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Abstract. Unification in Description Logics has been proposed as an in-
ference service that can, for example, be used to detect redundancies in
ontologies. For the Description Logic EL, which is used to define several
large biomedical ontologies, unification is NP-complete. An NP unifica-
tion algorithm for EL based on a translation into propositional satisfia-
bility (SAT) has recently been presented. In this paper, we extend this
SAT encoding in two directions: on the one hand, we add general concept
inclusion axioms, and on the other hand, we add role hierarchies (H) and
transitive roles (R+). For the translation to be complete, however, the
ontology needs to satisfy a certain cycle restriction. The SAT translation
depends on a new rewriting-based characterization of subsumption w.r.t.
ELHR+ -ontologies.

1 Introduction

The Description Logic (DL) EL, which offers the constructors conjunction (u),
existential restriction (∃r.C), and the top concept (>), has recently drawn con-
siderable attention since, on the one hand, important inference problems such
as the subsumption problem are polynomial in EL, even in the presence of gen-
eral concept inclusion axioms (GCIs) [11,4]. On the other hand, though quite
inexpressive, EL can be used to define biomedical ontologies, such as the large
medical ontology SNOMEDCT.1

Unification in DLs has been proposed in [8] as a novel inference service that
can, for instance, be used to detect redundancies in ontologies. For example,
assume that one developer of a medical ontology defines the concept of a patient
with severe injury of the frontal lobe as

∃finding.(Frontal_lobe_injury u ∃severity.Severe), (1)

whereas another one represents it as

∃finding.(Severe_injury u ∃finding_site.∃part_of.Frontal_lobe). (2)

These two concept descriptions are not equivalent, but they are nevertheless
meant to represent the same concept. They can obviously be made equivalent by
? Supported by DFG under grant BA 1122/14-1
1 see http://www.ihtsdo.org/snomed-ct/



treating the concept names Frontal_lobe_injury and Severe_injury as variables,
and substituting the first one by Injury u ∃finding_site.∃part_of.Frontal_lobe
and the second one by Injury u ∃severity.Severe. In this case, we say that the
descriptions are unifiable, and call the substitution that makes them equivalent
a unifier.

To motivate our interest in unification w.r.t. GCIs, role hierarchies, and tran-
sitive roles, assume that the developers use the descriptions (3) and (4) instead
of (1) and (2):

∃finding.∃finding_site.∃part_of.Brain u
∃finding.(Frontal_lobe_injury u ∃severity.Severe) (3)

∃status.Emergency u
∃finding.(Severe_injury u ∃finding_site.∃part_of.Frontal_lobe) (4)

The descriptions (3) and (4) are not unifiable without additional background
knowledge, but they are unifiable, with the same unifier as above, if the GCIs

∃finding.∃severity.Severe v ∃status.Emergency,

Frontal_lobe v ∃proper_part_of.Brain

are present in a background ontology and this ontology additionally states that
part_of is transitive and proper_part_of is a subrole of part_of.

Most of the previous results on unification in DLs did not consider such
additional background knowledge. In [8] it was shown that, for the DL FL0,
which differs from EL by offering value restrictions (∀r.C) in place of existential
restrictions, deciding unifiability is an ExpTime-complete problem. In [5], we
were able to show that unification in EL is of considerably lower complexity:
the decision problem is NP-complete. The original unification algorithm for EL
introduced in [5] was a brutal “guess and then test” NP-algorithm, but we have
since then also developed more practical algorithms. On the one hand, in [7] we
describe a goal-oriented unification algorithm for EL, in which nondeterministic
decisions are only made if they are triggered by “unsolved parts” of the unifica-
tion problem. On the other hand, in [6], we present an algorithm that is based
on a reduction to satisfiability in propositional logic (SAT). In [7] it was also
shown that the approaches for unification of EL-concept descriptions (without
any background ontology) can easily be extended to the case of an acyclic TBox
as background ontology without really changing the algorithms or increasing
their complexity. Basically, by viewing defined concepts as variables, an acyclic
TBox can be turned into a unification problem that has as its unique unifier
the substitution that replaces the defined concepts by unfolded versions of their
definitions.

For GCIs, this simple trick is not possible, and thus handling them requires
the development of new algorithms. In [1,2] we describe two such new algorithms:
one that extends the brute-force “guess and then test” NP-algorithm from [5]
and a more practical one that extends the goal-oriented algorithm from [7].



