

SEMANTIC COMPUTING

Lecture 13: Ontology Learning: Approaches

Dagmar Gromann International Center For Computational Logic

TU Dresden, 25 January 2019

Overview

- Types and examples of ontologies
- Representation formats
- Ontology Learning in Practice

Types and examples of ontologies

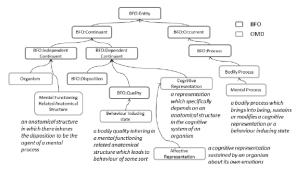
Types and examples of ontologies

- Upper level ontologies
 - Basic Formal Ontology (BFO)
 - Cyc
 - Dublin core
 - Friend of a Friend (FOAF)
- Domain ontologies
 - Biomedicine: Unified Medical Language System (UMLS)
 - Finance: eXtensible Business Reporting Language (XBRL)
- Application ontologies
 - Clinical documentation: SNOMED CT
- Lexical or terminological ontologies
 - WordNet, Simple Knowledge Organization System (SKOS)
 - EuroVoc, IATE

Dagmar Gromann, 25 January 2019

Upper level ontologies

Captures concepts, relations, and axioms that apply across multiple domains, such as the Basic Formal Ontology (BFO) applied to an emotion ontology below.

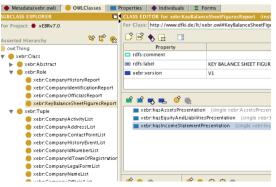


Source: Hastings, J., Ceusters, W., Smith, B., and Mulligan, K. (2011). Dispositions and processes in the Emotion Ontology.

Dagmar Gromann, 25 January 2019

Domain Ontologies

Represents concepts, relations, and axioms that are specific to a domain of discourse.

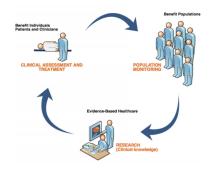


Source: Krieger, H.-U. and Declerck, T. (2013): The xEBR Ontology. Proceedings of the 26th XBRL International Conference.

Dagmar Gromann, 25 January 2019

Application ontologies

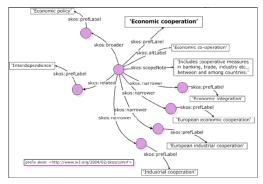
Engineered for a specific use or application scope that is specified by testable use cases, such as clinical documentation with SNOMED CT depicted below.



Source: https://www.snomed.org/snomed-ct/five-step-briefing Dagmar Gromann, 25 January 2019 Semantic Computing

Lexical and terminological ontologies

Ontology that consists of terminological entries or synonym sets and lexico-semantic relations, as exemplified with SKOS below.



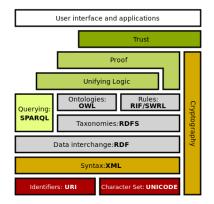
Naenudorn, E., Suphakit, N. and Chamnongsri, N. (2017). A QOS-aware Semantic Web Services Selection Model for Tourism. International Journal of Emerging Trends & Technology in Computer Science.

Dagmar Gromann, 25 January 2019

Representation formats

Representation formats

Semantic Web stack of technologies:



Source: https://commons.wikimedia.org/wiki/File:Semantic_web_stack.svg

Resource Description Framework (RDF)

Goal: Provide a structure (framework) to describe things (resources). It consists of three basic elements that allow us to model simple ontologies:

- Resources things being described
- Properties relations between things
- · Classes abstract concepts used to group things

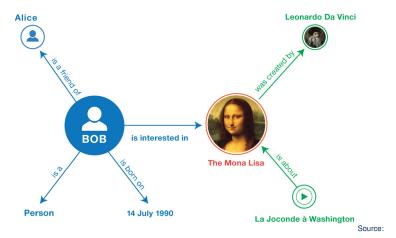
Structure = RDF triples: < Subject >< Predicate >< Object >
< SemanticComputing >< hasLecturer >< DagmarGromann >

All things are uniquely identified with a Uniform Resource Identifier (URI):

http://www.foaf.com/Person#DagmarGromann

Dagmar Gromann, 25 January 2019

RDF example (informal)



https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/ Dagmar Gromann, 25 January 2019 Semantic Computing

Web Ontology Language (OWL) Basics

- Axioms: basic statements that an OWL ontology expresses, e.g."it is raining", "every man is mortal" - asserted to be true)
- Entities: elements used to refer to real-world objects, e.g. Class : Course, Student : Mary
- **Expression**: combinations of entities to form complex descriptions from basic ones, e.g.

