Exercise Sheet 9: Advanced LATEX

Maximilian Marx, Sebastian Rudolph Academic Skills in Computer Science, 2019-06-23, Summer Term 2020

Exercise 9.1. Typeset the following paragraph.

Lemma 8.2 (Yoneda) Let C be locally small. For any object $C \in C$ and functor $F \in \mathbf{Sets}^{\mathbf{C}^{op}}$ there is an isomorphism

$$\operatorname{Hom}(yC, F) \cong FC$$

which, moreover, is natural in both F and C.

Here:

- (1) the Hom is $\operatorname{Hom}_{\operatorname{Sets}^{\operatorname{C}^{op}}}$,
- (2) naturality in F means that, given any ϑ : $F \to G$, the following diagram commutes:

$$\begin{array}{ccc} \operatorname{Hom}(yC,F) & \xrightarrow{\cong} & FC \\ & & & \downarrow^{\vartheta_C} \\ & & & \downarrow^{\vartheta_C} \\ & & & \operatorname{Hom}(yC,G) & \xrightarrow{\cong} & GC \end{array}$$

(3) naturality in C means that, given any $h : C \to D$, the following diagram commutes:

$$\operatorname{Hom}(yC, F) \xrightarrow{\cong} FC$$

$$\operatorname{Hom}(yh, F) \uparrow \qquad \qquad \uparrow Fh$$

$$\operatorname{Hom}(yD, F) \xrightarrow{\cong} FD$$

(Awodey, Steve. 2006. Category Theory. Oxford University Press. p. 162)

Hint: You can use tikz¹ with the tikz-cd library to typeset the *commutative diagrams*, but several other packages are also available.

Exercise 9.2. Write a paper proving the *binomial theorem*:

Let $n \in \mathbb{N}$. Then

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

You may use any sources that you need, provided that you properly cite them. Make sure your paper includes an introduction, a conclusion, and all necessary preliminaries. Try to make your paper as easy to read as possible.

¹https://github.com/pgf-tikz/pgf