
Exploiting Forwardness: Satisfiability
and Query-Entailment in Forward

Guarded Fragment

Bartosz Bednarczyk1,2(B)

1 Computational Logic Group, Technische Universität Dresden, Dresden, Germany
2 Institute of Computer Science, University of Wroc�law, Wroc�law, Poland

bartosz.bednarczyk@cs.uni.wroc.pl

Abstract. We study the complexity of two standard reasoning prob-
lems for Forward Guarded Logic (FGF), obtained as a restriction of the
Guarded Fragment in which variables appear in atoms only in the order
of their quantification. We show that FGF enjoys the higher-arity-forest-
model property, which results in ExpTime-completeness of its (finite and
unrestricted) knowledge-base satisfiability problem. Moreover, we show
that FGF is well-suited for knowledge representation. By employing a
generalisation of Lutz’s spoiler technique, we prove that the conjunctive
query entailment problem for FGF remains in ExpTime.

We find that our results are quite unusual as FGF is, up to our knowl-
edge, the first decidable fragment of First-Order Logic, extending stan-
dard description logics like ALC, that offers unboundedly many variables
and higher-arity relations while keeping its complexity surprisingly low.

1 Introduction

The guarded fragment of first-order logic (GF) is a prominent fragment of
first-order logic (FO) that finds application in ontology-based reasoning and
in database theory [4,6,24]. In particular, GF embeds standard modal logics
(like K) as well as description logics (DLs) e.g. ALC [8]. The guarded fragment
is obtained from FO by requiring that first-order quantification is appropriately
relativised by atoms. It was introduced by Andréka, Németi and van Benthem [1]
who proved that its satisfiability problem is decidable. A year later, Grädel [9]
proved that GF has the finite model property and is 2ExpTime-complete. In
this work we study the complexity of a certain fragment of GF .

1.1 Our Motivation and Related Work

Our motivation is two-fold. The first comes from applications of GF to databases
and description logics, where query entailment under ontologies plays a vital role.
In this scenario a relational database D and a set of constraints T (a.k.a. ontol-
ogy) are given as an input. The input database may not satisfy the given con-
straints and hence, we look at possible ways of expanding it in a way so that
c© Springer Nature Switzerland AG 2021
W. Faber et al. (Eds.): JELIA 2021, LNAI 12678, pp. 1–15, 2021.
https://doi.org/10.1007/978-3-030-75775-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75775-5_13&domain=pdf
http://orcid.org/0000-0002-8267-7554
https://doi.org/10.1007/978-3-030-75775-5_13

2 B. Bednarczyk

the axioms of T are finally fulfilled. We are interested in the question whether
a query q has a certain answer in the (expanded) database. It boils down to the
problem of checking if all models of (D, T) entail q . Such a question is obviously
undecidable in general [3] and the ongoing works concentrate on identifying rele-
vant fragments of FO for which the problem is decidable [4] and has manageable
complexity.

The second motivation is complexity-theoretic. Since the complexity of the
Guarded Fragment is relatively high, it is natural to ask whether there exists a
fragment of GF having reasonable complexity while still being expressive enough
to capture description logics like ALC. A few such restrictions have already
been proposed. Grädel [9] has shown that the complexity of GF can be lowered
to ExpTime either by bounding the number of variables, or the arity of rela-
tional symbols. This however, does not seem to be well-suited for applications
in database theory, as databases may have arbitrarily large schemas. We would
prefer a solution leading to lower complexity that does not restrict the num-
ber of variables or the arity of relations. Moreover, Grädel’s restriction does not
help to lower the complexity of the query entailment problem: his logic captures
the DL ALCI, known to have 2ExpTime-hard query entailment problem [18].
Another idea was recently suggested by Kieroński [15]. In [15] the author pro-
posed a family of one-dimensional guarded logics that restrict quantification
patterns in GF by leaving each maximal block of quantifiers in it with at most
one free variable. Their satisfiability problem is NExpTime-complete (so proba-
bly lower than 2ExpTime) but the complexity of the query entailment problem
is still 2ExpTime-hard. The culprit is again the ability to speak about inverses
of relations, giving us a way to capture ALCI.

1.2 Our Results

In this work we present a sublogic of GF that overcomes the problems mentioned
in the previous section, which is inspired by Fluted Logic [22,23]. We call our
logic the Forward Guarded Fragment (FGF) of First-Order Logic. FGF restricts
quantification patterns of GF in such a way that tuples of variables appearing in
atoms are infixes of the sequence of the already quantified-variables (in the order
of their quantification). This “forwardness” prohibits the logic from capturing
the inverse relations from ALCI but it still is expressive enough to capture ALC.
Moreover, the logic offers a non-trivial use of higher-arity relations, so it can be
employed to reason about real-life relational databases.

In the paper we exploit “forwardness” to show that FGF-knowledge-bases
enjoy the higher-arity-forest-model property, a tailored version of the forest-
model property from GF in which the higher-arity relations link elements from
different levels of a tree only in a contiguous ascending order. This property is
then employed to establish ExpTime-completeness for the knowledge-base sat-
isfiability problem, which also relies on the fact that there are only exponentially
many different relevant types of tuples of the domain elements. The culmination
point of the paper is the ExpTime-completeness proof of the CQ entailment

Exploiting Forwardness: Satisfiability and Query-Entailment in Forward GF 3

problem, achieved by a generalisation of Lutz’s spoiler technique from [19], care-
fully tailored towards higher-arity relations.