Both algorithms are based on a new characterization of subsumption w.r.t. GCIs
in EL, which we prove using a Gentzen-style proof calculus for subsumption.
Unfortunately, these algorithms are complete only for cycle-restricted TBoxes,
i.e., finite sets of GCIs that satisfy a certain restriction on cycles, which, however,
does not prevent all cycles. For example, the cyclic GCI ∃child.Human v Human
satisfies this restriction, whereas the cyclic GCI Human v ∃parent.Human does
not.

In the present paper, we still cannot get rid of cycle-restrictedness of the
ontology, but extend the results of [2] in two other directions: (i) we add transitive
roles (indicated by the subscript R+ in the name of the DL) and role hierarchies
(indicated by adding the letter H to the name of the DL) to the language, which
are important for medical ontologies [17,15]; (ii) we provide an algorithm that is
based on a translation into SAT, and thus allows us to employ highly optimized
state-of-the-art SAT solvers [10] for implementing the unification algorithm. In
order to obtain the SAT translation, using the characterization of subsumption
from [2] is not sufficient, however. We had to develop a new rewriting-based
characterization of subsumption.

In the next section, we introduce the DLs considered in this paper and the
important inference problem subsumption. In Section 3 we define unification
for these DLs and recall some of the existing results for unification in EL. In
particular, we introduce in this section the notion of cycle-restrictedness, which
is required for the results on unification w.r.t. GCIs to hold. In Section 4 we then
derive rewriting-based characterizations of subsumption. Section 5 contains the
main result of this paper, which is a reduction of unification in ELHR+ w.r.t.
cycle-restricted ontologies to propositional satisfiability. The proof of correctness
of this reduction strongly depends on the characterization of subsumption shown
in the previous section.

2 The Description Logics EL, EL+, and ELHR+

The expressiveness of a DL is determined both by the formalism for describing
concepts (the concept description language) and the terminological formalism,
which can be used to state additional constraints on the interpretation of con-
cepts and roles in a so-called ontology.

Syntax and Semantics

The concept description language considered in this paper is called EL. Start-
ing with a finite set NC of concept names and a finite set NR of role names,
EL-concept descriptions are built from concept names using the constructors
conjunction (C u D), existential restriction (∃r.C for every r ∈ NR), and top
(>).

Since in this paper we only consider EL-concept descriptions, we will some-
times dispense with the prefix EL.



Name Syntax Semantics

concept name A AI ⊆ ∆I

role name r rI ⊆ ∆I ×∆I

top > >I = ∆I

conjunction C uD (C uD)I = CI ∩DI

existential restriction ∃r.C (∃r.C)I = {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}
general concept inclusion C v D CI ⊆ DI

role inclusion r1 ◦ · · · ◦ rn v s rI1 ◦ · · · ◦ rIn ⊆ sI

Table 1. Syntax and semantics of EL.

On the semantic side, concept descriptions are interpreted as sets. To be
more precise, an interpretation I = (∆I , ·I) consists of a non-empty domain ∆I
and an interpretation function ·I that maps concept names to subsets of ∆I and
role names to binary relations over ∆I . This function is extended to concept
descriptions as shown in the semantics column of Table 1.

Ontologies

A general concept inclusion (GCI) is of the form C v D for concept descriptions
C,D, and a role inclusion is of the form r1◦· · ·◦rn v s for role names r1, . . . , rn, s.
Both are called axioms. Role inclusions of the form r◦r v r are called transitivity
axioms and of the form r v s role hierarchy axioms. An interpretation I satisfies
such an axiom if the corresponding condition in the semantics column of Table 1
holds, where ◦ in this column stands for composition of binary relations.

An EL+-ontology is a finite set of axioms. It is an ELHR+-ontology if all its
role inclusions are transitivity or role hierarchy axioms, and an EL-ontology if
it contains only GCIs. An interpretation is a model of an ontology if it satisfies
all its axioms.

Subsumption, Equivalence, and Role Hierarchy

A concept description C is subsumed by a concept description D w.r.t. an on-
tology O (written C vO D) if every model of O satisfies the GCI C v D. We
say that C is equivalent to D w.r.t. O (C ≡O D) if C vO D and D vO C. If
O is empty, we also write C v D and C ≡ D instead of C vO D and C ≡O D,
respectively. As shown in [11,4], subsumption w.r.t. EL+-ontologies (and thus
also w.r.t. ELHR+ - and EL-ontologies) is decidable in polynomial time.