Entities need to be declared to be of a specific type, e.g. Individual : SemanticComputingObjectProperty : belongsTo Class : Course

OWL modeling

- Class Expressions:
 - Conjunction (and) : $C \sqcap D$
 - Disjunction (or): $C \sqcup D$
 - Negation (not): $\neg C$
- Property Expressions:
 - Quantifier: $\exists r.C$ (existential; some), $\forall r.C$ (universal; all)
 - Cardinality: $\geq n r.C (\min), \leq n r.C (\max)$
- Class Axioms:
 - Subclass: Student ⊑ Person (Student is_a Person)
 - Equivalence: $C \equiv D$ (C sameAs D)
 - Disjointness: DisjointClasses(Boy,Girl) or boy □ girl ⊑ ⊥
- Property Axioms: same as for class + transitive, symmetric, reflexive, functional, inverse

Web Ontology Language (OWL)

Model complex ontologies. Different types of syntaxes:

- Turtle notation: Student rdfs : subClassOf Person
- Manchester syntax:
 Class : Student

SubClassOf: Person

- Description Logic (DL) syntax: Student ⊑ Person
- First Order Logic (FOL) syntax: $\forall x.Student(x) \rightarrow Person(x)$
- OWL/XML:

OWL Example: Manchester syntax

```
Prefixes; Ontology imports
Declaration( NamedIndividual( :John ) )
Declaration( NamedIndividual( :Marv ) )
Declaration( Class( :Person ) )
Declaration( Class( :Woman ) )
Declaration( Class( :Man ) )
Declaration( ObjectProperty( :hasWife ) )
Declaration( ObjectProperty( :hasSpouse ) )
Declaration( DataProperty( :hasAge ) )
ObjectPropertyDomain( :hasWife :Man )
ObjectPropertyRange( :hasWife :Woman )
SubClassOf( :Woman :Person )
SubClassOf(:Man :Person)
EquivalentClasses( :Person :Human )
DisjointClasses( :Woman :Man )
SubObjectPropertvOf( :hasWife :hasSpouse )
ObjectPropertyAssertion( :hasWife :John :Mary )
DataPropertvAssertion( :hasAge :John "51"^^xsd:integer )
```

Source: https://www.w3.org/2007/0WL/wiki/Primer#Appendix:_The_Complete_Sample_Ontology

OWL vs. RDF

- RDF: describes simple facts in form of subject-predicate-object triples (plus schema that let's you specify type)
- OWL: adds semantics to properties and classes and allows you to make statements about two things at a time (samAs, transitivity, etc.)

Ontology learning in practice

Ontology learning tasks

Bees are insects that produce honey. They have six legs. Bees live only in beehives - or just hives. Maya and Flip are bees. Maya, in particular, is a notable bee. Maya and Flip are friends.

Axiom	$\texttt{Bee}\sqsubseteq\texttt{Insect}\sqcap \exists\texttt{produce}.\texttt{Honey}$		
Relation	<pre>produce(Bee,Honey)</pre>		
Hierarchiy	<pre>is_a(Bee, Insect)</pre>		
Concept	Beehive		
Synonym	{beehive, hive}		
Term	bee, beehive, hive, honey,		

Source: Rospocher, M. (2018). Learning Expressive Ontological Concept Descriptions via Neural Networks. SemDeep-4.

Dagmar Gromann, 25 January 2019

Ontology learning approaches

- LExO: Volker, J., Haase, P. and Hitzler P. (2008). Learning expressive ontologies. In Buitelaar, P. and Cimiano, P. (eds). Ontology Learning and Population: Bridging the Gap between Text and Knowledge, Vol. 167, pp. 45-69, IOS Press
- LearningDL: Ma, Y. and Distel, F. (2013). Learning formal definitions for SNOMED CT from text. In Conference on Artificial Intelligence in Medicine in Europe, pp. 73-77. Springer
- TExtual DEscription Identifier (TEDEI): Mathews, K. A., and Kumar, P. S. (2017). Extracting Ontological Knowledge from Textual Descriptions through Grammar-based Transformation. In Proceedings of the Knowledge Capture Conference, ACM.
- Language to DL: Gyawali, B., Shimorina, A., Gardent, C., Cruz-Lara, S., and Mahfoudh, M. (2017, May). Mapping natural language to description logic. In European Semantic Web Conference, pp. 273-288, Springer
- With NMT: Petrucci, G., Rospocher, M., and Ghidini, C. (2018). Expressive ontology learning as neural machine translation. Journal of Web Semantics, 52, 66-82.

