

COMPLEXITY THEORY

Lecture 19: Circuit Complexity

Markus Krötzsch Knowledge-Based Systems

TU Dresden, 6th Jan 2020

Computing with Circuits

Markus Krötzsch, 6th Jan 2020 Complexity Theory slide 2 of 23

Motivation

One might imagine that P \neq NP, but **SAT** is tractable in the following sense: for every ℓ there is a very short program that runs in time ℓ^2 and correctly treats all instances of size ℓ . – Karp and Lipton, 1982

Markus Krötzsch, 6th Jan 2020 Complexity Theory slide 3 of 23

Motivation

One might imagine that P \neq NP, but **Sat** is tractable in the following sense: for every ℓ there is a very short program that runs in time ℓ^2 and correctly treats all instances of size ℓ . – Karp and Lipton, 1982

Some questions:

- Even if it is hard to find a universal algorithm for solving all instances of a problem, couldn't it still be that there is a simple algorithm for every fixed problem size?
- What can complexity theory tell us about parallel computation?
- Are there any meaningful complexity classes below LogSpace? Do they contain relevant problems?

Markus Krötzsch, 6th Jan 2020 Complexity Theory slide 3 of 23

Motivation

One might imagine that P \neq NP, but **Sat** is tractable in the following sense: for every ℓ there is a very short program that runs in time ℓ^2 and correctly treats all instances of size ℓ . – Karp and Lipton, 1982

Some questions:

- Even if it is hard to find a universal algorithm for solving all instances of a problem, couldn't it still be that there is a simple algorithm for every fixed problem size?
- What can complexity theory tell us about parallel computation?
- Are there any meaningful complexity classes below LogSpace? Do they contain relevant problems?

→ circuit complexity provides some answers

Intuition: use circuits with logical gates to model computation

Markus Krötzsch, 6th Jan 2020 Complexity Theory slide 3 of 23

Boolean Circuits

Definition 19.1: A Boolean circuit is a finite, directed, acyclic graph where

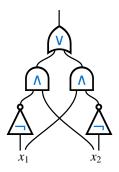
- each node that has no predecessor is an input node
- each node that is not an input node is one of the following types of logical gate:
 - AND with two input wires
 - OR with two input wires
 - NOT with one input wire
- one or more nodes are designated output nodes

The outputs of a Boolean circuit are computed in the obvious way from the inputs.

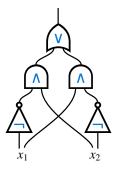
 \rightarrow circuits with k inputs and ℓ outputs represent functions $\{0,1\}^k \rightarrow \{0,1\}^\ell$

We often consider circuits with only one output.

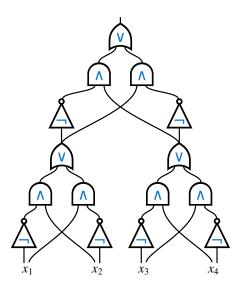
Markus Krötzsch, 6th Jan 2020 Complexity Theory slide 4 of 23



XOR function:



Markus Krötzsch, 6th Jan 2020 Complexity Theory slide 5 of 23

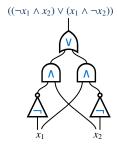


Parity function with four inputs: (true for odd number of 1s)

Alternative Ways of Viewing Circuits (1)

Propositional formulae

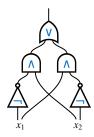
- propositional formulae are special circuits:
 each non-input node has only one outgoing wire
- each variable corresponds to one input node
- each logical operator corresponds to a gate
- · each sub-formula corresponds to a wire



Alternative Ways of Viewing Circuits (2)

Straight-line programs

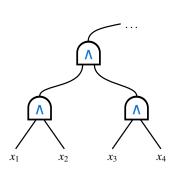
- are programs without loops and branching (if, goto, for, while, etc.)
- that only have Boolean variables
- and where each line can only be an assignment with a single Boolean operator
- \rightarrow *n*-line programs correspond to *n*-gate circuits



- **01** $z_1 := \neg x_1$
- **02** $z_2 := \neg x_2$
- **03** $z_3 := z_1 \wedge x_2$
- **04** $z_4 := z_2 \wedge x_1$
- 05 return $z_3 \lor z_4$

Example: Generalised AND

The function that tests if all inputs are 1 can be encoded by combining binary AND gates:



(n/4 gates)
...
(n/2 gates)

 x_n

- works similarly for OR gates
- number of gates: n-1
- we can use n-way AND and OR (keeping the real size in mind)

Markus Krötzsch, 6th Jan 2020 Complexity Theory slide 9 of 23

 x_5

Solving Problems with Circuits

Circuits are not universal: they have a fixed number of inputs! How can they solve arbitrary problems?

Markus Krötzsch, 6th Jan 2020 Complexity Theory slide 10 of 23

Solving Problems with Circuits

Circuits are not universal: they have a fixed number of inputs! How can they solve arbitrary problems?

Definition 19.2: A circuit family is an infinite list $C = C_1, C_2, C_3, \ldots$ where each C_i is a Boolean circuit with i inputs and one output. We say that C decides a language L (over $\{0,1\}$) if

 $w \in \mathbf{L}$ if and only if $C_n(w) = 1$ for n = |w|.

