Knowledge Representation and Reasoning Uncertainty - Problems

Problem 1. From the probability axioms we can deduce several further rules for computing probabilities. Consider the following ones:

- (R1) $P(\neg A)=1-P(A)$.
- (R2) $P(A)=0$, if A is a contradiction.

Deduce these rules from the probability axioms.

Problem 2. Suppose that $W=\left\{w_{1}, w_{2}, w_{3}\right\}$. Define m as follows:

- $m\left(w_{1}\right)=1 / 4$
- $m\left(\left\{w_{1}, w_{2}\right\}\right)=1 / 4$
- $m\left(\left\{w_{2}, w_{3}\right\}\right)=1 / 2$
- $m(U)=0$ if U is not one of $\left\{w_{1}\right\},\left\{w_{1}, w_{2}\right\}$,or $\left\{w_{2}, w_{3}\right\}$

Provide all values for:
$\operatorname{Bel}_{m}\left(w_{1}\right), \operatorname{Bel}_{m}\left(w_{2}\right), \operatorname{Bel}_{m}\left(w_{3}\right), \operatorname{Bel}_{m}\left(\left\{w_{1}, w_{2}\right\}\right), \operatorname{Bel}_{m}\left(\left\{w_{2}, w_{3}\right\}\right), \operatorname{Bel}_{m}\left(\left\{w_{1}, w_{3}\right\}\right)$, $\operatorname{Bel}_{m}\left(\left\{w_{1}, w_{2}, w_{3}\right\}\right)$;

Plaus $_{m}\left(w_{1}\right)$, Plaus $_{m}\left(w_{2}\right)$, Plaus $_{m}\left(w_{3}\right)$, Plaus $_{m}\left(\left\{w_{1}, w_{2}\right\}\right)$, Plaus $_{m}\left(\left\{w_{2}, w_{3}\right\}\right)$, $\operatorname{Plaus}_{m}\left(\left\{w_{1}, w_{3}\right\}\right), \operatorname{Plaus}_{m}\left(\left\{w_{1}, w_{2}, w_{3}\right\}\right)$.

Problem 3. In a multi-sensor system, we need to combine evidences from multiple sensors. Assume that we have two sensors and three observable events with $W=\{A, B, C\}$. From the sensors, we get the following information that indicate the likelihood of observing each event:

$$
\begin{aligned}
& \text { Sensor } 1: m_{1}(A)=0.95, m_{1}(B)=0.05, m_{1}(C)=0 \\
& \text { Sensor } 2: m_{2}(A)=0.0, m_{2}(B)=0.1, m_{2}(C)=0.9
\end{aligned}
$$

- Compute: $m_{1} \oplus m_{2}(A), m_{1} \oplus m_{2}(B), m_{1} \oplus m_{2}(C)$
- Are the results satisfactory?

Problem 4. The sorites paradox can be seen as one of the most striking paradoxes for logical reasoning (Hájek and Novák: 2003). Consider this paradox in the following form:
(1) 10^{100} is a huge number.
(2) If n is a huge number, then $n-1$ is also huge.

From this, deduce:
(3) 0 is a huge number.

Do the following:

- Describe the problem here.
- State how fuzzy logic could help us, respecting the intuition that (2) seems not totally true, but almost true.