Our proof techniques are similar to those introduced in [9,19]. However, the
devil is in the details and higher-arity relations made the problem significantly
more difficult. Missing proofs were delegated to the technical report.

2 Preliminaries

In this paper, we employ the standard terminology from finite model theory [17].
Usually, we refer to structures with fraktur letters, and to their universes with
the corresponding Roman letters. When working with structures, we always
assume that they have non-empty domains. We employ countable signatures of
individual constants NI and predicates (of various positive arities) Σ. The arity
of R ∈ Σ is denoted with ar(R). We refer to domain elements with c,d, e, . . . and
usually employ �c,�d,�e, . . . to denote tuples of domain elements. We frequently
use variables x , y , . . . from a countably-infinite set NV and individual names
a, b, . . . from NI. We write ϕ(�x) to indicate that all free variables of ϕ are
in �x . A sentence is a formula without free variables. For a unary function f we
write f(�x) to denote the tuple resulting from applying f to each element of �x .
Given a structure A and a set B ⊆ A we define the restriction of A to B as the
structure A�B .

Let L be a fragment of FO with its standard syntax and semantics. Given ϕ
with free variables in �x we say that a tuple of domain elements �d from A satisfies
ϕ(�x) iff A |= ϕ[�x/�d] holds. An L-theory T is a finite set of L-formulae over Σ.
An L-database is a finite set of facts, i.e. expressions of the form R(�a), where �a
is a tuple of individual names. We denote the set of individual names appearing
in D with ind(D). An L-knowledge-base (a kb for short) is a pair K = (D, T)
composed of L-database D and L-theory T . We say that a structure A satisfies
a theory T (written: A |= T) if it satisfies all of its formulae. Similarly, A
satisfies a database D if it satisfies all its facts (with individual names treated as
constants). We say that A satisfies a kb K (written: A |= K) if it satisfies both
its components.

In the satisfiability (resp. knowledge base satisfiability) problem for a logic L
we ask whether an input formula (resp. knowledge-base) from L has a model.

2.1 Queries

Conjunctive queries (CQs) are conjunctions of positive atoms with variables
from NV. The set of variables appearing in q is denoted with Var(q) and the
number of atoms of q (i.e. the size of q) is denoted with |q |. The fact that R(�x)
appears in q is indicated with R(�x) ∈ q . Whenever some subset V ⊆ Var(q) is
given, with q�V we denote a sub-query of q where all the atoms containing any
variable outside V are removed.

Let π : Var(q) → A be a variable assignment. We write A |=π R(�x) if π(�x) ∈
RA. Similarly, we write A |=π q1 ∧ q2 iff A |=π q1 and A |=π q2, for some CQs

4 B. Bednarczyk

q1, q2. We say that π is a match for A and q if A |=π q holds and that A satisfies q
(denoted with: A |= q) whenever A |=π q for some match π. The definitions are
lifted to kbs: q is entailed by a kb K (written: K |= q) if all models A of K
satisfy q . When A |= K but A �|= q , we call A a countermodel for K and q . Note
that q is entailed by K iff there are no countermodels for K and q . In the CQ
entailment problem for a logic L we ask if an input L-kb K entails an input
CQ q .

Observe that a conjunctive query q can be seen as a structure Hq , with
the domain Var(q), having the interpretation of relations fixed as RHq =
{�x | R(�x) ∈ q }. We will call it a query hypergraph of q . Hence, any match π
for A and q can be seen as a homomorphism from Hq to A.

3 Forward Guarded Fragment

We introduce the Forward Guarded Fragment (denoted with FGF) of First-
Order Logic defined as the intersection of the Guarded Fragment [1] and the
Forward Fragment, sharing the spirit of the Fluted Fragment [23]. We define
their syntax first. We stress that the considered logics do not allow for constants
and equality.

3.1 Logics

Recall that the guarded fragment (GF) is obtained from FO by requiring that
first-order quantification is appropriately relativised by atoms. Formally GF is
the smallest set containing all atomic formulae, closed under boolean connectives
and whenever ϕ(�x , �y) is in GF and α(�x , �y) is an atom containing all free variables
of ϕ then both ∀�y (α(�x , �y) → ϕ(�x , �y)) and ∃�y (α(�x , �y)∧ϕ(�x , �y)) are in GF . The
atom α is called a guard.

Next we define the forward fragment (FF) of FO. It is inspired by the Fluted
Fragment FL [23] and the Ordered Fragment of FO [11]: the main difference is
that we allow the variable sequences appearing in formulae to be infixes of the
already quantified variables, not only suffixes (as in FL) or prefixes (as in the
ordered fragment). Turing our attention to the formal definition of FF , let us
fix a sequence �xω = x1, x2, . . . of variables from NV. For simplicity, we write �xi...j

to denote the (gap-free!) sequence xi, xi+1, . . . , xj . We start by defining the set
of FF [n] formulae over Σ for all natural n:

– an atom α(�x) belongs to FF [n] if �x = �xk...� for some infix [k, �] of [1, n]
– FF [n] is closed under boolean connectives ∧,∨,¬,→;
– If ϕ(�x1...n+1) is in FF [n+1] then both ∃xn+1 ϕ(�x1...n+1) and ∀xn+1 ϕ(�x1...n+1)

belong to FF [n].

