COMPLEXITY THEORY

Lecture 19: Circuit Complexity

Markus Krötzsch
Knowledge-Based Systems

TU Dresden, 9th Jan 2018

Computing with Circuits

Motivation

One might imagine that $\mathrm{P} \neq \mathrm{NP}$, but $\mathrm{Sat}_{\text {at }}$ is tractable in the following sense: for every ℓ there is a very short program that runs in time ℓ^{2} and correctly treats all instances of size ℓ. - Karp and Lipton, 1982

Motivation

One might imagine that $P \neq$ NP, but SAt is tractable in the following sense: for every ℓ there is a very short program that runs in time ℓ^{2} and correctly treats all instances of size ℓ. - Karp and Lipton, 1982

Some questions:

- Even if it is hard to find a universal algorithm for solving all instances of a problem, couldn't it still be that there is a simple algorithm for every fixed problem size?
- What can complexity theory tell us about parallel computation?
- Are there any meaningful complexity classes below LogSpace? Do they contain relevant problems?

Motivation

One might imagine that $P \neq N P$, but Sat is tractable in the following sense: for every ℓ there is a very short program that runs in time ℓ^{2} and correctly treats all instances of size ℓ. - Karp and Lipton, 1982

Some questions:

- Even if it is hard to find a universal algorithm for solving all instances of a problem, couldn't it still be that there is a simple algorithm for every fixed problem size?
- What can complexity theory tell us about parallel computation?
- Are there any meaningful complexity classes below LogSpace? Do they contain relevant problems?
\leadsto circuit complexity provides some answers
Intuition: use circuits with logical gates to model computation

Boolean Circuits

Definition 19.1: A Boolean circuit is a finite, directed, acyclic graph where

- each node that has no predecessor is an input node
- each node that is not an input node is one of the following types of logical gate:
- AND with two input wires
- OR with two input wires
- NOT with one input wire
- one or more nodes are designated output nodes

The outputs of a Boolean circuit are computed in the obvious way from the inputs.
\leadsto circuits with k inputs and ℓ outputs represent functions $\{0,1\}^{k} \rightarrow\{0,1\}^{\ell}$
We often consider circuits with only one output.

Example 1

Example 1

XOR function:

Example 2

Example 2

Parity function with four inputs:
(true for odd number of 1s)

Alternative Ways of Viewing Circuits (1)

Propositional formulae

- propositional formulae are special circuits: each non-input node has only one outgoing wire
- each variable corresponds to one input node
- each logical operator corresponds to a gate
- each sub-formula corresponds to a wire

Alternative Ways of Viewing Circuits (2)

Straight-line programs

- are programs without loops and branching (if, goto, for, while, etc.)
- that only have Boolean variables
- and where each line can only be an assignment with a single Boolean operator
$\leadsto n$-line programs correspond to n-gate circuits

$$
\begin{array}{lll}
01 & z_{1} & :=\neg x_{1} \\
02 & z_{2} & :=\neg x_{2} \\
03 & z_{3} & :=z_{1} \wedge x_{2} \\
04 & z_{4} & :=z_{2} \wedge x_{1} \\
05 & \text { return } z_{3} \vee z_{4}
\end{array}
$$

Example: Generalised AND

The function that tests if all inputs are 1 can be encoded by combining binary AND gates:

- works similarly for OR gates
- number of gates:
$n-1$
- we can use n-way AND and OR (keeping the real size in mind)

Solving Problems with Circuits

Circuits are not universal: they have a fixed number of inputs!
How can they solve arbitrary problems?

Solving Problems with Circuits

Circuits are not universal: they have a fixed number of inputs!
How can they solve arbitrary problems?

Definition 19.2: A circuit family is an infinite list $C=C_{1}, C_{2}, C_{3}, \ldots$ where each C_{i} is a Boolean circuit with i inputs and one output.
We say that C decides a language \mathbf{L} (over $\{0,1\}$) if

$$
w \in \mathbf{L} \quad \text { if and only if } \quad C_{n}(w)=1 \text { for } n=|w| .
$$

Example 19.3: The circuits we gave for generalised AND are a circuit family that decides the language $\left\{1^{n} \mid n \geq 1\right\}$.

