6. The π-Calculus

June 21-29, 2022

The π-Calculus - Syntax

Let \mathcal{N} be a set of names.
For names $x, y, z \in \mathcal{N}$, a prefix is an expression π of the form

$$
\pi::=\bar{x}\langle y\rangle|x(z)|[x=y] \pi \mid \tau
$$

The set of all process expressions of \mathcal{P}^{π} (the π-calculus) is defined by the following grammar:

$$
P::=\sum_{i \in I} \pi_{i} \cdot P_{i}\left|P_{1} \| P_{2}\right|(\nu a) P \mid!P
$$

The π-Calculus - Structural Congruence

Structural congruence \equiv is the smallest process congruence on \mathcal{P}^{π}, such that

1. $[x=x] \pi . P \equiv \pi . P$;
2. $P \equiv{ }_{\alpha} Q$ (α-conversion) implies $P \equiv Q$;
3. $P+\mathbf{0} \equiv P, P+Q \equiv Q+P, P+(Q+R) \equiv(P+Q)+R$;
4. $P\|\mathbf{0} \equiv P, P\| Q \equiv Q\|P, P\|(Q \| R) \equiv(P \| Q) \| R$;
5. $(\nu x)(P \| Q) \equiv P \|(\nu x) Q$ if $x \notin \mathrm{fn}(P),(\nu x) \mathbf{0} \equiv \mathbf{0},(\nu x)(\nu y) P \equiv(\nu y)(\nu x) P$;
6. $!P \equiv P \|!P$.

Note: Case 2, α-conversion, is often assumed as the default case, meaning that processes P and Q are not distinguished if $P \equiv{ }_{\alpha} Q$ holds. We refrain from doing so for the procedure of this class and keep α-conversion inside structural congruence.

The π-Calculus - Reduction Semantics

The reduction relation for \mathcal{P}^{π} is the smallest relation $\longrightarrow \subseteq \mathcal{P}^{\pi} \times \mathcal{P}^{\pi}$, satisfying the following rules:

$$
\begin{aligned}
& \text { (tau) } \frac{}{\tau \cdot P \longrightarrow P} \quad(\text { struct }) \xrightarrow{P^{\prime} \equiv P \quad P \longrightarrow Q \quad Q \equiv Q^{\prime}} \\
& \begin{array}{l}
P^{\prime} \longrightarrow Q^{\prime} \\
\text { (react) } \frac{P}{\left(\bar{x}\langle y\rangle \cdot P_{1}+M\right)\left\|\left(x(z) \cdot P_{2}+N\right) \longrightarrow P_{1}\right\| P_{2}\{y / z\}} \\
\begin{array}{ll}
\text { (par) } \frac{P \longrightarrow P^{\prime}}{P\left\|Q \longrightarrow P^{\prime}\right\| Q} & \text { (res) } \frac{P \longrightarrow P^{\prime}}{(\nu x) P \longrightarrow(\nu x) P^{\prime}}
\end{array}
\end{array} .
\end{aligned}
$$

Mobility - Scope Extrusion

$$
\mathcal{Q}=(\nu z)(\bar{x}\langle z\rangle \cdot P \| R) \| x(y) \cdot Q
$$

with $z \notin \mathrm{fn}(P) \cup \mathrm{fn}(Q)$.
Then $\mathcal{Q} \longrightarrow P \|(\nu z)(R \| Q\{z / y\})$ since

1. $(\bar{x}\langle z\rangle . P)\|(x(y) \cdot Q) \longrightarrow P\| Q\{z / y\}$ due to (react) and (struct);
2. $(\bar{x}\langle z\rangle . P)\|(x(y) \cdot Q)\| R \longrightarrow P\|Q\{z / y\}\| R$ due to 1 and (par);
3. $\bar{x}\langle z\rangle . P\|R\| x(y) \cdot Q \longrightarrow P\|R\| Q\{z / y\}$ due to 2 and (struct);
4. $(\nu z)(\bar{x}\langle z\rangle . P\|R\| x(y) . Q) \longrightarrow(\nu z)(P\|R\| Q\{z / y\})$ due to 3 and (res);
5. $(\nu z)(\bar{x}\langle z\rangle \cdot P \| R)\|x(y) \cdot Q \longrightarrow P\|(\nu z)(R \| Q\{z / y\})$ due to 4 and (struct).

Such a behavior is also called scope extrusion.

