Section 4, we then show the ExpTime lower-bounds for the mentioned
decision problems in the case of one-sided language equations with union: the
reduction is from the intersection emptiness problem for deterministic looping
tree automata, whose ExpTime-completeness easily follows from the ExpTime-
completeness of the same problem for deterministic top-down tree automata on

4 Detailed proofs of our new results are given in [4].

62 Franz Baader and Alexander Okhotin

finite trees [24,2]. Again, the hardness proofs are uniform: one reduction shows
hardness of all decision problems under consideration.

2 Preliminaries

In this section, we first introduce the language equations investigated in this
paper, and show that they can be transformed into a simpler normal form.
Then, we introduce some notions regarding automata working on infinite trees.

2.1 Language equations with one-sided concatenation

For a fixed finite alphabet Σ, we consider systems of equations of the following
general form: 









ψ1(X1, . . . , Xn) = ξ1(X1, . . . , Xn)
...

ψm(X1, . . . , Xn) = ξm(X1, . . . , Xn)

(1)

where the form of the expressions ψi and ξi is defined inductively:

– any variable Xi is an expression;
– any regular language L ⊆ Σ∗ is an expression;
– a concatenation ϕL of an expression ϕ and a regular language L ⊆ Σ∗ is an

expression;
– if ϕ,ϕ′ are expressions, then so are (ϕ ∪ ϕ′), (ϕ ∩ ϕ′) and (∼ϕ).

We assume that the regular languages in expressions are given by non-
deterministic finite automata. An effective description of a system (1) would
contain transition tables and accepting states of these automata, and thus the
number of their states and transitions adds to the size of the description.

If the expressions in such a system contain neither intersection nor comple-
ment, then we call it a system of language equations with one-sided concatena-
tion and union.

A solution of a general system (1) is a vector of languages (L1, . . . , Ln) such
that a substitution of Lj for Xj for all j turns each instantiated equation into
an equality. Solutions can be compared w.r.t. inclusion of their components: we
define (L1, . . . , Ln) ¹ (L′1, . . . , L

′
n) iff Li ⊆ L′i holds for i = 1, . . . , n. In addition

to the problem of deciding whether a system has a solution or not, we consider
additional decision problems that look more closely at properties of the set of
solutions: its cardinality (is there a unique solution, are there finitely or infinitely
many solutions, are there countably or uncountably many solutions) and whether
it contains least/greatest elements w.r.t. ¹.

In order to design algorithms for solving these decision problems, it is more
convenient to consider language equations in the following normal form: a single
equation

ϕ(Z1, . . . , Zk) = ∅, (2)

Complexity of language equations with one-sided concatenation. . . 63

in the unknowns Z1, . . . , Zk, where the constant regular languages occurring in
ϕ are singleton languages {ε} and {a} for a ∈ Σ, which we simply write as ε
and a.

The next lemma implies that w.r.t. all decision problems concerned with the
cardinality of the set of solutions (including the existence of a solution), the
restriction to equations of form (2) is without loss of generality.

Lemma 1. For every system (1) in the unknowns X1, . . . , Xn we can construct
in polynomial time an equation (2) in the unknowns X1, . . . , Xn, Y1, . . . , Y` for
some ` > 0 such that the set of solutions of (2) is

{(

L1, . . . , Ln, η1(L1, . . . , Ln), . . . , η`(L1, . . . , Ln)
)

∣

∣ (L1, . . . , Ln) solves (1)
}

for some functions η1, . . . η` : (2Σ∗

)n → 2Σ∗

. The size of the resulting equation
is linear in the size of the original system.

Proof sketch: Regular languages in (1) can be expressed by employing re-
solved equations for additional variables Y1, . . . , Y`. For example, the expression
(∼X)a∗b can be replaced by Y2 if we add the resolved equations Y2 = Y1b and
Y1 = Y1a ∪ ∼X. Since resolved equations of this form have a unique solution,
any value for X yields unique values for Y1, Y2. The total size of equations added
is proportional to the number of transitions in an NFA, and hence the growth is
linear.