Since conjunction is interpreted as intersection, the concept descriptions (Cu
D)uE and Cu(DuE) are always equivalent. Thus, we dispense with parentheses
and write nested conjunctions in flat form C1 u · · · u Cn. Nested existential
restrictions ∃r1.∃r2. . . .∃rn.C will sometimes also be written as ∃r1r2 . . . rn.C,
where r1r2 . . . rn is viewed as a word over the alphabet of role names, i.e., an
element of N∗R.



The role hierarchy induced by O is a binary relation EO on NR, which is
defined as the reflexive-transitive closure of the relation {(r, s) | r v s ∈ O}.
Using elementary reachability algorithms, the role hierarchy can be computed
in polynomial time in the size of O. It is easy to see that r EO s implies that
rI ⊆ sI for all models I of O.

3 Unification

In order to define unification, we first introduce the notion of a substitution
operating on concept descriptions. For this purpose, we partition the set NC of
concepts names into a set Nv of concept variables (which may be replaced by
substitutions) and a set Nc of concept constants (which must not be replaced by
substitutions). A substitution σ maps every variable to an EL-concept descrip-
tion. It can be extended from variables to EL-concept descriptions as follows:

– σ(A) := A for all A ∈ Nc ∪ {>},
– σ(C uD) := σ(C) u σ(D) and σ(∃r.C) := ∃r.σ(C).

A concept description C is ground if it does not contain variables, and a substi-
tution is ground if all concept descriptions in its range are ground. Obviously, a
ground concept description is not modified by applying a substitution, and if we
apply a ground substitution to any concept description, then we obtain a ground
description. An ontology is ground if it does not contain variables.

Definition 1. Let O be a ground ontology. A unification problem w.r.t. O is a
finite set Γ = {C1 v? D1, . . . , Cn v? Dn} of subsumptions between EL-concept
descriptions. A substitution σ is a unifier of Γ w.r.t. O if σ solves all the sub-
sumptions in Γ w.r.t. O, i.e., if σ(C1) vO σ(D1), . . . , σ(Cn) vO σ(Dn). We say
that Γ is unifiable w.r.t. O if it has a unifier w.r.t. O.

We call Γ w.r.t. O an EL-, EL+-, or ELHR+ -unification problem depending on
whether and what kind of role inclusions are contained in O.

Three remarks regarding the definition of unification problems are in order.
First, note that some of the previous papers on unification in DLs used equiv-
alences C ≡? D instead of subsumptions C v? D. This difference is, however,
irrelevant since C ≡? D can be seen as a shorthand for the two subsumptions
C v? D and D v? C, and C v? D has the same unifiers as C uD ≡? C.

Second, note that—as in [2]—we have restricted the background ontology
O to be ground. This is not without loss of generality. In fact, if O contained
variables, then we would need to apply the substitution also to its axioms, and
instead of requiring σ(Ci) vO σ(Di) we would thus need to require σ(Ci) vσ(O)

σ(Di), which would change the nature of the problem considerably. The treat-
ment of unification w.r.t. acyclic TBoxes in [7] actually considers a more general
setting, where some of the primitive concepts occurring in the TBox may be
variables. The restriction to ground general TBoxes is, however, appropriate for
the application scenario sketched in the introduction. In this scenario, there is
a fixed background ontology, which is extended with definitions of new concepts



by several knowledge engineers. Unification w.r.t. the background ontology is
used to check whether some of these new definitions actually are redundant, i.e.,
define the same intuitive concept. Here, some of the primitive concepts newly
introduced by one knowledge engineer may be further defined by another one,
but we assume that the knowledge engineers use the vocabulary from the back-
ground ontology unchanged, i.e., they define new concepts rather than adding
definitions for concepts that already occur in the background ontology. An in-
stance of this scenario can, e.g., be found in [12], where different extensions of
SNOMEDCT are checked for overlaps, albeit not by using unification, but by
simply testing for equivalence.

Third, though arbitrary substitutions σ are used in the definition of a uni-
fier, it is actually sufficient to consider ground substitutions such that all concept
descriptions σ(X) in the range of σ contain only concept and role names occur-
ring in Γ or O. It is an easy consequence of well-known results from unification
theory [9] that Γ has a unifier w.r.t. O iff it has such a ground unifier.