The Polyadic π-Calculus

Every name $n \in \mathcal{N}$ has an arity $\operatorname{ar}(n) \in \mathbb{N}$. A polyadic input prefix is an expression $x\left(y_{1}, \ldots, y_{k}\right)$ where $\operatorname{ar}(x)=k$. A polyadic output prefix is an expression $\bar{x}\left\langle z_{1}, \ldots, z_{k}\right\rangle$ where $a r(x)=k$.

The polyadic π-calculus $\mathcal{P}_{\text {poly }}^{\pi}$ is the π-calculus using polyadic input/output prefixes. The reduction semantics is lifted to account for polyadic reactions.

Encoding $\mathcal{P}_{\text {poly }}^{\pi} \mapsto \mathcal{P}^{\pi}$:

1. $x\left(z_{1}, \ldots, z_{\operatorname{ar}(x)}\right) \cdot P \mapsto x\left(z_{1}\right) \cdot x\left(z_{2}\right) \cdot \cdots \cdot x\left(z_{\operatorname{ar}(x)}\right) \cdot P^{\prime}$ and $\bar{x}\left(y_{1}, \ldots, y_{\operatorname{ar}(x)}\right) \cdot Q \mapsto \bar{x}\left\langle y_{1}\right\rangle . \cdots \cdot \bar{x}\left\langle y_{\operatorname{ar}(x)}\right\rangle \cdot Q^{\prime}$
(where P^{\prime} and Q^{\prime} are likewise translated processes)

The Polyadic π-Calculus

Every name $n \in \mathcal{N}$ has an arity $\operatorname{ar}(n) \in \mathbb{N}$. A polyadic input prefix is an expression
$x\left(y_{1}, \ldots, y_{k}\right)$ where $\operatorname{ar}(x)=k$. A polyadic output prefix is an expression $\bar{x}\left\langle z_{1}, \ldots, z_{k}\right\rangle$ where $a r(x)=k$.

The polyadic π-calculus $\mathcal{P}_{\text {poly }}^{\pi}$ is the π-calculus using polyadic input/output prefixes. The reduction semantics is lifted to account for polyadic reactions.

Encoding $\mathcal{P}_{\text {poly }}^{\pi} \mapsto \mathcal{P}^{\pi}$:

1. $x\left(z_{1}, \ldots, z_{\operatorname{ar}(x)}\right) \cdot P \mapsto x\left(z_{1}\right) \cdot x\left(z_{2}\right) \cdot \cdots \cdot x\left(z_{a r(x)}\right) \cdot P^{\prime}$ and $\bar{x}\left(y_{1}, \ldots, y_{\operatorname{ar}(x)}\right) \cdot Q \mapsto \bar{x}\left\langle y_{1}\right\rangle \cdot \cdots . \bar{x}\left\langle y_{\operatorname{ar}(x)}\right\rangle \cdot Q^{\prime}$
(where P^{\prime} and Q^{\prime} are likewise translated processes)
2. $x\left(z_{1}, \ldots, z_{\operatorname{ar}(x)}\right) \cdot P \mapsto x(w) \cdot w\left(z_{1}\right) \cdot \cdots \cdot w\left(z_{\operatorname{ar}(x)}\right) \cdot Q^{\prime}$ and
$\bar{x}\left\langle y_{1}, \ldots, y_{\operatorname{ar}(x)}\right\rangle \mapsto(\nu a)\left(\bar{x}(a) . \bar{a}\left\langle y_{1}\right\rangle . \cdots . \bar{a}\left\langle y_{\operatorname{ar}(x)}\right\rangle \cdot Q^{\prime}\right)$

π-Calculus with Process Calls

Additional processes to the ones in $\mathcal{P}_{\text {poly }}^{\pi}$ are process constants $A\langle\vec{x}\rangle$. Such a process constant comes with a defining equation $A(\vec{y}):=Q_{A}$, for which

$$
Q_{A}=\cdots A\langle\vec{u}\rangle \cdots A\langle\vec{v}\rangle \cdots
$$

and A may be called within a process

$$
P=\cdots A\langle\vec{w}\rangle \cdots A\langle\vec{z}\rangle \cdots
$$

Encoding Process Calls in $\mathcal{P}_{\text {poly }}^{\pi}$:

1. invent new name call ${ }_{A}$ for each process constant A;
2. in every process R, replace $A\langle\vec{w}\rangle$ by $\overline{c a l l}_{A}$, yielding \widehat{R};
3. replace the definition of P by

$$
\widehat{\widehat{P}}=\left(\nu c a l_{A}\right)\left(\widehat{P} \|!c a l_{A}(\vec{x}) \cdot \widehat{Q_{A}}\right)
$$