We define FF as the set FF [0], which is composed exclusively of sentences. We
stress that FF was not studied in the literature before but it can be polynomially
reduced to the Fluted Fragment FL.

Exploiting Forwardness: Satisfiability and Query-Entailment in Forward GF 5

Finally, we define the forward guarded fragment (FGF) as GF ∩ FF , thus
combining both mentioned restrictions. To gain more intuitions on FGF , we
encourage the reader to consult the following correct FGF formula ϕok

1 as well
as three incorrect formulae ϕbad

1–3:

ϕok
1 = ∀x1 A(x1) → ∃x2

[
S(x1, x2) ∧ ¬U(x1, x2) ∧ ¬A(x2)∧

∀x3∀x4 (T(x1, x2, x3, x4) → P(x2, x3, x4) ∧ A(x4))
]

ϕbad
1 = ∀x1 R(x1, x1), ϕbad

2 = ∀x1∀x2 S(x1, x2) → R(x2, x1),

ϕbad
3 = ∀x1∀x2∀x3 R(x1, x2) ∧ R(x2, x3) → R(x1, x3)

Note that all of the aforementioned incorrect formulae are not in FGF due
to the fact that sequences of variables appearing in atoms are not infixes of
x1, . . . , xk, with k being the number of the last quantified variable. One can
also observe that there is another reason for the third formula to be incorrect:
the quantifiers in ϕbad

3 are not guarded, i.e. the atom α(x1, x2, x3) after the last
quantifier is missing. The atom S(x1, x2) in ϕbad

2 is an example of a correct guard.
The formula ϕbad

1 demonstrates why the equality predicate is disallowed in FGF .

3.2 Simplified Forms and Forward Types

While working with FGF formulae it is convenient to convert them into an
appropriate normal form. The proof goes via a routine renaming.

Lemma 1. For any FGF-kb K = (D, T) we can compute (in polynomial time)
an equi-satisfiable kb Ksimpl = (D+, {ϕ∀, ϕ∀∃}) (over an extended signature) with

ϕ∀ =
m∀∧

i=0

∀�x1...ki
R∀i

(�x1...ki
) → ψ∀i

(�x1...ki
)

ϕ∀∃ =
m∀∃∧

i=0

∀�x1...ki
R∀∃i

(�x1...ki
) → ∃�xki+1...ki+�i

S∀∃i
(�x1...ki+�i

)∧ψ∀∃i
(�x1...ki+�i

),

where (possibly decorated) R,S and ψ denote, respectively, predicates and
quantifier-free FGF formulae. We refer to such a Ksimpl as a simplified K.

We next introduce a notion of a forward type useful to reason about FGF-
definable properties. Fix finite signature Σ and positive n. A (Σ,n)-forward type
is an FO formula with n free-variables �x1...n s.t. for all symbols R ∈ Σ of arity �
not bigger than n and for all 1 ≤ i ≤ n+1−� a type contains as a conjunct either
R(�xi...i+�−1) or its negation. We write tpΣ

A (�d) to denote the unique forward type
satisfying A |= tpΣ

A (�d). We also say that �d realises the forward type tpΣ
A (�x).

By elementary counting we can see that the number of (Σ,n)-forward types is
exponential in |Σ|+n while their sizes are only polynomial.

Lemma 2. Up to isomorphism, there are at most 2|Σ|·n2
(Σ,n)-forward types.

Moreover, each (Σ,n)-forward type has at most |Σ| · n conjuncts.

Finally, by unfolding definitions, one can show that whenever two tuples have
equal forward types then they satisfy the same formulae from simplified kbs.

6 B. Bednarczyk

3.3 Higher-Arity-Forest-(Counter)Model Property

Here we introduce the notion of higher-arity forests, which are forest reflecting
the essence of forwardness. We say that a structure F is a higher-arity for-
est (HAF) if its domain is a prefix-closed subset of sequences from N

+ and for
all relational symbols R of arity k we have that �d ∈ RF implies:

– either all the elements from �d are natural numbers (= one-element sequences)
– or �d = (c1, . . . , c�, e1, e2, . . . e�′), where each member of�c is a number and there

exist numbers n1, n2, . . . , n�′ such that ei = c� · n1 · . . . · ni for all �′ ≥ i ≥ 0
– or �d = (d1, . . . ,dk), with d1 �∈ N, such that for each index i there exist a

number ni such that di+1 = di · ni.

The elements from F ∩ N are simply the roots of F. A forest with a single root
is called a tree. We also use the prefix ordering ≺pref to speak about children,
parents, siblings in the usual (graph-theoretic) way. Observe that, intuitively,
higher-arity forests are just forests in which relations either arbitrarily traverse
roots or connect other elements but only in a level-by-level ascending order.

00 T

000 001

0000 0010

R R

S S

0F

S

01

010

0100 0101

R

S R

R

2 F

20

200

2000 2001

S

R R

1

F

S

R

R

R

R

S

Fig. 1. An example higher-arity forest. The coloured areas in the picture indicates
higher-arity relations, e.g. the red area means T(1, 0, 00, 000). (Color figure online)

A model A of a kb K = (D, T) is a HAF model iff A is a HAF with the set of
roots being equal to the set of interpretations of individuals from ind(D) in A.