Every equation ψi = ξi has the same solutions as (ψi ∩∼ξi)∪ (ξ ∩∼ψi) = ∅,
and the system ϕ1 = ∅, ϕ2 = ∅ has the same solutions as ϕ1 ∪ ϕ2 = ∅. ut

Regarding the existence of least/greatest solutions, we must be more careful.
For example, when representing (∼X)a∗b by Y2 and the equations Y2 = Y1b, Y1 =
Y1a ∪ ∼X, a larger value for X yields smaller values for Y1, Y2. Thus, even if
the original system has a least/greatest solution, the new one need not have
one. The solution to this problem will be that when defining the relation ¹
on solutions, we do not necessarily compare solutions w.r.t. all components,
but only w.r.t. the components corresponding to a set of focus variables.5 In
this case, the constructed system (2) with unknowns X1, . . . , Xn, Y1, . . . , Y` has
a least/greatest solution w.r.t. the focus variables X1, . . . , Xn iff the original
system (1) has a least/greatest solution.

2.2 Automata on infinite trees

Given a ranked alphabet Γ where every symbol has a rank > 0, infinite trees
over Γ are defined in the usual way, i.e., every node in the tree is labeled with an
element f ∈ Γ and has rank of f many successor nodes. A looping tree automaton
A = (Q,Γ,Q0,∆) consists of a finite set of states Q, a ranked alphabet Γ , a set
of initial states Q0 ⊆ Q, and a transition function ∆ : Q× Γ → 2Q∗

that maps
each pair (q, f) to a subset of Qk where k is the rank of f . This automaton is
deterministic if |Q0| = 1 and |∆(q, f)| 6 1 for all pairs (q, f). A run r of A on a

5 Note that ¹ is then no longer a partial order but only a preorder.

64 Franz Baader and Alexander Okhotin

tree t labels the nodes of t with elements of Q such that the root is labeled with
q0 ∈ Q0, and the labels respect the transition function, i.e., if node v has label
t(v) in t and label r(v) in r, then the tuple (q1, . . . , qk) labeling the successors
of v in r must belong to ∆(r(v), t(v)). The tree t is accepted by A if there is a
run of A on t. The language accepted by A is defined as

L(A) := {t | t is an infinite tree over Γ that is accepted by A}.

It is well-known that the emptiness problem for looping tree automata, i.e., the
question whether the accepted language is non-empty, is decidable in linear time
(see, e.g., [6]). However, the intersection emptiness problem, i.e., given looping
tree automata A1, . . . ,Ak, is L(A1) ∩ . . . ∩ L(Ak) empty or not, is ExpTime-
complete even for deterministic automata [24,2]. This result will be used to show
the complexity lower-bounds in Section 4.

When showing the complexity upper-bounds in Section 3, we actually employ
a very restricted form of looping automata. First, we restrict the attention to a
ranked alphabet Γ containing a single symbol γ of some fixed rank k > 0. Thus,
there is only one infinite tree, and the labeling of its nodes by γ can be ignored.
Given an arbitrary finite alphabet Σ := {a1, . . . , ak} of cardinality k, every node
in this tree can uniquely be represented by a word w ∈ Σ∗, where ai corresponds
to the ith successor. Second, we consider not arbitrary looping tree automata
working on this tree, but tree automata induced by word automata. A non-
deterministic finite automaton (NFA) A = (Q,Σ,Q0, δ) without accepting states
working on words over Σ induces a looping tree automaton A = (Q,Γ,Q0,∆)
working on the infinite tree over Γ as follows:

∆(q, γ) := {(q1, . . . , qk) | qi ∈ δ(q, ai) for i = 1, . . . , k}.

We call such an automaton looping tree automaton with independent transitions
(ILTA) since in every component the successor states can be chosen indepen-
dently from what is chosen in another component. In the following, we do not
distinguish between the NFA and the ILTA it represents. For example, we will
talk about runs of the NFA, but mean the runs of the corresponding ILTA.
The runs of the NFA A = (Q,Σ,Q0, δ) can thus be represented as functions
r : Σ∗ → Q such that r(ε) ∈ Q0 and r(wa) ∈ δ(r(w), a) for all w ∈ Σ∗ and
a ∈ Σ. In addition, when defining an ILTA, we will usually introduce just the
corresponding NFA, and call it ILTA. In the next section, we are not interested
in the tree language accepted by an ILTA (which is either empty or a singleton
set); instead, we are interested in the runs themselves.