Circuit Complexity

To measure difficulty of problems solved by circuits, we can count the number of gates needed:

Definition 19.4: The size of a circuit is its number of gates.
Let $f: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a function. A circuit family C is f-size bounded if each of its circuits C_{n} is of size at most $f(n)$.

Size $(f(n))$ is the class of all languages that can be decided by an $O(f(n))$-size bounded circuit family.

Example 19.5: Our circuits for generalised AND show that $\left\{1^{n} \mid n \geq 1\right\} \in \operatorname{Size}(n)$.

Examples

Many simple operations can be performed by circuits of polynomial size:

- Boolean functions such as parity (=sum modulo 2), sum modulo n, or majority
- Arithmetic operations such as addition, subtraction, multiplication, division (taking two fixed-arity binary numbers as inputs)
- Many matrix operations

See exercise for some more examples

Polynomial Circuits

Polynomial Circuits

A natural class of problems to consider are those that have polynomial circuit families:
Definition 19.6: $\mathrm{P}_{\text {poly }}=\bigcup_{d \geq 1} \operatorname{Size}\left(n^{d}\right)$.

Note: A language is in $\mathrm{P}_{\text {/poly }}$ if it is solved by some polynomial-sized circuit family. There may not be a way to compute (or even finitely represent) this family.

How does $\mathrm{P}_{\text {/poly }}$ relate to other classes?

Quadratic Circuits for Deterministic Time

Theorem 19.7: For $f(n) \geq n$, we have DTime $(f) \subseteq \operatorname{Size}\left(f^{2}\right)$.

Quadratic Circuits for Deterministic Time

Theorem 19.7: For $f(n) \geq n$, we have $\operatorname{DTime}(f) \subseteq \operatorname{Size}\left(f^{2}\right)$.

Proof sketch (see also Sipser, Theorem 9.30)

- We can represent the DTime computation as in the proof of Theorem 16.10: as a list of configurations encoded as words

$$
* \sigma_{1} \cdots \sigma_{i-1}\left\langle q, \sigma_{i}\right\rangle \sigma_{i+1} \cdots \sigma_{m} *
$$

of symbols from the set $\Omega=\{*\} \cup \Gamma \cup(Q \times \Gamma)$.
\leadsto Tableau (i.e., grid) with $O\left(f^{2}\right)$ cells.

- We can describe each cell with a list of bits (wires in a circuit).
- We can compute one configuration from its predecessor by $O(f)$ circuits (idea: compute the value of each cell from its three upper neighbours as in Theorem 16.10)
- Acceptance can be checked by assuming that the TM returns to a unique configuration position/state when accepting

From Polynomial Time to Polynomial Size

From DTime $(f) \subseteq \operatorname{Size}\left(f^{2}\right)$ we get:
Corollary 19.8: $\mathrm{P} \subseteq \mathrm{P}_{\mathrm{p} \text { poly }}$.

From Polynomial Time to Polynomial Size

From DTime $(f) \subseteq \operatorname{Size}\left(f^{2}\right)$ we get:
Corollary 19.8: $\mathrm{P} \subseteq \mathrm{P}_{\text {/poly }}$.

This suggests another way of approaching the P vs. NP question:
If any language in NP is not in $\mathrm{P}_{\text {/poly }}$, then $\mathrm{P} \neq \mathrm{NP}$.
(but nobody has found any such language yet)

Circuit-Sat

Input: A Boolean Circuit C with one output.
Problem: Is there any input for which C returns 1?

Circuit-Sat

Input: A Boolean Circuit C with one output.
Problem: Is there any input for which C returns 1?

Theorem 19.9: Circuit-Sat is NP-complete.

Circuit-Sat

Input: A Boolean Circuit C with one output.
Problem: Is there any input for which C returns 1?