We show FGF enjoys the HAF-model property, useful to design an ExpTime
decision procedure for deciding FGF . In the proof we take any model A of K
and construct an infinite sequence of forest of growing sizes. The first of them is
simply A restricted to the interpretation of database constants. The others are
obtained as follows: whenever some forest F contains a tuple �d of elements does
not have a witness to satisfy a conjunct of ϕ∀∃ we expand the domain of F with a
fresh copy of its original witnesses taken from A and connect it to �d, mimicking
the connections in A. The limit of this process will be a HAF-model of K.

Lemma 3. Any satisfiable simplified FGF kb K has a HAF model. Moreover, if
there is a countermodel for K and a CQ q then there is also a HAF countermodel.

Exploiting Forwardness: Satisfiability and Query-Entailment in Forward GF 7

3.4 ExpTime-Completeness of the kb Satisfiability Problem

The notion of forward types and higher-arity forests will now be employed to
design an alternating PSpace procedure for deciding the satisfiability for FGF
knowledge bases. Since APSpace = ExpTime [5] we derive an ExpTime upper
bound for FGF . The matching lower bound is inherited from ALC [2]. The
forthcoming algorithm is a variant of Grädel’s algorithm for GF [9].

We sketch the main ideas. As a preliminary step, we first transform the input
K into Ksmpl = (D+, {ϕ∀, ϕ∀∃}). Then the rest of the procedure is responsible
for constructing a higher-arity forest-model F of Ksmpl. We start from guessing
the “roots” R of F. Note that we cannot simply guess R: once Σ contains an
n-ary predicate, such a predicate might be composed of |R|n different tuples and
thus we cannot fully store it in polynomial space. Fortunately we do not need to
do it. It turns out that for the feasibility of our procedure it suffices to keep only
the forward types of tuples appearing in D+ (the number of which is bounded
polynomially, see: Lemma 2). Since the guessed structure is of polynomial size,
we can perform the standard FO model-checking algorithm [25] to ensure that
R satisfies both D+ and ϕ∀. It could be, however, that ϕ∀∃ is not satisfied (yet).
We then iterate over all conjuncts λ from ϕ∀∃, universally choosing a tuple �d
of elements for whose the antecedent of λ is satisfied but the consequent of λ is
not. For such a tuple we introduce fresh elements �e and guess the forward type
of �d ·�e. Next, we check that �d ·�e indeed satisfies λ and whether its type does not
violate ϕ∀ (we reject otherwise). Finally, we recursively repeat the procedure for
the substructure containing only �d·�e. The procedure accepts when the number of
steps exceeds the total number of (Σ,n)-forward-types – by pigeonhole principle
it follows that one of the (Σ,n)-forward-types necessarily occurs twice, so if the
procedure has not rejected the input yet it means that we can safely repeat the
process over and over, making exactly the same choices as it did before.

Our pseudo-code and its correctness proof are available in the full paper.
From it we conclude the first main theorem of the paper. Since GF has the finite
model property [9] (even in the presence of constants that can simulate DBs)
our algorithm for FGF can also be applied to the finite-model reasoning.

Theorem 4. Kb (finite) satisfiability problem for FGF is ExpTime-complete.

4 Query Answering

This section provides a worst-case complexity-optimal algorithm for deciding
query entailment over FGF knowledge-bases. The main technique employed here
is a generalisation of the so-called spoiler technique by Lutz [19, Sec. 3], carefully
tailored to work over structures having relations of arity greater than 2.

We first give a rather informal explanation of the technique. We recall that
to decide K |= q it suffices to check the existence of a HAF countermodel for K
and q (see: Lemma 3). In the ideal situation, we would know how to prepare a
knowledge-base K¬q that characterises the class of all HAF countermodels for
q . Note that the existence of K¬q would immediately imply that any model of

8 B. Bednarczyk

K ∪ K¬q is, by definition, also a countermodel for K and q . The problematic
part is, of course, the construction of K¬q . To decide satisfiability of K∪K¬q we
would like axioms of K¬q to be written in FGF , which seems to be challenging
since the matches of q may have arbitrary complex shapes. On the positive side,
there is a simple way of detecting matches of tree-shaped queries, based on the
well-known rolling-up technique [13, Sec. 4]: we basically describe tree-shaped
matches as unary predicates by defining their trees in a bottom-up manner and
then we enforce their emptiness in all models of K¬q . Here we exploit the fact
that countermodels can be made HAFs and combine the rolling-up technique
with so-called splittings, that detects query matches of arbitrary shape over
forests. In order to block such matches, we parallelise the construction of K¬q .
Rather than construing one huge kb we divide it into smaller chunks Ks called
spoilers with an intuitive meaning that the consistency of any of K ∪ Ks spoils
the entailment K |= q . Once we show that each spoiler is of polynomial size
and there are only exponentially many of them, we can reduce the entailment
question to exponentially many satisfiability checks for kbs of polynomial size
(hence in ExpTime by Theorem 4), deducing the ExpTime-completeness of CQ
entailment problem for FGF .

4.1 Rolling-Up: Detecting Matches of Tree-Shaped Queries

We consider a modification of the rolling-up technique that transforms tree-
shaped queries into FGF . In our scenario, the name “tree-shaped” indicates that
the underlying hypergraph Hq of a query q is a (connected) higher-arity tree.
Henceforth we always assume that whenever R(�x1...k) ∈ q then also Ri(�x1...i) ∈ q
for fresh relation names Ri. We call such CQs closed and by the closure of q ,
denoted with cl(q), we mean the query obtained from q by extending q in a
minimal way to make it closed. Note that the entailment problem of CQs and
closed CQs over FGF kbs coincides, since we can always extend the input kb
with fresh relations Ri and the rules ∀�x1...ar(R) R(�x1...ar(R)) ↔

∧ar(R)
i=1 Ri(�x1...i)

for all non-unary predicates R appearing in q . Abusing slightly the notation, we
call the kbs extended in the above way their q-closures.

