Tuple-Generating Dependencies Capture Complex Values

Maximilian Marx, Markus Krötzsch

Knowledge-based systems group

TU Dresden

ICDT 2022

Full paper: https://iccl.inf.tu-dresden.de/web/DatalogCV/en

Datalog^{CV}: Datalog with Complex Values

Overview:

- Datalog^{CV} extends Datalog with sorts for tuples and sets
- these sorts can be nested: e.g., $\{\langle \{0,1\},1\rangle\}$
- \blacktriangleright sets support unions $S \cup T$ and intersections $S \cap T$
- like Datalog, entailment $\mathbb{P},\mathbb{D}\models\alpha$ can be decided via least model of \mathbb{P} and \mathbb{D}
- databases are flat, i.e., don't contain sets or tuples

Datalog^{CV}: Datalog with Complex Values

Overview:

- Datalog^{CV} extends Datalog with sorts for tuples and sets
- these sorts can be nested: e.g., $\{\langle \{0,1\},1\rangle\}$
- \blacktriangleright sets support unions $S \cup T$ and intersections $S \cap T$
- like Datalog, entailment $\mathbb{P}, \mathbb{D} \models \alpha$ can be decided via **least model** of \mathbb{P} and \mathbb{D}
- databases are flat, i.e., don't contain sets or tuples

Features:

- ▶ the usual set operations $x \in S, x \notin S, S \subseteq T, S \subset T$, and $\mathcal{P}(S)$ are definable
- inequality is axiomatisable for any sort

Datalog^{CV}: Datalog with Complex Values

Overview:

- Datalog^{CV} extends Datalog with sorts for tuples and sets
- these sorts can be nested: e.g., $\{\langle \{0,1\},1\rangle\}$
- \blacktriangleright sets support unions $S \cup T$ and intersections $S \cap T$
- $\blacktriangleright \text{ like Datalog, entailment } \mathbb{P}, \mathbb{D} \models \alpha \text{ can be decided via } \textbf{least model of } \mathbb{P} \text{ and } \mathbb{D}$
- databases are flat, i.e., don't contain sets or tuples

Features:

- ▶ the usual set operations $x \in S, x \notin S, S \subseteq T, S \subset T$, and $\mathcal{P}(S)$ are definable
- inequality is axiomatisable for any sort

Translation:

- ▶ Datalog^{CV} programs admit a translation into sets of tuple-generating dependencies
- translated programs are all-instances all-strategies terminating under the standard chase
- \blacktriangleright use nulls to reify sets and tuples, represent sets as unions of singleton sets

Marx, Krötzsch (TU Dresden)

TGDs Capture Complex Values

$\mathsf{Datalog}^{\mathrm{CV}}$ by Example

• Consider a database encoding a graph as edge(x, y):

$\mathsf{Datalog}^{\mathrm{CV}}$ by Example

• Consider a database encoding a graph as edge(x, y):

• Query for all paths from x to y:

$$\begin{split} \mathsf{edge}(x,y) &\to \mathsf{path}(x,y,\{\langle x,y\rangle\})\\ \mathsf{path}(x,y,P) \wedge \mathsf{edge}(y,z) &\to \mathsf{path}(x,z,P\cup\{\langle y,z\rangle\}) \end{split}$$

$\mathsf{Datalog}^{\mathrm{CV}}$ by Example

• Consider a database encoding a graph as edge(x, y):

• Query for all paths from x to y:

$$\mathsf{edge}(x,y) \to \mathsf{path}(x,y,\{\langle x,y\rangle\})$$
$$\mathsf{path}(x,y,P) \land \mathsf{edge}(y,z) \to \mathsf{path}(x,z,P \cup \{\langle y,z\rangle\})$$

Paths:

$$\begin{array}{ll} \mathsf{path}(a,c,\{\langle a,c\rangle\}) & \mathsf{path}(a,b,\{\langle a,b\rangle\}) & \mathsf{path}(a,d,\{\langle a,d\rangle\}) \\ \mathsf{path}(a,c,\{\langle a,b\rangle,\langle b,c\rangle\}) & \mathsf{path}(a,c,\{\langle a,d\rangle,\langle d,c\rangle\}) \end{array}$$

Marx, Krötzsch (TU Dresden)