Theorem 19.9: Circuit-Sat is NP-complete.
Proof: Inclusion in NP is easy (just guess the input).
For NP-hardness, we use that NP problems are those with a P-verifier:

- The DTM simulation of Theorem 19.7 can be used to implement a verifier (input: ($w \# c$) in binary)
- We can hard-wire the w-inputs to use a fixed word instead (remaining inputs: c)
- The circuit is satisfiable iff there is a certificate for which the verifier accepts w Note: It would also be easy to reduce Sat to Circuit-Sat, but the above yields a proof from first principles.

A New Proof for Cook-Levin

Theorem 19.10: 3Sat is NP-complete.

A New Proof for Cook-Levin

Theorem 19.10: 3Sat is NP-complete.

Proof: Membership in NP is again easy (as before).
For NP-hardness, we express the circuit that was used to implement the verifier in Theorem 19.9 as propositional logic formula in 3-CNF:

- Create a propositional variable X for every wire in the circuit
- Add clauses to relate input wires to output wires, e.g., for AND gate with inputs X_{1} and X_{2} and output X_{3}, we encode $\left(X_{1} \wedge X_{2}\right) \leftrightarrow X_{3}$ as:

$$
\left(\neg X_{1} \vee \neg X_{2} \vee X_{3}\right) \wedge\left(X_{1} \vee \neg X_{3}\right) \wedge\left(X_{2} \vee \neg X_{3}\right)
$$

- Fixed number of clauses per gate = linear size increase
- Add a clause (X) for the output wire X

Is $P=P_{/ \text {poly }}$?
We showed $P \subseteq P_{/ \text {poly }}$. Does the converse also hold?

Is $P=P /$ poly ?

We showed $\mathrm{P} \subseteq \mathrm{P}_{\text {/poly }}$. Does the converse also hold?
No!

Theorem 19.11: $\mathrm{P} /$ poly contains undecidable problems.

Is $P=P_{/ \text {poly }}$?
We showed $P \subseteq P_{/ \text {poly }}$. Does the converse also hold?
No!
Theorem 19.11: $\mathrm{P}_{\text {/poly }}$ contains undecidable problems.

Proof: We define the unary Halting problem as the (undecidable) language:

> UHALT $:=\left\{1^{n} \mid\right.$ the binary encoding of n encodes a pair $\langle\mathcal{M}, w\rangle$ where \mathcal{M} is a TM that halts on word $w\}$

For a number $1^{n} \in \operatorname{UHALT}$, let C_{n} be the circuit that computes a generalised AND of all inputs. For all other numbers, let C_{n} be a circuit that always returns 0 . The circuit family $C_{1}, C_{2}, C_{3}, \ldots$ accepts UHalt.

Is $P=P /$ poly ?

We showed $P \subseteq P_{/ \text {poly }}$. Does the converse also hold?
No!

Theorem 19.11: $\mathrm{P}_{\text {/poly }}$ contains undecidable problems.

Proof: We define the unary Halting problem as the (undecidable) language:

> UHALT := $\left\{1^{n} \mid\right.$ the binary encoding of n encodes a pair $\langle\mathcal{M}, w\rangle$ where \mathcal{M} is a TM that halts on word $w\}$

For a number $1^{n} \in \operatorname{UHALt}$, let C_{n} be the circuit that computes a generalised AND of all inputs. For all other numbers, let C_{n} be a circuit that always returns 0 . The circuit family $C_{1}, C_{2}, C_{3}, \ldots$ accepts UHalt.

Note: Interestingly, UHalt is also not hard for NP (since it is a so-called sparse language)

Uniform Circuit Families

$P_{\text {/poly }}$ too powerful, since we do not require the circuits to be computable.
We can add this requirement:
Definition 19.12: A circuit family $C_{1}, C_{2}, C_{3}, \ldots$ is log-space-uniform if there is a log-space computable function that maps words 1^{n} to (an encoding of) C_{n}.