Following the definition of looping tree automata, an ILTA is called deter-
ministic if |δ(q, a)| 6 1 for all q ∈ Q and a ∈ Σ, that is, if the underlying NFA is
a partial DFA. Note that a deterministic ILTA has at most one run; furthermore,
having a completely defined function δ is a sufficient condition of having exactly
one run.

We call an NFA A = (Q,Σ,Q0, δ) and the ILTA it represents trim if every
state is reachable from an initial state, and δ(q, a) 6= ∅ for all q ∈ Q and a ∈ Σ.
It is easy to see that every NFA can be transformed in polynomial time into

Complexity of language equations with one-sided concatenation. . . 65

a trim NFA having the same runs. In such a trim NFA, every finite or infinite
path can be completed to a run containing it. In addition, it has a run iff Q is
non-empty.

3 The complexity upper-bounds

In this section we show that all the decision problems for language equations with
one-sided concatenation introduced above can be solved within deterministic ex-
ponential time. To this purpose, we show how to translate a given language equa-
tion in normal form ϕ = ∅ into an ILTA such that there is a 1–1-correspondence
between the solutions of the equation and the runs of the corresponding ILTA.

3.1 Translating language equations into ILTA

Let Σ = {a1, . . . , am}, and ϕ(X1, . . . , Xn) be an expression. In the following, we
assume that ϕ is fixed, and denote the set of its subexpressions by Φ. We assume
that ε,X1, . . . , Xn ∈ Φ (otherwise, we simply add them). Let Φ0 = {ψa | a ∈ Σ,
ψa ∈ Φ}∪{ε} and Φ1 = Φ0∪{X1, . . . , Xn}. We define two elementary operations
on subsets of Φ. The first of them, select, maps a set q0 ⊆ Φ0 to a collection of
subsets of Φ1:

select(q0) = {q ⊆ Φ1 | q \ {X1, . . . , Xn} = q0}

Note that |select(q0)| = 2n, and the elements of select(q0) correspond to different
choices of a set of variables.

The other operation, closure, completes a subset q ⊆ Φ1 by computing all
applicable Boolean operations over these subexpressions. In order to define the
set closure(q) ⊆ Φ, we specify for every expression ξ ∈ Φ whether ξ ∈ closure(q)
or not by induction on the structure of ξ:

Base case: For each ξ ∈ {ε,X1, . . . , Xn}, let ξ ∈ closure(q) iff ξ ∈ q.
Induction step: Consider ξ ∈ Φ \ {ε,X1, . . . , Xn} and assume that the member-

ship of all proper subexpressions of ξ in closure(q) has already been defined.
There are four cases depending on the top operation of ξ:
– If ξ is of the form ψc, then ξ ∈ closure(q) iff ξ ∈ q.
– If ξ = ψ ∪ η, then ξ ∈ closure(q) iff at least one of ψ, η is in closure(q).
– If ξ = ψ ∩ η, then ξ ∈ closure(q) iff both ψ and η are in closure(q).
– If ξ = ∼ψ, then ξ ∈ closure(q) iff ψ is not in closure(q).

Definition 1. The ILTA A = (Σ,Q,Q0, δ) induced by the expression ϕ is
defined as Q := 2Φ, Q0 := {closure(q) | q ∈ select({ε})}, and δ(q, a) :=
{closure(q′) | q′ ∈ select({ψa ∈ Φ | ψ ∈ q})}.

Note that |Q0| = 2n and |δ(q, a)| = 2n for all q ∈ Q and a ∈ Σ. Intuitively, the
non-determinism is used to “guess” the values of the variables.

