Deduction Systems

Tutorial 2

Sebastian Rudolph, Lukas Schweizer

SS 2016

Exercise 3.1. One of the optimization techniques in tableaux procedures is absorption. What is the goal of applying this technique? Apply absorption to the TBox $\mathcal{T} = \{A \sqsubseteq B, B \equiv C \sqcap D, C \sqcap A \sqsubseteq E, D \sqcap E \sqsubseteq A\}$.

Exercise 3.2. Markus wants to apply the tableau algorithm for checking the satisfiability of the concept $B \sqcap \exists r^-.A$ w.r.t. the TBox $\{A \sqsubseteq \exists r^-.A \sqcap \exists r.B, \top \sqsubseteq \leqslant 1 r\}$. He arrives at the situation depicted below and concludes that no further rules are applicable, since v_2 is blocked by v_1 . What is Markus' error? Continue the algorithm until its termination. (You don't have to illustrate all intermediate steps, just provide the final state.)

$$\begin{array}{l} v_0 \\ r^- \downarrow \\ v_1 \\ r^- \downarrow \\ v_2 \end{array} \qquad \qquad L(v_0) = \{B \sqcap \exists r^-.A, B, \exists r^-.A, C_{\mathcal{T}}, \neg A, \leqslant 1 \, r\} \\ L(v_1) = \{A, C_{\mathcal{T}}, \exists r^-.A, \exists r.B, \leqslant 1 \, r\} \\ L(v_2) = \{A, C_{\mathcal{T}}, \exists r^-.A, \exists r.B, \leqslant 1 \, r\}. \end{array}$$