Relationship to Equational Unification

Unification was originally not introduced for Description Logics, but for equa-
tional theories [9]. In [7] it was shown that unification in EL (w.r.t. the empty
ontology) is the same as unification in the equational theory SLmO of semilat-
tices with monotone operators [16]. As argued in [2], unification in EL w.r.t. a
ground EL-ontology corresponds to unification in SLmO extended with a finite
set of ground identities. In contrast to GCIs, role inclusions add non-ground
identities to SLmO (see [16] and [3] for details).

This unification-theoretic point of view sheds some light on our decision to
restrict unification w.r.t. general TBoxes to the case of general TBoxes that
are ground. In fact, if we lifted this restriction, then we would end up with a
generalization of rigid E-unification [14,13], in which the theory SLmO extended
with the identities expressing role inclusions is used as a background theory. To
the best of our knowledge, such variants of rigid E-unification have not been
considered in the literature, and are probably quite hard to solve.

Flat Ontologies and Unification Problems

To simplify the technical development, it is convenient to normalize the TBox
and the unification problem appropriately. To introduce this normal form, we
need the notion of an atom.

An atom is a concept name or an existential restriction. Obviously, every
EL-concept description C is a finite conjunction of atoms, where > is considered
to be the empty conjunction. We call the atoms in this conjunction the top-level
atoms of C. An atom is called flat if it is a concept name or an existential
restriction of the form ∃r.A for a concept name A.

The GCI C v D or subsumption C v? D is called flat if C is a conjunction of
n ≥ 0 flat atoms and D is a flat atom. The ontology O (unification problem Γ )
is called flat if all the GCIs in O (subsumptions in Γ ) are flat. Given a ground



ontology O and a unification problem Γ , we can compute in polynomial time
(see [3]) a flat ontology O′ and a flat unification problem Γ ′ such that

– Γ has a unifier w.r.t. O iff Γ ′ has a unifier w.r.t. O′;
– the type of the unification problem (EL, EL+, or ELHR+) is preserved.

For this reason, we will assume in the following that all ontologies and unification
problems are flat.

Cycle-Restricted Ontologies

The decidability and complexity results for unification w.r.t. EL-ontologies in [2],
and also the corresponding ones in the present paper, only hold if the ontologies
satisfy a restriction that prohibits certain cyclic subsumptions.

Definition 2. The EL+-ontology O is called cycle-restricted iff there is no
nonempty word w ∈ N+

R and EL-concept description C such that C vO ∃w.C.

Note that cycle-restrictedness is not a syntactic condition on the form of the ax-
ioms in O, but a semantic one on what follows from O. Nevertheless, for ELHR+ -
ontologies, this condition can be decided in polynomial time [3]. Basically, one
first shows that the ELHR+ -ontology O is cycle-restricted iff A 6vO ∃w.A holds
for all nonempty words w ∈ N+

R and all A ∈ NC ∪ {>}. Then, one shows that
A vO ∃w.A for some w ∈ N+

R and A ∈ NC ∪ {>} implies that there are n ≥ 1
role names r1, . . . , rn and A1, . . . , An ∈ NC ∪ {>} such that

(∗) A vO ∃r1.A1, A1 vO ∃r2.A2, . . . , An−1 vO ∃rn.An and An = A.

Using the polynomial-time subsumption algorithm for ELHR+ , we can build a
graph whose nodes are the elements of NC ∪ {>} and where there is an edge
from A to B with label r iff A vO ∃r.B. Then we can use standard reachability
algorithms to check whether this graph contains a cycle of the form (∗). The
restriction to ELHR+ stems from the fact that the proof of correctness of this
algorithm is based on Lemma 7 below, which we cannot show for EL+.

The main reason why we need cycle-restrictedness of O is that it ensures
that a substitution always induces a strict partial order on the variables.2 To be
more precise, assume that γ is a substitution. For X,Y ∈ Nv we define

X >γ Y iff γ(X) vO ∃w.γ(Y ) for some w ∈ N+
R . (5)

Transitivity of >γ is an easy consequence of transitivity of subsumption, and
cycle-restrictedness of O yields irreflexivity of >γ .

Lemma 3. If O is a cycle-restricted EL+-ontology, then >γ is a strict partial
order on Nv.

2 Why we need this order will become clear in Section 5.



4 Subsumption w.r.t. EL+- and ELHR+-Ontologies

Subsumption w.r.t. EL+-ontologies can be decided in polynomial time [4]. For
the purpose of deciding unification, however, we do not simply want a decision
procedure for subsumption, but are more interested in a characterization of
subsumption that helps us to find unifiers. The characterization of subsumption
derived here is based on a rewrite relation that uses axioms as rewrite rules from
right to left.