There exists a one-to-one correspondence between the runs of A and n-tuples
of languages over Σ. First, we show how to associate a run with every vector of

66 Franz Baader and Alexander Okhotin

languages. The run rL : Σ∗ → Q corresponding to L = (L1, . . . , Ln) is defined
inductively as:

rL(ε) = closure({ε} ∪ {Xi | ε ∈ Li}) (3a)

rL(wa) = closure({ψa ∈ Φ | ψ ∈ rL(w)} ∪ {Xi | wa ∈ Li}) (3b)

It is easy to see that rL is indeed a run of A.
Conversely, a given run r : Σ∗ → Q induces the vector of languages Lr :=

(Lr
1, . . . , L

r
n), where Lr

i := {w |Xi ∈ r(w)}.

Lemma 2. The mapping of runs to vectors of languages introduced above is a
bijection, and the mapping of vectors of languages to runs is its inverse.

For each run rL, the set of subexpressions in a state rL(w) (for each string
w ∈ Σ∗) contains exactly those subexpressions that produce this string when
replacing X1, . . . , Xn by L1, . . . , Ln:

Lemma 3. Let L = (L1, . . . , Ln) be a vector of languages and rL be the cor-
responding run. Then, for every w ∈ Σ∗ and ξ ∈ Φ, we have w ∈ ξ(L) iff
ξ ∈ rL(w).

Since the vector L = (L1, . . . , Ln) is a solution of ϕ(X1, . . . , Xn) = ∅ iff w 6∈ ϕ(L)
for all w ∈ Σ∗, this lemma implies the following characterization of the runs
corresponding to solutions:

Proposition 1. The vector L = (L1, . . . , Ln) is a solution of the equation
ϕ(X1, . . . , Xn) = ∅ iff ϕ /∈ rL(w) for every w ∈ Σ∗.

Consequently, if we remove from A all states containing ϕ, then we obtain
an automaton whose runs are in a 1–1-correspondence with the solutions of
ϕ(X1, . . . , Xn) = ∅. In addition, we can make this automaton trim without los-
ing any runs/solutions. Let us call the resulting ILTA Aϕ. Obviously, the size
of Aϕ is exponential in the size of ϕ, and this automaton can be constructed in
exponential time.

Proposition 2. For every language equation ϕ(X1, . . . , Xn) = ∅ of the form
(2) one can construct in exponential time a trim ILTA Aϕ whose states are
subsets of the set of strict subexpressions of ϕ such that the mapping r 7→
Lr = (Lr

1, . . . , L
r
n) is a bijection between the runs of Aϕ and the solutions of

ϕ(X1, . . . , Xn) = ∅.

3.2 Counting the number of solutions

As an immediate consequence of Proposition 2, (unique) solvability of a language
equation can be characterized as follows:

Proposition 3. A language equation ϕ = ∅ with one-sided concatenation has

– at least one solution iff the corresponding ILTA Aϕ is non-empty.

Complexity of language equations with one-sided concatenation. . . 67

– exactly one solution iff the corresponding ILTA Aϕ is non-empty and deter-
ministic.

Before we can characterize finitely many solutions, we must introduce some
notation.

Definition 2. Let A = (Σ,Q,Q0, δ) be an ILTA. A state q ∈ Q is cyclic if
q ∈ δ(q, w) for some w ∈ Σ+, and it is branching if |δ(q, a)| > 1 for some
a ∈ Σ.

Lemma 4. A trim ILTA A = (Σ,Q,Q0, δ) has finitely many runs iff no branch-
ing state is reachable from any cyclic state.

The condition in this lemma can obviously be tested in time polynomial in the
size of the ILTA since it is basically a reachability problem. The conditions in
the previous proposition can trivially be tested in time polynomial in the size
of Aϕ. Since the size of Aϕ is exponential in the size of ϕ, we thus obtain the
following complexity upper-bounds:

Theorem 1. The problems of testing whether a language equation with one-
sided concatenation has a solution, a unique solution, or finitely many solutions
are decidable in deterministic exponential time.

Note that an ExpTime decision procedure for the solvability problem was
already sketched in [1]. The other two results are new. Regarding the cardinality
of the solution set, it remains to show how we can decide whether an equation has
countably or uncountably many solutions. For this purpose, we adapt Niwiński’s
condition for countability of the language accepted by a Rabin tree automaton
[17] to our situation of counting runs of ILTAs.6 If A is an ILTA and q one of its
states, then a q-run is defined like a run, with the only exception that instead of
requiring that the root is labeled with an initial state we require that it is labeled
with q. Two q-runs r1, r2 are called essentially different if there are words v1,
v2, w such that

– r1(v1) = q = r2(v2) and v1, v2 are not the empty word,
– r1(w) 6= r2(w) and w has neither v1 nor v2 as prefix.

