Foundations of Constraint Programming Tutorial 5 (on January th)

Lukas Schweizer

WS 2016/17

Exercise 5.1:

Consider the following CSP P:

$$
\langle x<y ; x \in[7 . .15], y \in[9 . .12]\rangle
$$

Show in detail how to apply Corollary 1 (slide 33 , lecture 4) to prove that P is consistent.

Exercise 5.2:

The following boolean constraints define a digital circuit:

$$
y_{1}=x_{1} \oplus x_{2}, y_{2}=x_{2} \oplus x_{3}, y_{3}=x_{3} \oplus x_{4}, y_{4}=x_{4}
$$

The following CSPs are instances of the given circuit, where
$\left\langle y_{1}=x_{1} \oplus x_{2}, y_{2}=x_{2} \oplus x_{3}, y_{3}=x_{3} \oplus x_{4}, y_{4}=x_{4} ; x_{1}=1, x_{2}=0, x_{3}=0, x_{4}=1\right\rangle$
$\left\langle y_{1}=x_{1} \oplus x_{2}, y_{2}=x_{2} \oplus x_{3}, y_{3}=x_{3} \oplus x_{4}, y_{4}=x_{4} ; x_{2}=1, y_{1}=1, y_{3}=1, y_{4}=1\right\rangle$
a) Draw the digital circuit, where inputs are x_{1}, x_{2}, x_{3} and x_{4} and outputs are y_{1}, y_{2}, y_{3} and y_{4}.
b) Show how to compute a successful derivation for the given instances yielding the values for all eight variables; at each step underline the selected constraint and give the used rule.

Hint: Use the $X O R$ rules on slide 11 (lecture 5) or define alternative rules.