Ontology learning approaches

Approaches until 2018:

- heavy use of NLP toolkits and corpora
- strong relying on hand-crafted rules and patterns
- targeting different source and target languages

Shared challenges:

- axiom learning challenging mostly lightweight ontologies
- high cost of maintenance and evolution

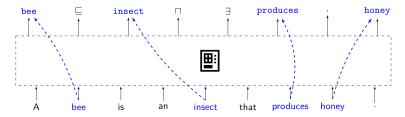
Axiom Learning: Definitions

One idea to learn formal axioms has been to benefit from intensional definitions (as opposed to extensional, object-oriented definitions):

- Definiendum: concept being defined (e.g. "a bee")
- Definitor: usually a verb introducing the definition (e.g. "is")
- Definiens: the genus phrase (e.g. "an insect")
- **Differentiae**: characterizations with respect to genus (e.g. "that produces honey")

Transforming NL to DL

All extralogical symbols are taken directly from the sentence:



Major challenges:

- Dataset NL to DL
- NMT architecture

Source: Rospocher, M. (2018). Learning Expressive Ontological Concept Descriptions via Neural Networks. SemDeep-4.

Dagmar Gromann, 25 January 2019

Dataset

We need many, good examples:

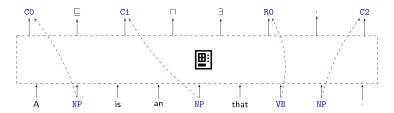
- · Bees are insects that produce honey
- A bee is also an insect that produces honey
- · Every bee is an insect that produces honey
- A cow is a mammal that eats grass

Dataset needs to:

- cover MANY syntactic variations of identical semantic contents
- cover many domains
- has annotated <sentence, axiom> pairs

No such dataset is currently available!

Dataset Generation

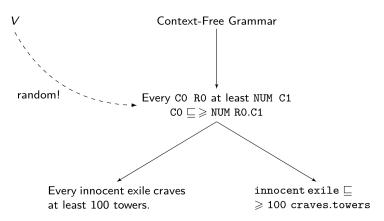


A NP is a NP that VB NP CO \sqsubseteq C1 $\sqcap \exists$ R0.C2

Templates: structural regularities beyond meaning.

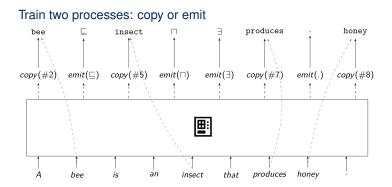
Source: Rospocher, M. (2018). Learning Expressive Ontological Concept Descriptions via Neural Networks. SemDeep-4. Dagmar Gromann, 25 January 2019 Semantic Computing

Dataset Templates

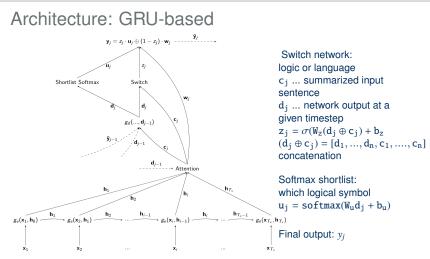


Source: Rospocher, M. (2018). Learning Expressive Ontological Concept Descriptions via Neural Networks. SemDeep-4.

NMT processes



Source: Rospocher, M. (2018). Learning Expressive Ontological Concept Descriptions via Neural Networks. SemDeep-4.



Source: Rospocher, M. (2018). Learning Expressive Ontological Concept Descriptions via Neural Networks. SemDeep-4.

Dagmar Gromann, 25 January 2019

Evaluation metrics

 f^k = formula with T_f symbols produced by the newtork given input sequence s^k of s^M with M number of sentences

Avg. Per-Formula Acc.
$$FA(\hat{\mathcal{F}}, \mathcal{F}) = \frac{CF}{M} = \frac{\sum_{k=1}^{M} \begin{cases} 1, & \text{if } f^k \equiv \hat{f}^k \\ 0, & \text{otherwise} \end{cases}}{M} & \text{fully automated} \end{cases}$$

Avg. Edit Distance
$$ED(\hat{\mathcal{F}},\mathcal{F}) = \frac{\sum_{k=1}^{M} \delta(r^k,\hat{r}^k)}{M}$$
 semi-automated

Avg. Per-Token Acc.
$$TA(\hat{\mathcal{F}},\mathcal{F}) = \frac{\sum_{k=1}^{M} \sum_{j=1}^{T_{fk}} \begin{cases} 1, & \text{if } f_j^k = \hat{f}_j^k \\ 0, & \text{otherwise} \end{cases}}{\sum_{k=1}^{M} T_{fk}} \qquad \text{quick control}$$

training set size	FA	ED	ТА
2000	0.61	2.48	0.92
5000	0.84	0.60	0.98
10000	0.89	0.47	0.99
20000	0.81	0.46	0.98

Dagmar Gromann, 25 January 2019

Future Directions

- Create a more varied dataset
- Test different architectures
- Combine neural architecture with knowledge representation approaches

Review of Lecture 13

- Which different types of ontologies do you know?
- Can you give a specific example for those types?
- How can ontologies be represented? What is the difference between RDF and OWL?
- What do non-neural ontology learning approaches have in common? What are main challenges?
- How does the NMT approach work? How can it be evaluated and how well did it perform?
- What is needed to perform ontology learning with deep learning?
- What could potential future directions be?