Proposition 4 (Niwiński). An ILTA has uncountably many runs iff it has a
state q such that there are two essentially different q-runs.

In contrast to the previous conditions, it is not immediately clear how this con-
dition can be decided in time polynomial in the size of the ILTA. In [4] we
show this by reducing the problem to the emptiness problem for Büchi tree au-
tomata. To compare, Niwiński proves for his condition for Rabin automata only
an elementary upper bound.

Theorem 2. The problem of testing whether a language equation with one-sided
concatenation has countably many solutions is decidable in exponential time.

6 Actually, we never use that the automaton has independent transitions, and thus
the results stated below also hold for arbitrary looping tree automata.

68 Franz Baader and Alexander Okhotin

3.3 Least and greatest solutions

As pointed out before, we must compare solution vectors not on all components,
but only on those components corresponding to a set of focus variables. Let
ϕ(X1, . . . , Xn, Y1, . . . , Y`) = ∅ be a language equation with one-sided concate-
nation, and X1, . . . , Xn be the set of focus variables. Given vectors of languages
L = (L1, . . . , Ln, Ln+1, . . . , Ln+`), L = (L′1, . . . , L

′
n, L

′
n+1, . . . , L

′
n+`) we define

L ¹ L′ iff Li ⊆ L′i for all i = 1, . . . , n.
Let Aϕ = (Σ,Q,Q0, δ) be the ILTA corresponding to the above language

equation with focus variables X1, . . . , Xn. We define a preorder on its set of
states Q as follows:

q 4 q′ iff q ∩ {X1, . . . , Xn} ⊆ q′ ∩ {X1, . . . , Xn}.

This preorder on states defines the following preorder on runs of A: for any
r, r′ : Σ∗ → Q we say that r 4 r′ if r(w) 4 r′(w) for all w ∈ Σ∗. As an easy
consequence of the definition of the mapping L 7→ rL we obtain that it is a
preorder isomorphism:

Lemma 5. Let L,L′ be vectors of languages. Then L ¹ L′ iff rL 4 rL′ .

Consequently, to decide whether the equation ϕ = ∅ has a least/greatest solution
w.r.t. ¹, it is enough to decide whether Aϕ has a least/greatest run w.r.t. 4. To
show that this is decidable in polynomial time, we introduce another preorder
v on Q as follows: q v q′ iff there exists a run r with root label q such that, for
every run r′ with root label q′, we have r 4 r′.

Lemma 6. For every trim ILTA A = (Σ,Q,Q0, δ) and for every polynomial
time decidable preorder 4 on Q, the corresponding preorder v on Q can be
constructed in time polynomial in |Q|. In addition, A has a least run with respect
to the preorder 4 on Q iff Q0 has a least element with respect to v.

Since the size of Aϕ is exponential in the size of ϕ, we thus obtain the following
complexity upper bound for deciding the existence of a least solution. (Greatest
solutions can be treated analogously.)

Theorem 3. The problem of testing whether a language equation with one-sided
concatenation has a least (greatest) solution is decidable in ExpTime.

4 The complexity lower-bounds

We show that the decision problems for language equations introduced in Sec-
tion 2 are ExpTime-hard already for language equations with one-sided con-
catenation and union. For solvability, this was already shown in [2]. Since it
was also shown there that such an equation has a solution iff it has a greatest
solution, ExpTime-hardness of the existence of a greatest solution follows from
this result as well. In the following we will concentrate on the remaining decision
problems. Similarly to [2], we show ExpTime-hardness by a reduction from the
intersection emptiness problem for deterministic looping tree automata. First,
we show how trees can be represented as languages.