Proving Subsumption by Rewriting

Throughout this subsection, we assume thatO is a flat EL+-ontology. Intuitively,
an axiom of the form A1u . . .uAn v B ∈ O is used to replace B by A1u . . .uAn
and an axiom of the form r1 ◦ . . .◦rn v s ∈ O to replace ∃s.C by ∃r1 . . . rn.C. In
order to deal with associativity, commutativity, and idempotency of conjunction,
it is convenient to represent concept descriptions as sets of atoms rather than as
conjunctions of atoms.

Given an EL-concept description C, the description set s(C) associated with
C is defined by induction:

– s(A) := {A} for A ∈ NC and s(>) := ∅;
– s(C uD) := s(C) ∪ s(D) and s(∃r.C) := {∃r.s(C)}.

For example, if C = A u ∃r.(A u ∃r.>), then s(C) = {A,∃r.{A,∃r.∅}}. We call
set positions the positions in s(C) at which there is a set. In our example, we
have three set positions, corresponding to the sets {A,∃r.{A,∃r.∅}}, {A,∃r.∅},
and ∅. The set position that corresponds to the whole set s(C) is called the root
position.

Our rewrite rules are of the form N ←M , where N,M are description sets.
Such a rule applies at a set position p in s(C) if the corresponding set s(C)|p
contains M , and its application replaces s(C)|p by (s(C)|p \M) ∪N (see [3] for
a more formal definition of set positions and of the application of rewrite rules).

Given a flat EL+-ontologyO, the corresponding rewrite system R(O) consists
of the following rules:

– Concept inclusion (Rc): For every C v D ∈ O, R(O) contains the rule

s(C)← s(D).

– Role inclusion (Rr): For every r1 ◦ · · · ◦ rn v s ∈ O and every EL-concept
description C, R(O) contains the rule

s(∃r1 . . . rn.C)← s(∃s.C).

– Monotonicity (Rm): For every atom D, R(O) contains the rule

s(D)← ∅.



Definition 4. Let N,M be description sets. We write N ←O M if N can be
obtained fromM by the application of a rule in R(O). The relation ∗←O is defined
to be the reflexive, transitive closure of ←O, i.e., N

∗←O M iff there is a chain

N =M` ←O M`−1 ←O . . .←O M0 =M

of ` ≥ 0 rule applications. We call such a chain a derivation of N from M w.r.t.
O. A rewriting step in such a derivation is called a root step if it applies a rule

of the form (Rc) at the root position. We write N
(n)←−−O M to express that there

is a derivation of N from M w.r.t. O that uses at most n root steps.

For example, if O contains the axioms > v ∃r.B and s v r, then the following
is a derivation w.r.t. O:

{A,∃s.{A}} ←O {A,∃r.{A}} ←O {A,∃r.{A,∃r.{B}}} ←O {A,∃r.{A,∃r.∅}}

This is a derivation without a root step, which first applies a rule of the form
(Rm), then one of the form (Rc) (not at the root position), and finally one of

the form (Rr). This shows s(A u ∃s.A) (0)←−−O s(A u ∃r.(A u ∃r.>)).
The following theorem states that subsumption w.r.t. O corresponds to the

existence of a derivation w.r.t. O whose root steps are bounded by the number
of GCIs in O (see [3] for a proof of this result).

Theorem 5. Let O be a flat EL+-ontology containing n GCIs and C,D be two

EL-concept descriptions. Then C vO D iff s(C)
(n)←−−O s(D).

A Structural Characterization of Subsumption in ELHR+

Our translation of unification problems into propositional satisfiability problems
depends on a structural characterization of subsumption, which we can unfortu-
nately only show for ELHR+ ontologies. Throughout this subsection, we assume
that O is a flat ELHR+ -ontology. We say that r is transitive if the transitivity
axiom r ◦ r v r belongs to O.

Definition 6. Let C,D be atoms. We say that C is structurally subsumed by
D w.r.t. O (C vs

O D) iff

– C = D is a concept name,
– C = ∃r.C ′, D = ∃s.D′, C ′ vO D′, and r EO s, or
– C = ∃r.C ′, D = ∃s.D′, and C ′ vO ∃t.D′

for a transitive role t with r EO tEO s.