Note: We could also define similar notions of uniformity for other complexity classes.

Uniform Circuit Families

$P_{\text {/poly }}$ too powerful, since we do not require the circuits to be computable.
We can add this requirement:
Definition 19.12: A circuit family $C_{1}, C_{2}, C_{3}, \ldots$ is log-space-uniform if there is a log-space computable function that maps words 1^{n} to (an encoding of) C_{n}.

Note: We could also define similar notions of uniformity for other complexity classes.
Theorem 19.13: The class of all languages that are accepted by a log-spaceuniform circuit family of polynomial size is exactly P.

Proof sketch: A detailed analysis shows that our earlier reduction of polytime DTMs to circuits is log-space-uniform. Conversely, a polynomial-time procedure can be obtained by first computing a suitable circuit (in log-space) and then evaluating it (in polynomial time).

Turing Machines That Take Advice

One can also describe $\mathrm{P}_{\text {/poly }}$ using TMs that take "advice":
Definition 19.14: Consider a function $a: \mathbb{N} \rightarrow \mathbb{N}$. A language \mathbf{L} is accepted by a Turing Machine \mathcal{M} with a bits of advice if there is a sequence of advice strings $\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots$ of length $\left|\alpha_{i}\right|=a(i)$ and \mathcal{M} accepts inputs of the form ($w \# \alpha_{|w|}$) if and only if $w \in \mathbf{L}$.
$\mathrm{P}_{/ \text {poly }}$ is equivalent to the class of problems that can be solved by a PTime TM that takes a polynomial amount of "advice" (where the advice can be a description of a suitable circuit).
(This is where the notation $\mathrm{P}_{\text {/poly }}$ comes from.)

$P_{\text {poly }}$ and NP

We showed $P \subseteq P_{\text {poly }}$. Does $N P \subseteq P_{/ \text {poly }}$ also hold?

$P_{\text {poly }}$ and NP

We showed $P \subseteq P_{\text {poly }}$. Does $N P \subseteq P_{/ \text {poly }}$ also hold?
Nobody knows.

Theorem 19.15 (Karp-Lipton Theorem): If $\mathrm{NP} \subseteq \mathrm{P}_{/ \text {poly }}$ then $\mathrm{PH}=\Sigma_{2}^{p}$.

We showed $P \subseteq P_{\text {poly }}$. Does $N P \subseteq P_{\text {/poly }}$ also hold?
Nobody knows.

Theorem 19.15 (Karp-Lipton Theorem): If $\mathrm{NP} \subseteq \mathrm{P}_{/ \text {poly }}$ then $\mathrm{PH}=\Sigma_{2}^{p}$.

Proof sketch (see Arora/Barak Theorem 6.19):

- if $N P \subseteq P_{\text {/poly }}$ then there is a polysize circuit family solving Sat
- Using this, one can argue that there is also a polysize circuit family that computes the lexicographically first satisfying assignment (k output bits for k variables)
- A Π_{2}-QBF formula $\forall \vec{X} . \exists \vec{Y} . \varphi$ is true if, for all values of $\vec{X}, \varphi(\vec{X})$ is satisfiable.
- In Σ_{2}^{P}, we can: (1) guess the polysize circuit for SAT, (2) check for all values of \vec{X} if its output is really a satisfying assignment (to verify the guess)
- This solves Π_{2}^{P}-hard problems in Σ_{2}^{P}
- But then the Polynomial Hierarchy collapses at Σ_{2}^{P}, as claimed.

$P_{/ \text {poly }}$ and ExpTime

We showed $P \subseteq P /$ poly . Does ExpTime $\subseteq P_{/ \text {poly }}$ also hold?

$P_{\text {/poly }}$ and ExpTime

We showed $P \subseteq P /$ poly . Does ExpTime $\subseteq P /$ poly also hold?
Nobody knows.

Theorem 19.16 (Meyer's Theorem):

If ExpTime $\subseteq P /$ poly then ExpTime $=P H=\Sigma_{2}^{p}$.