Complexity of language equations with one-sided concatenation. . . 69

4.1 Representing infinite trees by languages

Given a ranked alphabet Γ , we use the alphabet ΣΓ := {f [i] | f ∈ Γ, 1 6 i 6

rank f} as the alphabet underlying our language equations. For every infinite
tree t over Γ , we define a representation of t as a string language over ΣΓ :

S(t) = {f
[i1]
1 . . . f

[i`]
` | ` > 0, t has a path with label f1, . . . , f`, f`+1, in

which f1 labels the root of t, and each fj+1 labels

the ij-th successor of the node with label fj}

(4)

The strings in S(t) unambiguously encode finite prefixes of paths in t. Obviously,
for every infinite tree f(t1, . . . , tk), the following holds:

S(f(t1, . . . , tk)) = {ε} ∪
k

⋃

i=1

{f [i]u | u ∈ S(ti)}

The following lemma characterizes the languages of the form S(t):

Lemma 7. A language L ⊆ Σ∗
Γ is of the form L = S(t) for some infinite tree t

iff

1. ε ∈ L;

2. for every w ∈ L there exists a unique symbol f ∈ Γ , such that wf [1] ∈ L;

3. if wf [i] ∈ L, then wf [j] ∈ L for every j (1 6 j 6 rank f);

4. for every w ∈ Σ∗
Γ and f [i] ∈ ΣΓ , wf [i] ∈ L implies w ∈ L.

The mapping S is extended in the obvious way to sets of trees: S(T) :=
⋃

t∈T S(t). We also consider the “inverse” operation S−1(L) := {t | S(t) ⊆ L}.

Lemma 8. For every set of trees T , T ⊆ S−1(S(T)) and S(S−1(S(T))) = S(T).

4.2 Representing looping tree automata by language equations

Let A = (Q,Γ, {q0},∆) be a deterministic looping tree automaton over Γ , where
∆ is represented as a partial function from Q× Γ to Q∗. We introduce another
partial function q : Σ∗

Γ → Q that simulates the operation of A on a finite prefix
of a single path encoded as in (4). Define q(w) inductively on the length of w:
q(ε) = q0, while q(uf [i]) is defined as the i-th component of ∆(q(u), f) if this
transition is defined, and undefined otherwise. Basically, if q(u) is defined, then
it gives the unique label of the node corresponding to u in a run of A on a tree
containing the path encoded by u.

Now define a system of language equations (5) over the alphabet ΣΓ ∪ Q,
which simulates the computation of the automaton A. The set of variables of
this system is {Xq,f |∆(q, f) is defined} ∪ {X0}, and the system consists of the

70 Franz Baader and Alexander Okhotin

two equations

⋃

∆(q, f) is defined

Xq,f · {q} = {q0} ∪
⋃

∆(q,f)=(q1,...,qk)

Xq,f · {f
[1]q1, . . . , f

[k]qk}

(5a)

X0 =
⋃

∆(q, f) is defined

Xq,f (5b)

The following lemma establishes some basic properties of solutions of this system.

Lemma 9. For every solution (. . . , Lq,f , . . . , L0) of (5),

1. w ∈ Lq,f iff q(w) = q and wf [i] ∈ L0 for all i (1 6 i 6 rank f).

2. If w ∈ Lq,f for some q ∈ Q, then there exists an infinite tree t such that
{wf [1], . . . , wf [rank f]} ⊆ S(t) ⊆ L0.

Based on this lemma and the properties of the mapping S mentioned above, the
following characterization of solutions of (5) is shown in [4].

Proposition 5. A vector of languages (. . . , Lq,f , . . . , L0) is a solution of (5)
iff

∅ ⊂ S−1(L0) ⊆ L(A),

Lq,f = {w | q(w) = q, wf [i] ∈ L0 for all i} (∆(q, f) is defined), (6)

and there exists a set of trees T such that L0 = S(T).

This shows that the language L0 substituted for X0 determines the whole solu-
tion.

4.3 Complexity of the decision problems

The next theorem summarizes the main results of this paper.

Theorem 4. The problems of testing, for a given system of language equations
with one-sided concatenation and any set of Boolean operations containing union,
whether

1. it has a solution,

2. it has a unique solution,

3. it has finitely many solutions,

4. it has countably many solutions,

5. it has a least (greatest) solution with respect to componentwise inclusion

are all ExpTime-complete.