In what follows we are going to construct, for every variable v ∈ Var(q), a
unary predicate Subtvq (x) with the indented meaning that d ∈ (Subtvq)A holds
whenever the subtree of Hq rooted at the variable v can be mapped below d
in A. In order to adjust the rolling-up technique to non-binary relations that may
appear in trees, we employ additional non-binary predicates Subt�v ,u

q (�x , y) that
do the same job as Subtuq (y) but in contrast they memorise the path �v leading
to u, so the higher-arity relations can be retrieved from the construction.

An inductive definition is given next. The main idea behind it is to traverse
the input tree in a bottom-up manner, describing its shape in FGF , and grad-
ually “rolling-up” the input tree into smaller chunks until its root is reached.

Definition 5. For a given closed tree-shaped CQ q and any sequence of vari-
ables �vu from Var(q) (that follows the level-by-level order in Hq) we define an

Exploiting Forwardness: Satisfiability and Query-Entailment in Forward GF 9

(|�v |+1)-ary predicate Subt�v ,u
q (�x1...|�v |+1) as follows. The empty conjunction is

treated as �.

1. We initially set Subt�v ,u
q (�x1...|�v |+1) to be equal:

∧

R(�vk...|�v|u)∈q

R(�xk...|�v |+1) ∧
∧

A(u)∈q

A(x|�v |+1)

2. Additionally, when u is not a leaf of Hq , we supplement the above formula
with some extra conjuncts for each children variable w ∈ Var(q) of u in Hq .
Take a longest suffix �vsuff of �v for which R(�vsuff, u,w) ∈ q (if there is no such
suffix then keep �vsuff empty) and append the formula:

∃x|�v |+2 Subt�vsuff,u,w
q (�x|�v |−|�vsuff|+1...|�v |+2)

We use Matchq(x) as a shorthand for Subtxr
q (x) with xr being the root of Hq .

We stress that due to the closedness of q and the fact that we keep the variables
appropriately ordered, the definition of Matchq(x) is in FGF .

From the presented construction we can easily see that the size (i.e. the
number of atoms) of Matchq is polynomial in |q |. The next lemma, claiming
correctness of the presented definition, can be shown by induction.

Lemma 6. For any higher-arity forest A and a closed tree-shaped conjunctive
query q we have (Matchq)A �= ∅ iff there exists a homomorphism h : Hq → A.

u A,B

uB

T

u A,C

U

vC v B

wA

wA,C

S
R

R

R

S

R

Subtuq (x1) := A(x1) B(x1) x2Subtuuq (x1,x2) x2Subtuuq (x1,x2)

Subtuuq (x1,x2) := R(x1,x2) S(x1,x2) B(x2)

Subtuuq (x1,x2) := R(x1,x2) T2(x1,x2) A(x2) C(x2)

x3 Subtuu v
q (x1,x2,x3) x3 Subtu v

q (x2,x3)

Subtuu v
q (x1,x2,x3) := T(x1,x2,x3) B(x3) R(x2,x3)

Subtu v
q (x1,x2) := U2(x1,x2) x3 Subtu vw

q (x1,x2,x3)

Subtu vw
q (x1,x2,x3) := U3(x1,x2,x3) S(x2,x3) x4 Subtu vww

q (x1,x2,x3,x4)

Subtu vww
q (x1,x2,x3,x4) := U(x1,x2,x3,x4) A(x4) B(x4) R(x3,x4)

Matchq(x1) := Subtuq (x1)

Fig. 2. An example CQ q together with the resulting rolling-up predicates. In the
picture we omitted additional relations appearing in q due to its closedness. Moreover,
in the definitions of predicates Subtq we omitted S1, R1, T1, U1.

10 B. Bednarczyk

The presented rolling-up technique shows us how to detect matches of tree-
shaped queries. Its direct consequence is the forthcoming theorem telling us
that such query matches can be effectively blocked and giving us a robust reduc-
tion from query entailment problem for tree-shaped queries to kb satisfiability
problem.

Theorem 7. Let K = (D, T) be a closed satisfiable kb and let q be a closed
tree-shaped CQ. Then K �|= q iff the kb K ∪ {∀x1¬Matchq(x1)} is satisfiable.

Unfortunately, the above theorem does not transfer beyond tree-shaped CQs
since our match-detecting mechanism is too weak. To detect matches of arbitrary
CQs, we introduce the notions of forks and splittings.

4.2 Fork Rewritings: Describing Different Collapsings of a Query

Observe that a connected conjunctive query can induce several different query
matches, depending on how its variables “glue” together. We formalise this con-
cept with the forthcoming notion of fork rewritings [19, p. 4]. Moreover, as it will
turn out soon, the only relevant trees for detecting query matches are exactly
those trees being subtrees of the maximal fork rewritings.

Definition 8. Let q , q ′ be conjunctive queries. We say that q ′ is obtained from
q by fork elimination, and denote this fact with q �fe q ′, if q ′ can be obtained
from q by selecting two atoms R(�z , �y1, x), S(�y2, x) of q (where �z might be empty,
R and S are not necessarily different and |�y1| = |�y2| holds) and componentwise
identifying the tuples �y1, �y2. We also say that q ′ is a fork rewriting of q if q ′ is
obtained from q by applying fork elimination on q possibly multiple times. When
the fork elimination process is applied exhaustively on q we say that the resulting
query, denoted with maxfr(q), is a maximal fork rewriting of q.