See [Arora/Barak, Theorem 6.20] for a proof sketch.

We showed $P \subseteq P /$ poly . Does ExpTime $\subseteq P /$ poly also hold?
Nobody knows.

Theorem 19.16 (Meyer's Theorem):

If ExpTime $\subseteq \mathrm{P}_{/ \text {poly }}$ then ExpTime $=\mathrm{PH}=\Sigma_{2}^{p}$.

See [Arora/Barak, Theorem 6.20] for a proof sketch.

Corollary 19.17: If ExpTime $\subseteq P_{\text {poly }}$ then $P \neq N P$.

Proof: If ExpTime $\subseteq P /$ poly then ExpTime $=\Sigma_{2}^{p}$ (Meyer's Theorem).
By the Time Hierarchy Theorem, $\mathrm{P} \neq$ ExpTime, so $\mathrm{P} \neq \Sigma_{2}^{p}$.
So the Polynomial Hierarchy doesn't collapse completely, and $P \neq$ NP.

How Big a Circuit Could We Need?

We should not be surprised that $P_{\text {poly }}$ is so powerful: exponential circuit families are already enough to accept any language

Exercise: show that every Boolean function over n variables can be expressed by a circuit of size $\leq n 2^{n}$.

How Big a Circuit Could We Need?

We should not be surprised that $P_{/ \text {poly }}$ is so powerful:
exponential circuit families are already enough to accept any language
Exercise: show that every Boolean function over n variables can be expressed by a circuit of size $\leq n 2^{n}$.

It turns out that these exponential circuits are really needed:
Theorem 19.18 (Shannon 1949 (!)): For every n, there is a function $\{0,1\}^{n} \rightarrow$ $\{0,1\}$ that cannot be computed by any circuit of size $2^{n} /(10 n)$.

In fact, one can even show: almost every Boolean function requires circuits of size $>2^{n} /(10 n)-$ and is therefore not in $\mathrm{P}_{/ \text {poly }}$

How Big a Circuit Could We Need?

We should not be surprised that $P_{/ \text {poly }}$ is so powerful:
exponential circuit families are already enough to accept any language
Exercise: show that every Boolean function over n variables can be expressed by a circuit of size $\leq n 2^{n}$.

It turns out that these exponential circuits are really needed:
Theorem 19.18 (Shannon 1949 (!)): For every n, there is a function $\{0,1\}^{n} \rightarrow$ $\{0,1\}$ that cannot be computed by any circuit of size $2^{n} /(10 n)$.

In fact, one can even show: almost every Boolean function requires circuits of size $>2^{n} /(10 n)$ - and is therefore not in $\mathrm{P}_{/ \text {poly }}$

Is any of these functions in NP? Or at least in Exp? Or at least in NExp?

How Big a Circuit Could We Need?

We should not be surprised that $P_{/ \text {poly }}$ is so powerful:
exponential circuit families are already enough to accept any language
Exercise: show that every Boolean function over n variables can be expressed by a circuit of size $\leq n 2^{n}$.

It turns out that these exponential circuits are really needed:
Theorem 19.18 (Shannon 1949 (!)): For every n, there is a function $\{0,1\}^{n} \rightarrow$ $\{0,1\}$ that cannot be computed by any circuit of size $2^{n} /(10 n)$.

In fact, one can even show: almost every Boolean function requires circuits of size $>2^{n} /(10 n)$ - and is therefore not in $\mathrm{P}_{/ \text {poly }}$

Is any of these functions in NP? Or at least in Exp? Or at least in NExp? Nobody knows.

Summary and Outlook

Circuits provide an alternative model of computation

Nonuniform circuit families are very powerful, and even polynomial circuits can solve undecidable problems

Log-space-uniform polynomial circuits capture P .
Most boolean functions cannot be expressed by polynomial circuits, yet we don't know of any such function that is even in NExp

What's next?

- Circuits for parallelism
- Complexity classes (strictly!) below P
- Randomness