Visible Actions

The set of π-calculus actions is given by

$$
\pi::=\bar{x} y|x y| \bar{x}(z) \mid \tau
$$

where $x, y, z \in \mathcal{N}$.
Free Output: represented by action $\pi=\bar{x} y$, where x is the so-called subject of π

$$
(\operatorname{subj}(\pi)=x), y \text { its object }(\operatorname{obj}(\pi)=y), \operatorname{fn}(\pi)=\{x, y\}, \operatorname{bn}(\pi)=\emptyset,
$$

$$
\mathrm{n}(\pi)=\{x, y\}, \pi \sigma=\overline{x \sigma} y \sigma .
$$

Input: $\pi=x y$, where $\operatorname{subj}(\pi)=x, \operatorname{obj}(\pi)=y, \operatorname{fn}(\pi)=\{x, y\}, \operatorname{bn}(\pi)=\emptyset$,

$$
\mathrm{n}(\pi)=\{x, y\}, \text { and } \pi \sigma=x \sigma y \sigma .
$$

Bound Output: $\pi=\bar{x}(z)$, where $\operatorname{subj}(\pi)=x, \operatorname{obj}(\pi)=z, \operatorname{fn}(\pi)=\{x\}, \operatorname{bn}(\pi)=\{z\}$, $\mathrm{n}(\pi)=\{x, y\}$, and $\pi \sigma=\overline{x \sigma}(z)$.

Let us denote the set of all π-Calculus actions by \mathcal{A}^{π}.

LTS Semantics of the π-Calculus

\mathcal{P}^{π} defines an $\operatorname{LTS}\left(\mathcal{P}^{\pi}, \mathcal{A}^{\pi}, \rightarrow\right)$ where \rightarrow is the smallest transition relation, satisfying the following rules.

$$
\begin{aligned}
& \text { (out) } \xrightarrow[{\bar{x}\langle y\rangle . P \xrightarrow{\bar{x} y}} P]{ } \\
& \text { (mat) } \frac{\pi \cdot P \xrightarrow{\alpha} P^{\prime}}{[x=x] \pi \cdot P \xrightarrow{\alpha} P^{\prime}} \\
& \text { (inp) } \xrightarrow[{x(z) \cdot P \xrightarrow{x y} P\{y / z}\}]{ } \\
& (\text { tau }) \xrightarrow[{\tau . P \xrightarrow{\tau}} P]{ } \\
& \text { (sum-I) } \frac{P \xrightarrow{\alpha} P^{\prime}}{P+Q \xrightarrow{\alpha} P^{\prime}} \\
& \text { (sum-r) } \frac{Q \xrightarrow{\alpha} Q^{\prime}}{P+Q \xrightarrow{\alpha} Q^{\prime}} \\
& \text { (par-1) } \frac{P \xrightarrow{\alpha} P^{\prime} \quad \operatorname{bn}(\alpha) \cap \mathrm{fn}(Q)=\emptyset}{P\left\|Q \xrightarrow{\alpha} P^{\prime}\right\| Q} \quad \text { (par-r) } \frac{Q \xrightarrow{\alpha} Q^{\prime} \quad \operatorname{bn}(\alpha) \cap \mathrm{fn}(P)=\emptyset}{P\|Q \xrightarrow{\alpha} P\| Q^{\prime}} \\
& \left(\text { comm-I) } \xrightarrow{P \xrightarrow{\bar{x} y} P^{\prime} \quad Q \xrightarrow{x y} Q^{\prime}}\right.
\end{aligned}
$$

LTS Semantics of the π-Calculus (cont'd)