Complexity of language equations with one-sided concatenation. . . 71

Given the results shown in Section 3 and in [1,2], it is enough to prove that testing
whether a system of language equations with one-sided concatenation and union
has a unique solution, finitely many solutions, countably many solutions, and a
least solution, respectively, are ExpTime-hard problems.

All four cases are proved by a single reduction from the ExpTime-complete
intersection emptiness problem for deterministic looping tree automata [24,2].
Let A1, . . . ,An be deterministic looping tree automata over a common ranked
alphabet Γ , and assume without loss of generality that their sets of states

Q1, . . . , Qn are pairwise disjoint and that the initial state q
(i)
0 of every Ai is

not reachable, i.e., it never occurs on the right-hand side of a transition.
We augment Γ with a new unary symbol ftriv, and transform each automa-

ton Ai into an automaton A′
i over the alphabet Γ ′ = Γ ∪ {ftriv} by adding

the extra transition (q
(i)
0 , ftriv) → q

(i)
0 . The set of trees accepted by A′

i equals
{f `

triv(t) | ` > 0, t ∈ L(Ai)} ∪ {ttriv}, where ttriv denotes an infinite branch with
all vertices labeled by ftriv. Consequently, the intersection

⋂n
i=1 L(A′

i) is equal
to {f `

triv(t) | ` > 0, t ∈
⋂n

i=1 L(Ai)} ∪ {ttriv}.
For each automatonA′

i, construct two language equations of the form (5), and
consider the resulting system of 2n equations, which share a common variable

X0. It is easy to show that the vector of languages Ltriv := (. . . , L
(i)
q,f , . . . , L0)

defined by

L0 := S(ttriv) and L
(i)
q,f determined by L0 and A′

i according to (6)

is always a solution of the system. Whether the system has any other solutions
depends on whether

⋂n
i=1 L(Ai) is empty or not.

– If
⋂n

i=1 L(Ai) = ∅, then
⋂n

i=1 L(A′
i) = {ttriv}. We can prove that the system

of language equations then has the unique solution Ltriv.
– If

⋂n
i=1 L(Ai) 6= ∅, then there exists a tree t0 ∈

⋂n
i=1 L(Ai), and f `

triv(t0) ∈
⋂n

i=1 L(A′
i) for all ` > 0. Let us construct uncountably many solutions of the

system. For every nonempty set of integers N ⊆ N, define the set of trees

TN = {f `
triv(t0) | ` ∈ N}.

The vector of languages (. . . , L
(i)
q,f,N , . . . , L0,N) determined by L0,N := S(TN)

according to (6) can be shown to be a solution of the system.

Since the constructed system of language equations has either exactly one or
uncountably many solutions, we can conclude that it has a unique solution
(finitely many solutions, countably many solutions) iff the intersection of the lan-
guages recognized by the n given deterministic looping tree automata is empty.
Similarly, we can show that there is a least solution iff the given automata
have an empty intersection. In fact, if the intersection is nonempty, then we
can construct a pair of incomparable minimal solutions as L0 := S(ttriv) and
L′0 := S(T{0}) = S(t0), where t0 and T{0} are defined as in the previous case.

This completes the proof of Theorem 4.

72 Franz Baader and Alexander Okhotin

5 Conclusion

We have shown that several interesting decision problems for language equations
with one-sided concatenation are ExpTime-complete. The decision procedures
based on the construction of an ILTA have been implemented. This implemen-
tation does not just answer yes or no; in case there is a (least, greatest) solution,
its DFA is constructed [4].

Acknowledgment.
We thank Thomas Wilke for alerting us to the work of Niwiński, and Moshe Vardi
for suggesting the name “looping tree automata with independent transitions”.

References

1. A. Aiken, D. Kozen, M. Y. Vardi, E. L. Wimmers, “The complexity of set con-
straints”, Computer Science Logic (CSL 1993, Swansea, UK, September 13–17,
1993), LNCS 832, 1–17.

2. F. Baader, R. Küsters, “Unification in a description logic with transitive closure of
roles”, Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2001,
Havana, Cuba, December 3–7, 2001), LNCS 2250, 217–232.