Example 9. Consider a CQ q = R(x , y)∧S(v , y)∧R(x , z)∧R(v , z)∧T(y , x , z)∧
T(y , v , z) with atoms α1–6. Note that q has three forks: (α1, α2), (α3, α4) and
(α5, α6). By eliminating any of them we obtain the maximal fork rewriting of q ,
namely maxfr(q) = R(xv , y) ∧ R(xv , z) ∧ S(xv , y) ∧ T(y , xv , z) with fresh xv .

Exploiting Forwardness: Satisfiability and Query-Entailment in Forward GF 11

By employing a special naming schemes for variables and by induction over the
number of fork eliminations we can show the following lemma:

Lemma 10. Every CQ q has the unique (up to renaming) maxfr(q).

A rather immediate application of Definition 8 is that entailment of a fork
rewriting of a query implies entailment of the input query itself. The proof goes
via an induction over the number of fork eliminations.

Lemma 11. Let q , q ′ be conjunctive queries, such that q ′ is obtained from q by
fork elimination, and let A be a structure. Then A |= q ′ implies A |= q.

4.3 Splittings: Describing Query Matches in an Abstract Way

The next notion, namely splittings [19, p. 4], are partitions of query variables
that provide an abstract way to reason on how (a fork rewriting of) a conjunctive
query matches a forest structure, without referring to either to a concrete forest
or to a concrete match. Intuitively, when a query q matches a forest, its match
induces a partition of variables x ∈ Var(q), according to the following scenarios:

– either x is mapped to one of the roots of the intended forest,
– or x , together with some other variables, constitute to a subtree dangling

from one of the forests’ roots,
– or otherwise x is mapped somewhere far inside the forest, not being directly

connected to the forests’ roots.

Splittings capture the above intuitions. Their definition is provided below.

Definition 12. A splitting Πq w.r.t. K = (T ,D) of q is a tuple

Πq = (Roots,name,SubTree1,SubTree2, . . . ,SubTreen, root-of ,Trees) ,

where the sets Roots,SubTree1, . . . ,SubTreen,Trees induce a partition of Var(q),
name : Roots → ind(D) is a function naming the roots and root-of :
{1, 2, . . . , n} → Roots assigns to each SubTreei an element from Roots. More-
over, Πq satisfies:

(a) the query q�Trees is a variable-disjoint union of tree-shaped queries,
(b) the queries q�SubTreei

are tree-shaped for all indices i ∈ {1, 2, . . . , n},
(c) for any atom R(�x) ∈ q the variables from �x either belong to the same set or

�x = (�y , u, v ,�z) [with possibly empty �y ,�z], where:
– all variables from �y , u belong to Roots,
– there is an index i ∈ {1, 2, . . . , n} witnessing root-of (i) = u,
– v ∈ SubTreei is the root of q�SubTreei

and variables from �z are
in SubTreei.

(d) For any index i ∈ {1, 2, . . . , n} there is an atom R(�y , root-of (i), xi) ∈ q
[where �y is possibly empty] with xi being the root of q�SubTreei

.

It helps to think that a splitting consists of named roots, corresponding to
the database part of the model, together with some of their subtrees and of some
auxiliary trees lying somewhere far from the roots.

12 B. Bednarczyk

Example 13. Consider a HAF A with roots a, b, c and a (non-tree-shaped) CQ:

q = (A(x0) ∧ R(x0, x1) ∧ R(x1, x0) ∧ B(x1)) ∧ (S(x0, x00) ∧ R(x00, x000)) ∧
(R(x0, x01) ∧ S(x01, x010) ∧ R(x010, x0100)) ∧ (A(x200) ∧ R(x200, x2001) ∧ B(x2001)) .

00

000 001

0000 0010

R R

S S

0a

S

01

010

0100 0101

R

S

R R

2 c

20

200

2000 2001

R

S

R R

1

b

S

R

R

R

R

S

Roots = x0,x1

SubTree1 = x00,x000

SubTree2 = x01,x010,x0100

Trees = x200,x2001

name(x0) = a,name(x1) = b

root-of(1) = x0, root-of(2) = x0

Fig. 3. Splitting Πq of q , compatible with A. Coloured areas partition variables.

We conclude the section by showing that splittings indeed correspond to query
matches over forests. In order to do it, we first introduce an auxiliary definition of
compatibility of a splitting with a HAF. Intuitively, the first item detects distant
trees with the rolling-up technique, the second one describes the connections
between roots and the last one detects subtrees dangling from some root.

Definition 14. Let K be a closed FGF knowledge-base, q be a closed CQ and
A a HAF model of K. A splitting Πq w.r.t K of q is compatible with A if it
satisfies all the conditions below:

(A) for all connected components q̂ of Trees there is a d ∈ A s.t. d ∈ (Matchq̂)A,
(B) for all R(�x)∈ q with all xi ∈ Roots we have

(
name(x1)A, . . . ,name

(x|�x |)A
)
∈RA,

(C) Take all indices i ∈ {1, 2, . . . , n} and let vi be the root variable of q�SubTreei
.