Example 19.3: The circuits we gave for generalised AND are a circuit family that decides the language $\{1^n \mid n \geq 1\}$.

Markus Krötzsch, 6th Jan 2020 Complexity Theory slide 10 of 23

Circuit Complexity

To measure difficulty of problems solved by circuits, we can count the number of gates needed:

Definition 19.4: The size of a circuit is its number of gates.

Let $f: \mathbb{N} \to \mathbb{R}^+$ be a function. A circuit family C is f-size bounded if each of its circuits C_n is of size at most f(n).

 $\operatorname{Size}(f(n))$ is the class of all languages that can be decided by an O(f(n))-size bounded circuit family.

Example 19.5: Our circuits for generalised AND show that $\{1^n \mid n \ge 1\} \in \text{Size}(n)$.

Markus Krötzsch, 6th Jan 2020 Complexity Theory slide 11 of 23

Many simple operations can be performed by circuits of polynomial size:

- Boolean functions such as parity (=sum modulo 2), sum modulo n, or majority
- Arithmetic operations such as addition, subtraction, multiplication, division (taking two fixed-arity binary numbers as inputs)
- Many matrix operations

See exercise for some more examples

Markus Krötzsch, 6th Jan 2020 Complexity Theory slide 12 of 23

Polynomial Circuits

Markus Krötzsch, 6th Jan 2020 Complexity Theory slide 13 of 23

Polynomial Circuits

A natural class of problems to consider are those that have polynomial circuit families:

Definition 19.6: $P_{\text{poly}} = \bigcup_{d \ge 1} \text{Size}(n^d)$.

Note: A language is in $P_{/poly}$ if it is solved by some polynomial-sized circuit family. There may not be a way to compute (or even finitely represent) this family.

How does P_{/poly} relate to other classes?

Markus Krötzsch, 6th Jan 2020 Complexity Theory slide 14 of 23

Quadratic Circuits for Deterministic Time

Theorem 19.7: For $f(n) \ge n$, we have $\mathsf{DTime}(f) \subseteq \mathsf{Size}(f^2)$.

Markus Krötzsch, 6th Jan 2020 Complexity Theory slide 15 of 23

Quadratic Circuits for Deterministic Time

Theorem 19.7: For $f(n) \ge n$, we have $\mathsf{DTime}(f) \subseteq \mathsf{Size}(f^2)$.

Proof sketch (see also Sipser, Theorem 9.30)

 We can represent the DTime computation as in the proof of Theorem 16.10: as a list of configurations encoded as words

$$* \sigma_1 \cdots \sigma_{i-1} \langle q, \sigma_i \rangle \sigma_{i+1} \cdots \sigma_m *$$

of symbols from the set $\Omega = \{*\} \cup \Gamma \cup (Q \times \Gamma)$.

- \rightarrow Tableau (i.e., grid) with $O(f^2)$ cells.
- We can describe each cell with a list of bits (wires in a circuit).
- We can compute one configuration from its predecessor by O(f) circuits (idea: compute the value of each cell from its three upper neighbours as in Theorem 16.10)
- Acceptance can be checked by assuming that the TM returns to a unique configuration position/state when accepting

Markus Krötzsch, 6th Jan 2020 Complexity Theory slide 15 of 23

П

From Polynomial Time to Polynomial Size

From $\mathsf{DTime}(f) \subseteq \mathsf{Size}(f^2)$ we get:

Corollary 19.8: $P \subseteq P_{poly}$.

Markus Krötzsch, 6th Jan 2020 Complexity Theory slide 16 of 23

From Polynomial Time to Polynomial Size

From $\mathsf{DTime}(f) \subseteq \mathsf{Size}(f^2)$ we get:

Corollary 19.8: $P \subseteq P_{poly}$.

This suggests another way of approaching the P vs. NP question:

If any language in NP is not in P_{poly} , then $P \neq NP$.

(but nobody has found any such language yet)

Markus Krötzsch, 6th Jan 2020 Complexity Theory slide 16 of 23

CIRCUIT-SAT

Input: A Boolean Circuit *C* with one output.

Problem: Is there any input for which *C* returns 1?

CIRCUIT-SAT

Input: A Boolean Circuit *C* with one output.

Problem: Is there any input for which *C* returns 1?

Theorem 19.9: CIRCUIT-SAT is NP-complete.

Markus Krötzsch, 6th Jan 2020 Complexity Theory slide 17 of 23

CIRCUIT-SAT

Input: A Boolean Circuit *C* with one output.

Problem: Is there any input for which *C* returns 1?

Theorem 19.9: CIRCUIT-SAT is NP-complete.

Proof: Inclusion in NP is easy (just guess the input).

For NP-hardness, we use that NP problems are those with a P-verifier:

- The DTM simulation of Theorem 19.7 can be used to implement a verifier (input: (w#c) in binary)
- We can hard-wire the *w*-inputs to use a fixed word instead (remaining inputs: *c*)
- The circuit is satisfiable iff there is a certificate for which the verifier accepts *w*

Note: It would also be easy to reduce **SAT** to **CIRCUIT-SAT**, but the above yields a proof from first principles.