3. F. Baader, P. Narendran, “Unification of concept terms in description logic”, Jour-

nal of Symbolic Computation, 31 (2001), 277–305.
4. F. Baader, A. Okhotin, On Language Equations with One-

Sided Concatenation, LTCS-Report 06-01, Institute for Theoreti-
cal Computer Science, Dresden University of Technology, 2006. See
http://lat.inf.tu-dresden.de/research/reports.html

5. F. Baader and W. Snyder. Unification theory. In Handbook of Automated Reason-

ing, volume I. Elsevier, 2001.
6. F. Baader, S. Tobies, “The inverse method implements the automata approach for

modal satisfiability”, In Proc. IJCAR’01, Springer LNCS 2083, 2001.
7. V. G. Bondarchuk, “Sistemy uravnenii v algebre sobytii” (Systems of equations in

the event algebra), in Russian, Zhurnal vychislitel’noi matematiki i matematich-

eskoi fiziki (Journal of Computational Mathematics and Mathematical Physics),
3:6 (1963), 1077–1088.

8. W. Büttner. Unification in finite algebras is unitary(?). In Proc. CADE-9, Springer
LNCS 310, 1988.

9. W. Charatonik, L. Pacholski, “Set constraints with projections are in NEXP-
TIME”, In Proc. FOCS’94, IEEE Press, 1994.

10. W. Charatonik, “Set constraints in some equational theories”, Information and

Computation, 142 (1998), 40–75.
11. J. H. Conway, Regular Algebra and Finite Machines, Chapman and Hall, 1971.
12. S. Ginsburg, H. G. Rice, “Two families of languages related to ALGOL”, Journal

of the ACM, 9 (1962), 350–371.
13. R. Gilleron, S. Tison, M. Tommasi, “Set constraints and automata”, Information

and Computation, 149:1 (1999), 1–41.
14. M. Kunc, “The power of commuting with finite sets of words”, In Proc. STACS’05,

Springer LNCS 3404, 2005.
15. G. S. Makanin, The problem of solvability of equations in a free semigroup. Math.

Sbornik 103:147–236. English translation in Math. USSR Sbornik 32, 1977.

Complexity of language equations with one-sided concatenation. . . 73

16. T. Nipkow. Unification in primal algebras, their powers and their varieties. J. of

the ACM, 37(1):742–776, 1990.
17. D. Niwiński, “On the cardinality of sets of infinite trees recognizable by finite au-

tomata”, Mathematical Foundations of Computer Science (MFCS 1991, Kazimierz
Dolny, Poland, September 9–13, 1991), LNCS 520, 1991, 367–376.

18. A. Okhotin, “Conjunctive grammars and systems of language equations”, Pro-

gramming and Computer Software, 28:5 (2002), 243–249.
19. A. Okhotin, “Decision problems for language equations with Boolean operations”,

Automata, Languages and Programming (Proceedings of ICALP 2003, Eindhoven,
The Netherlands, June 30–July 4, 2003), LNCS 2719, 239–251.

20. A. Okhotin, “Unresolved systems of language equations: expressive power and decision problems”,
Theoretical Computer Science, 349:3 (2005), 283–308.

21. A. Okhotin, “Strict language inequalities and their decision problems”, Mathe-

matical Foundations of Computer Science (MFCS 2005, Gdansk, Poland, August
29–September 2, 2005), LNCS 3618, 708–719.

22. M. O. Rabin, “Decidability of second-order theories and automata on infinite
trees”, Transactions of the American Mathematical Society, 141 (1969), 1–35.

23. A. Salomaa, Theory of Automata, Pergamon Press, Oxford, 1969.
24. H. Seidl, “Haskell overloading is DEXPTIME-complete”, Information Processing

Letters, 52(2):57–60, 1994.
25. L. R. Stockmeyer, The complexity of decision problems in automata theory and

logic, Ph.D. thesis, Dept. of Electrical Engineering, MIT, 1974.
26. A. Tarski, “A Lattice-Theoretical Fixpoint Theorem and Its Applications”, Pacific

Journal of Mathematics, 5:285–309, 1955.