Take any �u composed only of Roots with the last element root-of (i), s.t.
R(�u, vi) ∈ q. Then the tuple

(
name(u1)A, . . . ,name(u|�u|)A

)
satisfies

∃x|�u|+1 Subt�u,vi

q�{�u,vi}∪SubTreei

(�x1...|�u|+1)

We stress that the difficulties in Item (C) comes from a possible presence of
higher-arity relations that link other roots before reaching root-of (i).

The lemma below gathers the notions presented so far.

Lemma 15. Let K be a closed FGF-kb, q a closed CQ and a HAF model A
of K. Then A |= q iff there is a fork rewriting q ′ of q and a splitting Πq′ w.r.t.
K of q ′ compatible with A.

Exploiting Forwardness: Satisfiability and Query-Entailment in Forward GF 13

4.4 Spoilers: Blocking Query Matches

Spoilers are knowledge bases dedicated to blocking compatibility of a given split-
ting. We define them similarly to Definition 14, in a way that there will be a
tight correspondence between the cases below and those from Definition 14.

Definition 16. Let q be a closed CQ, K be a closed FGF-kb and let Πq =
(Roots,name,SubTree1, . . . ,SubTreen, root-of ,Trees) be a splitting w.r.t K of
q. A spoiler K¬Πq

= (D¬Πq
, T¬Πq

) for Πq is an FGF-kb satisfying one of:

(A) ∀x ¬Matchq̂(x) ∈ T¬Πq
for some tree-shaped query q̂ from Trees,

(B) ¬R(name(x1), . . . ,name(xk))∈ D¬Πq
for some atom R(�x)∈ q with all xi

in Roots,
(C) there is an index i ∈ {1, 2, . . . , n}, a tuple of variables �u composed only of

Roots with the last element root-of (i), s.t. R(�u, vi) ∈ q, where vi is the root
variable of q�SubTreei

, but
(
¬∃x|�u|+1 Subt�u,vi

q��u∪{vi}∪SubTreei

(�x1...|�u|+1)
) (

name(u1), . . . , name(u|�u|)
) ∈ D¬Πq

.

The definition of spoilers is now lifted to the case for the whole closed CQs.

Definition 17. A super-spoiler for a closed CQ q and a closed FGF kb K is
a minimal (in the sense the of number of axioms) FGF kb K¬q s.t. for all fork
rewritings q ′ of q and all splittings Πq′ w.r.t K of q ′, K¬q is a spoiler for Πq′ .

The following crucial property of super-spoilers is shown next.

Lemma 18. Let K be a closed FGF kb and let q be a closed CQ. Then K �|= q
iff there is a super-spoiler K¬q for q and K such that K ∪ K¬q is satisfiable.

We now bound the total number and the sizes of super-spoilers. It is easy
to see that there are only exponentially many super-spoilers, since the facts
that appear in super-spoilers are also present in the input knowledge base. The
challenging part is to show that super-spoilers are of polynomial size in |K|+ |q |.
In order to do it, we observe that all trees that appear in spoilers are actually
subtrees of the maximal fork rewriting of q . Trivially, there are only polynomially
many subtrees of maxfr(q), so we are done. Finally, we will see that candidates
for super-spoilers can be enumerated in exponential time.

Lemma 19. Let K be closed FGF kb and q be a closed CQ. The following
properties hold true: (a) super-spoilers have sizes polynomial in |K|+|q |; (b) there
are only exponentially many (in |K|+|q |) candidates for super-spoilers; (c) super-
spoilers can be enumerated in time exponential in |K| + |q |.

From the presented lemma we can deduce an algorithm for solving CQ entail-
ment over FGF kbs. As a preliminary step we “close” both input CQ q and input
kb K. Second, we exhaustively enumerate all possible candidates K¬q for being
a super-spoiler for K and q . Note that the enumeration process can be done in
exponential time due to Lemma 19. After ensuring that K¬q is indeed a super-
spoiler, we test whether K ∪ K¬q is satisfiable. The satisfiability test can be

14 B. Bednarczyk

performed in ExpTime due to the polynomial size of K¬q and Theorem 4. If
some K ∪ K¬q is satisfiable, by Lemma 18, we conclude K �|= q . Otherwise we
have that K |= q . The overall process can be implemented in ExpTime, thus we
conclude the second main theorem of the paper.
Theorem 20. CQ entailment problem for FGF is ExpTime-complete.
Note that the lower bounds are inherited from kb satisfiability problem. For read-
ers interested in CQ entailment over finite models we can also infer ExpTime-
completness of the finitary version of the problem. A (non-trivial) argument is
that GF is finite controllable [7] (a CQ is entailed over all models iff it is entailed
over finite models), which obviously applies also to FGF . Hence, we obtain:
Corollary 21. CQ finite entailment problem for FGF is ExpTime-complete.
In the real-life applications, we usually measure the data complexity of both
satisfiability and entailment problems, i.e. the case when the size of the input
theory and query is treated as a constant and only |D| matters. The upper bound
follows from GF [7] and the lower bound holds already for ALC.
Corollary 22. (Finite) satisfiability and CQ (finite) entailment problems for
FGF are, respectively, NP-complete and coNP-complete in data-complexity.

5 Conclusions and Future Work

In the paper we introduced a novel logic FGF that combines ideas of guarded
quantification and forwardness. By exploiting the HAF-model property of the
logic we have shown that both kb satisfiability problems and CQ entailment
problems are ExpTime-complete, also in the finite.