TGDs Capture Complex Values

Complexity of Datalog^{CV}

Schema Heights:

set-height maximal nesting depth of set sorts tuple-height maximal nesting depth of tuple sorts

Theorem

Fact entailment for $Datalog^{CV}$ with set-height k is

- ▶ *k*ExpTIME-complete for data complexity,
- (k+2)ExpTIME-complete for combined complexity, and

Complexity of Datalog^{CV}

Schema Heights:

set-height maximal nesting depth of set sorts tuple-height maximal nesting depth of tuple sorts

Theorem

Fact entailment for $Datalog^{CV}$ with set-height k is

- ▶ *k*ExpTIME-complete for data complexity,
- (k+2)EXPTIME-complete for combined complexity, and
- (k+1)EXPTIME-complete for combined complexity if the tuple-height is bounded.

Complexity of Datalog^{CV}

Schema Heights:

set-height maximal nesting depth of set sorts tuple-height maximal nesting depth of tuple sorts

Theorem

Fact entailment for $Datalog^{CV}$ with set-height k is

- ▶ *k*ExpTIME-complete for data complexity,
- (k+2)ExpTIME-complete for combined complexity, and
- (k+1)EXPTIME-complete for combined complexity if the tuple-height is bounded.
- Lower bound by extending linear orders to powersets
- Upper bound from translation into TGDs

- \blacktriangleright Is there a non-trivial fragment with PTIME data complexity?
- ▶ Observation: if all sets are bounded, we can replace sets by tuples
- \blacktriangleright \rightsquigarrow bounded cardinality $\mathsf{Datalog}^\mathsf{CV}$ is essentially high-arity $\mathsf{Datalog}$

- ▶ Is there a non-trivial fragment with PTIME data complexity?
- Observation: if all sets are bounded, we can replace sets by tuples
- ▶ ~→ bounded cardinality Datalog^{CV} is essentially high-arity Datalog

Definition

- ▶ ground fact α has k-bounded cardinality if all set terms occurring in α are of the form $\{t_1, \ldots, t_n\}$ with $n \le k$
- ▶ program \mathbb{P} has k-bounded cardinality if, for all databases \mathbb{D} , all ground facts α with $\mathbb{P}, \mathbb{D} \models \alpha$ have k-bounded cardinality
- \blacktriangleright $\mathbb P$ has bounded cardinality if it has k-bounded cardinality for some k

- \blacktriangleright Is there a non-trivial fragment with PTIME data complexity?
- Observation: if all sets are bounded, we can replace sets by tuples
- ▶ ~→ bounded cardinality Datalog^{CV} is essentially high-arity Datalog

Definition

- ▶ ground fact α has k-bounded cardinality if all set terms occurring in α are of the form $\{t_1, \ldots, t_n\}$ with $n \le k$
- ▶ program \mathbb{P} has k-bounded cardinality if, for all databases \mathbb{D} , all ground facts α with $\mathbb{P}, \mathbb{D} \models \alpha$ have k-bounded cardinality
- \blacktriangleright $\mathbb P$ has bounded cardinality if it has k-bounded cardinality for some k

Example:

 $\mathsf{e}(x) \to \mathsf{s}(\{x\})$ has 2-bounded cardinality. $\mathsf{s}(X) \land \mathsf{s}(Y) \to \mathsf{p}(X \cup Y)$

- \blacktriangleright Is there a non-trivial fragment with PTIME data complexity?
- Observation: if all sets are bounded, we can replace sets by tuples
- ▶ ~→ bounded cardinality Datalog^{CV} is essentially high-arity Datalog

Definition

- ▶ ground fact α has k-bounded cardinality if all set terms occurring in α are of the form $\{t_1, \ldots, t_n\}$ with $n \le k$
- ▶ program \mathbb{P} has k-bounded cardinality if, for all databases \mathbb{D} , all ground facts α with $\mathbb{P}, \mathbb{D} \models \alpha$ have k-bounded cardinality
- \blacktriangleright $\mathbb P$ has bounded cardinality if it has k-bounded cardinality for some k

 $e(x) \rightarrow s(\{x\})$

 $\mathsf{s}(X) \land \mathsf{s}(Y) \to \mathsf{s}(X \cup Y)$

Example:

does not have bounded cardinality.

Bounded Cardinality: Bad News & Good News

Bad News:

Theorem

It is undecidable whether a Datalog^{CV} program has bounded cardinality.