On the one hand, structural subsumption is a stronger property than C vO D
since it requires the atoms C and D to have “compatible” top-level structures.
On the other hand, it is weaker than subsumption w.r.t. the empty ontology, i.e.,
whenever C v D holds for two atoms C andD, then C vs

O D, but not necessarily
vice versa. If O = ∅, then the three relations v, vs

O, vO coincide on atoms. Like



v and vO, vs
O is reflexive, transitive, and closed under applying existential

restrictions (see [3] for proofs of the results mentioned in this paragraph).
Using the connection between subsumption and rewriting stated in Theo-

rem 5, we can now prove a characterization of subsumption in the presence of an
ELHR+ -ontology O that expresses subsumption in terms of structural subsump-
tions and derivations w.r.t.←O. Recall that all EL-concept descriptions are con-
junctions of atoms, that C vO D1u · · ·uDm iff C vO Dj for all j ∈ {1, . . . ,m},
and C vO D iff there is an ` such that s(C)

(`)←−−O s(D).

Lemma 7. Let O be a flat ELHR+-ontology, C1, . . . , Cn, D be atoms, and ` ≥ 0.

Then s(C1 u · · · u Cn)
(`)←−−O s(D) iff there is

1. an index i ∈ {1, . . . , n} such that Ci vs
O D; or

2. a GCI A1 u · · · uAk v B in T such that
a) for every p ∈ {1, . . . , k} we have s(C1 u · · · u Cn)

(`−1)←−−−O s(Ap),

b) s(C1 u · · · u Cn)
(`)←−−O s(B), and

c) B vs
O D.

A detailed proof of this lemma is given in [3]. Here, we only want to point out
that this proof makes extensive use of the transitivity of vs

O, and that this is the
main reason why we cannot deal with general EL+-ontologies. In fact, while it is
not hard to extend the definition of structural subsumption to more general kinds
of ontologies, it is currently not clear to us how to do this such that the resulting
relation is transitive; and without transitivity of structural subsumption, we
cannot show a characterization analogous to the one in Lemma 7.

5 Reduction of Unification w.r.t. Cycle-Restricted
ELHR+-Ontologies to SAT

The main idea underlying the NP-membership results in [5] and [2] is to show
that any EL-unification problem that is unifiable w.r.t. the empty ontology and
w.r.t. a cycle-restricted EL-ontology, respectively, has a so-called local unifier.
Here, we generalize the notion of a local unifier to the case of unification w.r.t.
cycle-restricted ELHR+ -ontologies, but then go a significant step further. Instead
of using an algorithm that “blindly” generates all local substitutions and then
checks whether they are unifiers, we reduce the search for a local unifier to a
propositional satisfiability problem.

Local Unifiers

Let Γ be a flat unification problem and O be a flat, cycle-restricted ELHR+ -
ontology. We denote by At the set of atoms occurring as subdescriptions in
subsumptions in Γ or axioms in O and define

Attr := At ∪ {∃t.D′ | ∃s.D′ ∈ At, tEO s, t transitive}.



Furthermore, we define the set of non-variable atoms by Atnv := Attr\Nv. Though
the elements of Atnv cannot be variables, they may contain variables if they are
of the form ∃r.X for some role r and a variable X. We call a function S that
associates every variable X ∈ Nv with a set SX ⊆ Atnv an assignment. Such an
assignment induces the following relation >S on Nv: >S is the transitive closure
of

{(X,Y ) ∈ Nv ×Nv | Y occurs in an element of SX}.

We call the assignment S acyclic if >S is irreflexive (and thus a strict partial
order). Any acyclic assignment S induces a unique substitution σS , which can
be defined by induction along >S :

– If X is a minimal element of Nv w.r.t. >S , then we set σS(X) :=
d
D∈SX

D.
– Assume that σ(Y ) is already defined for all Y such that X >S Y . Then we

define σS(X) :=
d
D∈SX

σS(D).

We call a substitution σ local if it is of this form, i.e., if there is an acyclic
assignment S such that σ = σS . Since Nv and Atnv are finite, there are only
finitely many local substitutions. Thus, if we know that any solvable unification
problem has a local unifier, then we can enumerate (or guess, in a nondetermin-
istic machine) all local substitutions and then check whether any of them is a
unifier. Thus, in general many substitutions will be generated that only in the
subsequent check turn out not to be unifiers. In contrast, our SAT reduction will
ensure that only unifiers are generated.

The Reduction

Here, we reduce unification w.r.t. cycle-restricted ELHR+ -ontologies to the satis-
fiability problem for propositional logic, which is NP-complete. This shows that
this unification problem is in NP. But more importantly, it immediately allows
us to apply highly optimized SAT solvers for solving such unification problems.