Our results are quite encouraging and there is a lot of space for future
research. We conclude by discussing some interesting open problems.
– Understanding model theory of FGF . One can develop an appropriate notion

of bisimulation for FGF and show an analogous of Van Benthem & Rosen
characterisation theorem in the spirit of [10,20]. In the light of [12] it would be
interesting to investigate Craig Interpolation and Beth Definability for FGF .

– Understanding extensions of FGF with counting, constants or transitivity.
We conjuncture that the extensions of FGF with counting quantifiers à la [21]
or constants are decidable and can be shown with techniques from Sect. 3.4.
Another idea is to FGF with transitive guards, denoted with FGF+TG, that
captures the DL SH. Its two-variable fragment is known to be ExpSpace-
complete (without database though) [14]. We believe that the combination of
our techniques and those from [14,16] can be applied to infer an ExpSpace
upper bound for kb sat problem for the full logic. Finally, CQ entailment for
GF+TG is undecidable [7], but we hope that it is not the case for FGF+TG.

Acknowledgements. The author apologises for all mistakes and grammar issues that
appear in the paper. He thanks A. Karykowska and P. Witkowski for proofreading, E.
Kieroński for his help with the introduction, W. Faber for deadline extension and
anonymous JELIA’s reviewers for many useful comments.

This work was supported by the ERC Consolidator Grant No. 771779 (DeciGUT).

https://iccl.inf.tu-dresden.de/web/DeciGUT/en

Exploiting Forwardness: Satisfiability and Query-Entailment in Forward GF 15

References

1. Andréka, H., Németi, I., van Benthem, J.: Modal languages and bounded fragments
of predicate logic. J. Philos. Logic (1998)

2. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge University Press, Cambridge (2017)

3. Beeri, C., Vardi, M.Y.: The Implication Problem for Data Dependencies. In: ICALP
(1981)

4. Caĺı, A., Gottlob, G., Kifer, M.: Taming the infinite chase: query answering under
expressive relational constraints. J. Artif. Intell. Res. (2013)

5. Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. J. ACM (1981)
6. Figueira, D., Figueira, S., Baque, E.P.: Finite Controllability for Ontology-

Mediated Query Answering of CRPQ. KR (2020)
7. Gottlob, G., Pieris, A., Tendera, L.: Querying the Guarded Fragment with Tran-

sitivity. In: ICALP (2013)
8. Grädel, E.: Description Logics and Guarded Fragments of First Order Logic. DL

(1998)
9. Grädel, E.: On the restraining power of guards. J. Symb. Log. (1999)

10. Grädel, E., Otto, M.: The Freedoms of (Guarded) Bisimulation (2013)
11. Herzig, A.: A new decidable fragment of first order logic. In: Third Logical Biennial,

Summer School and Conference in Honour of S. C. Kleene (1990)
12. Hoogland, E., Marx, M., Otto, M.: Beth Definability for the Guarded Fragment.

LPAR (1999)
13. Horrocks, I., Tessaris, S.: Answering Conjunctive Queries over DL ABoxes: A Pre-

liminary Report. DL (2000)
14. Kieronski, E.: On the complexity of the two-variable guarded fragment with tran-

sitive guards. Inf. Comput. (2006)
15. Kieronski, E.: One-Dimensional Guarded Fragments. MFCS (2019)
16. Kieronski, E., Malinowski, A.: The triguarded fragment with transitivity. LPAR

(2020)
17. Libkin, L.: Elements of finite model theory. In: Libkin, L. (ed.) Texts in Theoret-

ical Computer Science. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-662-07003-1

18. Lutz, C.: Inverse Roles Make Conjunctive Queries Hard. DL (2007)
19. Lutz, C.: Two Upper Bounds for Conjunctive Query Answering in SHIQ. DL (2008)
20. Otto, M.: Elementary Proof of the van Benthem-Rosen Characterisation Theorem.

Technical Report (2004)
21. Pratt-Hartmann, I.: Complexity of the guarded two-variable fragment with count-

ing quantifiers. J. Log. Comput. (2007)
22. Pratt-Hartmann, I., Szwast, W., Tendera, L.: The fluted fragment revisited. J.

Symb. Log. (2019)
23. Quine, W.: The Ways of Paradox and Other Essays, Revised edn. Harvard Uni-

versity Press, Cambridge (1976)
24. Rosati, R.: On the decidability and finite controllability of query processing in

databases with incomplete information. PODS (2006)
25. Stockmeyer, L.: The Complexity of Decision Problems in Automata Theory and

Logic (1974)

https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/978-3-662-07003-1

	Exploiting Forwardness: Satisfiability and Query-Entailment in Forward Guarded Fragment
	1 Introduction
	1.1 Our Motivation and Related Work
	1.2 Our Results

	2 Preliminaries
	2.1 Queries

	3 Forward Guarded Fragment
	3.1 Logics
	3.2 Simplified Forms and Forward Types
	3.3 Higher-Arity-Forest-(Counter)Model Property
	3.4 ExpTime-Completeness of the kb Satisfiability Problem

	4 Query Answering
	4.1 Rolling-Up: Detecting Matches of Tree-Shaped Queries
	4.2 Fork Rewritings: Describing Different Collapsings of a Query
	4.3 Splittings: Describing Query Matches in an Abstract Way
	4.4 Spoilers: Blocking Query Matches

	5 Conclusions and Future Work
	References