Bounded Cardinality: Bad News & Good News

Bad News:

Theorem

It is undecidable whether a Datalog^{CV} program has bounded cardinality.

Good News:

Theorem

For fixed k, deciding if a Datalog^{CV} program \mathbb{P} has k-bounded cardinality is 2 ExpTIME-complete (ExpTIME-complete if set-height and tuple-height are bounded).

Theorem

Bounded-cardinality Datalog^{CV} is PTIME-complete for data complexity and 2ExPTIME-complete for combined complexity.

- 'large' sets are constructed recursively as unions of smaller sets
- idea: track propagation of sets along positions of a program
- ▶ if there are no cycles involving unions, sets must be bounded
- ▶ like Weak Acyclicity, this can be checked using a propagation graph

- 'large' sets are constructed recursively as unions of smaller sets
- idea: track propagation of sets along positions of a program
- ▶ if there are no cycles involving unions, sets must be bounded
- ▶ like Weak Acyclicity, this can be checked using a propagation graph

Example

$$\mathsf{s}(x) \to \mathsf{s}(\{x\})$$
 $\mathsf{s}(X) \land \mathsf{s}(Y) \to \mathsf{p}(X \cup Y)$

has WSA graph

$$s \cdot \epsilon \implies p \cdot \epsilon$$

 $e \cdot \epsilon \rightarrow s \cdot 1 \rightarrow p \cdot 1$

e

no cycle along 'special' edges \rightsquigarrow WSA

- 'large' sets are constructed recursively as unions of smaller sets
- idea: track propagation of sets along positions of a program
- ▶ if there are no cycles involving unions, sets must be bounded
- ▶ like Weak Acyclicity, this can be checked using a propagation graph

Example

$$\mathsf{e}(x) \to \mathsf{s}(\{x\})$$
 $\mathsf{s}(X) \land \mathsf{s}(Y) \to \mathsf{s}(X \cup Y)$

has WSA graph

$$s \cdot \epsilon \stackrel{s \cdot \epsilon}{\rightarrow} s \cdot 1 \stackrel{\frown}{\supset}$$

 $\begin{array}{l} \text{cycle along 'special' edge } s \cdot \epsilon \Rightarrow s \cdot \epsilon \\ \rightsquigarrow \text{ not WSA} \end{array}$

- 'large' sets are constructed recursively as unions of smaller sets
- idea: track propagation of sets along positions of a program
- ▶ if there are no cycles involving unions, sets must be bounded
- like Weak Acyclicity, this can be checked using a propagation graph

Example

$$\mathsf{e}(x) \to \mathsf{s}(\{x\}) \qquad \mathsf{s}(X) \land \mathsf{s}(Y) \land \mathsf{p}(P) \to \mathsf{s}(P \cap (X \cup Y)) \qquad \mathsf{s}(X) \land \mathsf{s}(Y) \to \mathsf{p}(X \cup Y)$$

has WSA graph

cycle along 'special' edge $s \cdot \epsilon \Rightarrow s \cdot \epsilon$ \rightsquigarrow not WSA (but 2-bounded cardinality)

Cardinality Constraints

- For every rule, bound the maximal cardinality of sets derived (w.r.t. sets in the match) → system of inequalities
- If the sum of the bounds w.r.t. the inequalities has a minimum, the program has bounded cardinality

Cardinality Constraints

- ► For every rule, bound the maximal cardinality of sets derived (w.r.t. sets in the match) ~→ system of inequalities
- If the sum of the bounds w.r.t. the inequalities has a minimum, the program has bounded cardinality

Example

$$\mathsf{e}(x) \to \mathsf{s}(\{x\}) \qquad \mathsf{s}(X) \land \mathsf{s}(Y) \land \mathsf{p}(S) \to \mathsf{s}(S \cap (X \cup Y)) \qquad \mathsf{s}(X) \land \mathsf{s}(Y) \to \mathsf{p}(X \cup Y)$$

has cardinality constraints

$$x_{s \cdot \epsilon} \ge 0$$
 $x_{p \cdot \epsilon} \ge 0$ $x_{s \cdot \epsilon} \ge 1$ $x_{p \cdot \epsilon} \ge 2$ $x_{s \cdot \epsilon} \ge \min(x_{p \cdot \epsilon}, x_{s \cdot \epsilon} + x_{s \cdot \epsilon})$

with optimal solution $x_{s \cdot \epsilon} = 2 = x_{p \cdot e}$ and optimal value $k = 4 \rightsquigarrow$ bounded cardinality

Conclusions & Outlook

Conclusions:

- Datalog^{CV} is a highly expressive query language
- ▶ TGD translation offers a path to reasoning with existing software
- Bounded cardinality Datalog^{CV} is a tractable fragment
- Weak Set-Acyclicity and Cardinality Constraints are sufficient conditions for bounded cardinality

Outlook:

- Can Datalog^{CV} express all decidable monotonic queries?
- Are there other tractable fragments?
- What happens if we add stratified negation?