As before, we assume that Γ is a flat unification problem and O is a flat,
cycle-restricted ELHR+ -ontology. Let T be the subset of O that consists of the
GCIs in O. We define the set

Left := At ∪ {C1 u · · · u Cn | C1 u · · · u Cn v? D ∈ Γ for some D ∈ At}

that contains all atoms of Γ and O and all left-hand sides of subsumptions from
Γ . For L ∈ Left and C ∈ At, we write “C ∈ L” if C is a top-level atom of L.

The propositional variables we use for the reduction are of the form [L v
D]i for L ∈ Left, D ∈ Attr, and i ∈ {0, . . . , |T |}. The intuition underlying
these variables is that every satisfying propositional valuation induces an acyclic
assignment S such that the following holds for the corresponding substitution
σS : [L v D]i is evaluated to true by the assignment iff s(σS(L)) can be derived

from s(σS(D)) using at most i root steps, i.e., s(σS(L))
(i)←−O s(σS(D)).

Additionally, we use the propositional variables [X > Y ] for X,Y ∈ Nv to
express the strict partial order >S induced by the acyclic assignment S.



The auxiliary function Dec is defined as follows for C ∈ At, D ∈ Attr:

Dec(C v D) =



1 if C = D

[C v D]|T | if C and D are ground
Trans(C v D) if C = ∃r.C ′, D = ∃s.D′, and r EO s
[C v D]|T | if C is a variable
0 otherwise

,

Trans(C v D) = [C ′ v D′]|T | ∨
∨

t transitive
rEOtEOs

[C ′ v ∃t.D′]|T |.

Note that C ′ ∈ At and D′,∃t.D′ ∈ Attr by the definition of Attr and since Γ and
O are flat. Here, 0 and 1 are Boolean constants representing the truth values 0
(false) and 1 (true), respectively.

The unification problem will be reduced to satisfiability of the following set of
propositional formulae. For simplicity, we do not use only clauses here. However,
our formulae can be transformed into clausal form by introducing polynomially
many auxiliary propositional variables and clauses.

Definition 8. Let Γ be a flat unification problem and O a flat, cycle-restricted
ELHR+-ontology. The set C(Γ,O) contains the following propositional formulae:

(I) Translation of the subsumptions of Γ . For every L v? D in Γ , we intro-
duce a clause asserting that this subsumption must hold:

→ [L v D]|T |.

(II) Translation of the relevant properties of subsumption.
1) For all ground atoms C ∈ At, D ∈ Attr and i ∈ {0, . . . , |T |} such that

C 6vO D, we introduce a clause preventing this subsumption:

[C v D]i → .

2) For every variable Y , B ∈ Atnv, i, j ∈ {0, . . . , |T |}, and L ∈ Left, we
introduce the clause

[L v Y ]i ∧ [Y v B]j → [L v B]min{|T |,i+j}.

3) For every L ∈ Left \ Nv and D ∈ Attr, we introduce the following
formulae, depending on L and D:
a) If D is a ground atom and L is not a ground atom, we introduce

[L v D]i →
∨
C∈L

Dec(C v D) ∨∨
A1u···uAkvB∈O

BvOD

([L v A1]
i−1 ∧ · · · ∧ [L v Ak]i−1)

for all i ∈ {1, . . . , |T |} and

[L v D]0 →
∨
C∈L

Dec(C v D).



b) If D is a non-variable, non-ground atom, we introduce

[L v D]i →
∨
C∈L

Dec(C v D)∨
∨

A atom of O

([L v A]i ∧Dec(A v D))

for all i ∈ {1, . . . , |T |} and

[L v D]0 →
∨
C∈L

Dec(C v D).

(III) Translation of the relevant properties of >.
1) Transitivity and irreflexivity of > is expressed by the clauses

[X > X]→ and [X > Y ] ∧ [Y > Z]→ [X > Z]

for all X,Y, Z ∈ Nv.
2) The connection between > and v is expressed using the clause

[X v ∃r.Y ]i → [X > Y ]

for every X,Y ∈ Nv, ∃r.Y ∈ Attr, and i ∈ {0, . . . , |T |}.

It is easy to see that the set C(Γ,O) can be constructed in time polynomial in
the size of Γ and O. In particular, subsumptions B vO D between ground atoms
B,D can be checked in polynomial time in the size of O [4].