A New Proof for Cook-Levin

Theorem 19.10: 3SAT is NP-complete.

Markus Krötzsch, 6th Jan 2020 Complexity Theory slide 18 of 23

A New Proof for Cook-Levin

Theorem 19.10: 3SAT is NP-complete.

Proof: Membership in NP is again easy (as before).

For NP-hardness, we express the circuit that was used to implement the verifier in Theorem 19.9 as propositional logic formula in 3-CNF:

- Create a propositional variable *X* for every wire in the circuit
- Add clauses to relate input wires to output wires, e.g., for AND gate with inputs X₁ and X₂ and output X₃, we encode (X₁ ∧ X₂) ↔ X₃ as:

$$(\neg X_1 \lor \neg X_2 \lor X_3) \land (X_1 \lor \neg X_3) \land (X_2 \lor \neg X_3)$$

- Fixed number of clauses per gate = constant factor size increase
- Add a clause (X) for the output wire X

Markus Krötzsch, 6th Jan 2020 Complexity Theory slide 18 of 23

The Power of Circuits

Markus Krötzsch, 6th Jan 2020 Complexity Theory slide 19 of 23

Is
$$P = P_{poly}$$
?

We showed $P \subseteq P_{poly}$. Does the converse also hold?

Markus Krötzsch, 6th Jan 2020 Complexity Theory slide 20 of 23

Is
$$P = P_{poly}$$
?

We showed $P \subseteq P_{poly}$. Does the converse also hold?

No!

Theorem 19.11: P_{/poly} contains undecidable problems.

Markus Krötzsch, 6th Jan 2020 Complexity Theory slide 20 of 23

Is
$$P = P_{poly}$$
?

We showed $P \subseteq P_{/poly}$. Does the converse also hold?

No!

Theorem 19.11: P_{/poly} contains undecidable problems.

Proof: We define the unary Halting problem as the (undecidable) language:

UHALT := $\{1^n \mid \text{the binary encoding of } n \text{ encodes a pair } \langle \mathcal{M}, w \rangle$ where \mathcal{M} is a TM that halts on word $w\}$

For a number $1^n \in \mathbf{UHalt}$, let C_n be the circuit that computes a generalised AND of all inputs. For all other numbers, let C_n be a circuit that always returns 0. The circuit family C_1, C_2, C_3, \ldots accepts \mathbf{UHalt} .

Markus Krötzsch, 6th Jan 2020 Complexity Theory slide 20 of 23

Uniform Circuit Families

 $P_{
m poly}$ is too powerful, since we do not require the circuits to be computable. We can add this requirement:

Definition 19.12: A circuit family C_1, C_2, C_3, \ldots is log-space-uniform if there is a log-space computable function that maps words 1^n to (an encoding of) C_n .

Note: We could also define similar notions of uniformity for other complexity classes.

Markus Krötzsch, 6th Jan 2020 Complexity Theory slide 21 of 23

Uniform Circuit Families

 $P_{/\rm poly}$ is too powerful, since we do not require the circuits to be computable. We can add this requirement:

Definition 19.12: A circuit family C_1, C_2, C_3, \ldots is log-space-uniform if there is a log-space computable function that maps words 1^n to (an encoding of) C_n .

Note: We could also define similar notions of uniformity for other complexity classes.

Theorem 19.13: The class of all languages that are accepted by a log-space-uniform circuit family of polynomial size is exactly P.

Proof sketch: A detailed analysis shows that our earlier reduction of polytime DTMs to circuits is log-space-uniform.

Conversely, a polynomial-time procedure can be obtained by first computing a suitable circuit (in log-space) and then evaluating it (in polynomial time).

Markus Krötzsch, 6th Jan 2020 Complexity Theory slide 21 of 23

Turing Machines That Take Advice

One can also describe P_{/poly} using TMs that take "advice":

Definition 19.14: Consider a function $a: \mathbb{N} \to \mathbb{N}$. A language \mathbf{L} is accepted by a Turing Machine \mathcal{M} with a bits of advice if there is a sequence of advice strings $\alpha_0, \alpha_1, \alpha_2, \ldots$ of length $|\alpha_i| = a(i)$ and \mathcal{M} accepts inputs of the form $(w\#\alpha_{|w|})$ if and only if $w \in \mathbf{L}$.

 $P_{
m poly}$ is equivalent to the class of problems that can be solved by a PTime TM that takes a polynomial amount of "advice" (where the advice can be a description of a suitable circuit).

(This is where the notation P_{poly} comes from.)

Markus Krötzsch, 6th Jan 2020 Complexity Theory slide 22 of 23

Summary and Outlook

Circuits provide an alternative model of computation

$$P \subseteq P_{\!/poly}$$

CIRCUIT-SAT is NP-complete.

P/poly is very powerful – uniform circuit families help to restrict it

What's next?

- Circuits for parallelism
- Complexity classes (strictly!) below P
- Randomness

Markus Krötzsch, 6th Jan 2020 Complexity Theory slide 23 of 23