Axiomatising Set Features

Powerset:

 $\begin{array}{l} \rightarrow \mathsf{PSU}_{\tau}(x, \emptyset, \emptyset) \\ \mathsf{PSU}_{\tau}(x, P, Q) \rightarrow \mathsf{PSU}_{\tau}(x, P \cup \{S\}, Q \cup \{S \cup \{x\}\}) \\ \rightarrow \mathsf{PS}_{\sigma}(\emptyset, \{\emptyset\}) \\ \mathsf{PS}_{\sigma}(S, P) \land \mathsf{PSU}_{\tau}(x, P, Q) \rightarrow \mathsf{PS}_{\sigma}(S \cup \{x\}, P \cup Q) \end{array}$

Subsets, Containment, Inequality:

Enumerating Powersets

 $\operatorname{first}_{\tau}(x) \wedge \operatorname{last}_{\tau}(z) \to \operatorname{first}_{\sigma}(\boldsymbol{\emptyset}_{\sigma}) \wedge$ mkStep_{σ}(\emptyset_{σ}, x, x) \wedge $last_{\sigma}(\{z\})$ $\mathsf{mkStep}_{\sigma}(S, t, t) \to \mathsf{next}_{\sigma}(S, S \cup \{t\})$ $\mathsf{mkStep}_{\tau}(S, t, x) \land \mathsf{last}_{\tau}(x) \to \mathsf{step}_{\tau}(S, t, x, S \cup \{x\})$ $\mathsf{mkStep}_{\sigma}(S, t, x) \land \mathsf{next}_{\tau}(x, y) \to \mathsf{mkStep}_{\sigma}(S \cup \{x\}, y, y) \land$ $mkStep_{-}(S, t, y)$ $\mathsf{mkStep}_{\sigma}(S, t, x) \land \mathsf{next}_{\tau}(x, y) \land$ $\operatorname{step}_{\sigma}(S \cup \{x\}, y, y, X) \land \operatorname{step}_{\sigma}(S, t, y, Z) \to \operatorname{next}_{\sigma}(X, S \cup \{y\}) \land$ $step_{\sigma}(S, t, x, Z)$

Translating to TGDs

Tuple sorts:

$$\bigwedge_{i=1}^{\ell} \operatorname{sort}_{\tau_i}(x_i) \to \exists z. \operatorname{tuple}_{\pi}(z, x_1, \dots, x_{\ell}) \wedge \operatorname{sort}_{\pi}(z)$$

Set sorts:

$$\begin{split} & \to \exists V.\mathsf{empty}_{\sigma}(V) \wedge \mathsf{sort}_{\sigma}(V) \wedge \mathsf{done}_{\sigma}(V) \\ & \mathsf{done}_{\sigma}(V) \wedge \mathsf{sort}_{\tau}(x) \to \exists W.\mathsf{SU}_{\sigma}(x,V,W) \wedge \mathsf{sort}_{\sigma}(W) \\ & \wedge \mathsf{todo}_{\sigma}(W,W) \\ & \mathsf{todo}_{\sigma}(V,W) \wedge \mathsf{SU}_{\sigma}(x,U,V) \to \mathsf{SU}_{\sigma}(x,W,W) \wedge \mathsf{todo}_{\sigma}(U,W) \\ & \mathsf{todo}_{\sigma}(V,W) \wedge \mathsf{empty}_{\sigma}(V) \to \mathsf{done}_{\sigma}(W) \end{split}$$

Translating to TGDs II

Subsets, Unions, Not-in:

 $\operatorname{sort}_{\sigma}(V) \wedge \operatorname{sort}_{\sigma}(W) \to \operatorname{ckSub}_{\sigma}(V, V, W)$ $\mathsf{ckSub}_{\sigma}(U, V, W) \land \mathsf{SU}_{\sigma}(x, U', U) \land \mathsf{SU}_{\sigma}(x, V, V) \to \mathsf{ckSub}_{\sigma}(U', V, W)$ $\mathsf{ckSub}_{\sigma}(U, V, W) \land \mathsf{empty}_{\sigma}(U) \to \mathsf{subset}_{\sigma}(V, W)$ $subset_{\sigma}(V, W) \land subset_{\sigma}(W, V) \rightarrow eq_{\sigma}(V, W)$ $empty_{\sigma}(V) \wedge sort_{\sigma}(W) \rightarrow U_{\sigma}(V, W, W)$ $\mathsf{SU}_{\sigma}(x, W, W') \wedge \mathsf{U}_{\sigma}(V, W', U) \wedge \mathsf{SU}_{\sigma}(x, V, V') \rightarrow \mathsf{U}_{\sigma}(V', W, U)$ $\operatorname{sort}_{\tau}(V) \wedge \operatorname{sort}_{\tau}(x) \to \operatorname{ckNIn}_{\sigma}(V, x, V)$ $\mathsf{ckNIn}_{\sigma}(U, x, V) \land \mathsf{SU}_{\sigma}(y, U', U) \land \mathsf{NEg}_{\sigma}(x, y) \to \mathsf{ckNIn}_{\sigma}(U', x, V)$ $\mathsf{ckNIn}_{\sigma}(U, x, V) \land \mathsf{empty}_{\sigma}(U) \to \mathsf{NIn}_{\sigma}(x, V)$

Translating to TGDs III

Tuples, Inequality, Intersections:

$$\begin{split} \mathsf{tuple}_{\pi}(z, x_1, \dots, x_{\ell}) \wedge \mathsf{tuple}_{\pi}(z', y_1, \dots, y_{\ell}) \wedge \mathsf{NEq}_{\tau_i}(x_i, y_i) \\ & \to \mathsf{NEq}_{\pi}(z, z') \\ \mathsf{SU}_{\sigma}(x, V, V) \wedge \mathsf{NIn}_{\sigma}(x, W) \to \mathsf{NEq}_{\sigma}(V, W) \wedge \mathsf{NEq}_{\sigma}(W, V) \\ & \mathsf{empty}_{\sigma}(V) \wedge \mathsf{sort}_{\sigma}(W) \to \mathsf{I}_{\sigma}(V, W, V) \\ \mathsf{I}_{\sigma}(U, V, W) \wedge \mathsf{SU}_{\sigma}(x, U, U') \wedge \mathsf{NIn}_{\sigma}(x, V) \to \mathsf{I}_{\sigma}(U', V, W) \\ & \mathsf{I}_{\sigma}(U, V, W) \wedge \mathsf{SU}_{\sigma}(x, U, U') \wedge \mathsf{SU}_{\sigma}(x, V, V') \\ & \wedge \mathsf{SU}_{\sigma}(x, W, W') \to \mathsf{I}_{\sigma}(U', V', W') \end{split}$$

Linear $\mathsf{Datalog}^{\mathrm{CV}}$ is still intractable

Linear Datalog CV :

- \blacktriangleright rules $\varphi \rightarrow \psi$ where both φ and ψ are single-atom
- we need to allow non-flat databases

Theorem

Linear Datalog^{CV} with set-height k > 0 is (k - 1)EXPTIME-hard (data complexity) and (k + 1)EXPTIME-hard (combined complexity; kEXPTIME-hard for bounded tuple-height).

Idea:

- \blacktriangleright encode each predicate p as a position of sets of $\operatorname{ar}(p)$ -tuples in a single facts predicate
- \blacktriangleright a rule $\rho=\varphi\rightarrow\psi$ turns into

$$\begin{aligned} \mathsf{facts}(y_1 \cup \, \mathsf{ts}_{\varphi}(p_1), y_2 \cup \, \mathsf{ts}_{\varphi}(p_2), \dots) \to \\ \mathsf{facts}(y_1 \cup \, \mathsf{ts}_{\rho}(p_1), y_2 \cup \, \mathsf{ts}_{\rho}(p_2), \dots) \end{aligned}$$

with $\mathrm{ts}_\Phi(p)$ the set of terms t for which p(t) occurs in Φ