$$
\begin{aligned}
& \text { (res) } \frac{P \xrightarrow{\alpha} P^{\prime} z \notin \mathrm{n}(\alpha)}{(\nu z) P \xrightarrow{\alpha}(\nu z) P^{\prime}} \quad \text { (open) } \xrightarrow[{(\nu z) P \xrightarrow{\bar{x}(z)} P^{\prime}}]{P \neq z} \\
& \text { (rep-act) } \frac{P \xrightarrow{\alpha} P^{\prime}}{!P \xrightarrow{\alpha} P^{\prime} \|!P} \quad \text { (rep-comm) } \xrightarrow{P \xrightarrow{\bar{x} y} P^{\prime} \quad P \xrightarrow{x y} P^{\prime \prime}} \underset{!P \xrightarrow{\tau}\left(P^{\prime} \| P^{\prime \prime}\right) \|!P}{P} \\
& \text { (rep-close) } \frac{P \xrightarrow{\bar{x}(z)} P^{\prime} \quad P \xrightarrow{x z} P^{\prime \prime} \quad z \notin \mathrm{fn}(P)}{!P \xrightarrow{\tau}(\nu z)\left(P^{\prime} \| P^{\prime \prime}\right) \|!P} \\
& \text { (alpha) } \frac{P \equiv{ }_{\alpha} P^{\prime} \quad P \stackrel{\alpha}{\rightarrow} Q \quad Q \equiv{ }_{\alpha} Q^{\prime}}{P^{\prime} \xrightarrow{\alpha} Q^{\prime}}
\end{aligned}
$$

Properties of LTS

Theorem 6.1: The LTS $\left(\mathcal{P}^{\pi}, \mathcal{A}^{\pi}, \rightarrow\right)$ is image-finite
The following result is known as the Harmony Lemma:
Theorem 6.2: (1) $P \equiv \stackrel{\alpha}{\rightarrow} P^{\prime}$ implies $P \xrightarrow{\alpha} \equiv P^{\prime}$. (2) $P \longrightarrow P^{\prime}$ if, and only if, $P \xrightarrow{\tau} \equiv$ P^{\prime}.

Proof Structure: For (1), we show that $Q \equiv R$ and $Q \xrightarrow{\alpha} Q^{\prime}$ implies there is an R^{\prime} with $R \xrightarrow{\alpha} R^{\prime}$ and $Q^{\prime} \equiv R^{\prime}$.
For (2) and $(\Rightarrow), P \longrightarrow P^{\prime}$ implies a standard form. For (2) and (\Leftarrow), argue by the inference rules for $P \xrightarrow{\tau} P^{\prime}$ that $P \longrightarrow P^{\prime}$.

Observations in the π-Calculus

Definition 6.3: For each name or co-name μ, define the observability predicate \downarrow_{μ} by

1. $P \downarrow_{x}$ if $P \xrightarrow{x y}$ for some $y \in \mathcal{N}$;
2. $P \downarrow_{\bar{x}}$ if $P \xrightarrow{\bar{x} y}$ or $P \xrightarrow{\bar{x}(z)}$ for some $y, z \in \mathcal{N}$.

Definition 6.4: Strong barbed bisimilarity is the largest symmetric relation \sim^{\bullet}, such that $P \sim^{\bullet} Q$ implies

1. $P \downarrow_{\mu}$ implies $Q \downarrow_{\mu}$ and
2. $P \xrightarrow{\tau} P^{\prime}$ implies $Q \xrightarrow{\tau} \sim^{\bullet} P^{\prime}$.

Strong barbed congruence is the largest relation $\sim^{c} \subseteq \sim^{\bullet}$, such that $P \sim^{c} Q$ implies $C[P] \sim^{\bullet} C[Q]$ for each context $C[\cdot]$.

Theorem 6.5: $P \sim^{c} Q$ if, and only if, for all substitutions σ and processes $R, P \sigma \| R \sim^{\bullet}$ $Q \sigma \| R$.

The Asynchronous π-Calculus

The asynchronous π-calculus \mathcal{P}_{a}^{π} is the following fragment of \mathcal{P}^{π} :

$$
\begin{aligned}
P & ::=\bar{x}\langle y\rangle . \mathbf{0}|M| P \| P^{\prime}|(\nu z) P|!P \\
M & ::=\mathbf{0}|x(z) . P| \tau . P \mid M+M^{\prime}
\end{aligned}
$$

Definition 6.6: Asynchronous barbed bisimilarity is the largest symmetric process relation \sim_{a}^{\bullet}, such that $P \sim_{a}^{\bullet} Q$ implies

1. $P \downarrow_{\bar{x}}$ implies $Q \Downarrow_{\bar{x}}$ and
2. $P \xrightarrow{\tau} P^{\prime}$ implies $Q \Rightarrow \sim_{a}^{\bullet} P^{\prime}$.

Asynchronous barbed congruence is the largest relation $\sim_{a}^{c} \subseteq \sim_{a}^{\bullet}$, such that $P \sim_{a}^{c} Q$ implies $C[P] \sim_{a}^{\bullet} C[Q]$ for each process context C.