There are several differences between C(Γ,O) and the clauses constructed
in [6] to solve unification in EL w.r.t. the empty ontology. The propositional
variables employed in [6] are of the form [C 6v D] for atoms C,D of Γ , i.e., they
stand for non-subsumption rather than subsumption. The use of single atoms
C instead of whole left-hand sides L also leads to a different encoding of the
subsumptions from Γ in part (I). The clauses in (III) are identical up to negation
of the variables [X v ∃r.Y ]i. But most importantly, in [6] the properties of
subsumption expressed in (II) need only deal with subsumption w.r.t. the empty
ontology, whereas here we have to take a cycle-restricted ELHR+ -ontology into
account. We do this by expressing the characterization of subsumption given in
Lemma 7. This is also the reason why the propositional variables [L v D]i have
an additional index i: in fact, in Lemma 7 we refer to the number of root steps
in the derivation that shows the subsumption, and this needs to be modeled in
our SAT reduction.

Theorem 9. The unification problem Γ is solvable w.r.t. O iff C(Γ,O) is sat-
isfiable.

Since C(Γ,O) can be constructed in polynomial time and SAT is in NP,
this shows that unification w.r.t. cycle-restricted ELHR+ -ontologies is in NP.
NP-hardness follows from the known NP-hardness of EL-unification w.r.t. the
empty ontology [5].

Corollary 10. Unification w.r.t. cycle-restricted ELHR+-ontologies is an NP-
complete problem.

To prove Theorem 9, we must show soundness and completeness of the reduction.



Soundness of the reduction. Let τ be a valuation of the propositional vari-
ables that satisfies C(Γ,O). We must show that then Γ has a unifier w.r.t. O.
To this purpose, we use τ to define an assignment S by

SX := {D ∈ Atnv | ∃i ∈ {0, . . . , |T |} : τ([X v D]i) = 1}.

Using the clauses in (III), it is not hard to show [3] that X >S Y implies
τ([X > Y ]) = 1. Due to the irreflexivity clause in (III), this yields that the as-
signment S is acyclic. Thus, it induces a substitution σS . A proof of the following
lemma can be found in [3].

Lemma 11. If τ([L v D]i) = 1 for L ∈ Left, D ∈ Attr, and i ∈ {0, . . . , |T |},
then σS(L) vO σS(D).

Because of the clauses in (I), this lemma immediately implies that σS is a unifier
of Γ w.r.t. O.

Completeness of the reduction. Given a unifier γ of Γ w.r.t. O, we can
define a valuation τ that satisfies C(Γ,O) as follows.

Let L ∈ Left and D ∈ Attr and i ∈ {0, . . . , |T |}. We set τ([L v D]i) := 1 iff

s(γ(L))
(i)←−O s(γ(D)). According to Theorem 5, we thus have τ([L v D]i) = 0

for all i ∈ {0, . . . , |T |} iff γ(L) 6vO γ(D). Otherwise, there is an i ∈ {0, . . . , |T |}
such that τ([L v D]j) = 1 for all j ≥ i, and τ([L v D]j) = 0 for all j < i.

To define the valuation of the remaining propositional variables [X > Y ]
with X,Y ∈ Nv, we set τ([X > Y ]) = 1 iff X >γ Y , where >γ is defined as in
(5), i.e., X >γ Y iff γ(X) vO ∃w.γ(Y ) for some w ∈ N+

R .
The following lemma, whose proof can be found in [3], shows completeness

of our reduction using Lemma 7.

Lemma 12. The valuation τ satisfies C(Γ,O).

Note that cycle-restrictedness of O is needed in order to satisfy the irreflex-
ivity clause [X > X] → (see Lemma 3). We cannot dispense with this clause
since it is needed in the proof of soundness to obtain acyclicity of the assign-
ment S constructed there. In fact, only because S is acyclic can we define the
substitution σS , which is then shown to be a unifier.

6 Conclusions

We have shown that unification w.r.t. cycle-restricted ELHR+ -ontologies can be
reduced to propositional satisfiability. This improves on the results in [1,2] in two
respects. First, it allows us to deal also with ontologies that contain transitivity
and role hierarchy axioms, which are important for medical ontologies. Second,
the SAT reduction can easily be implemented and enables us to make use of
highly optimized SAT solvers, whereas the goal-oriented algorithm in [1], while
having the potential of becoming quite efficient, requires a high amount of ad-
ditional optimization work. The main topic for future research is to investigate
whether we can get rid of cycle-restrictedness.
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