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Abstract

Formal argumentation (FA) is a branch of knowledge representation and reasoning in artificial in-
telligence, which offers ways of resolving potential conflicts within a knowledge base and inferring
which claims can be trusted. FA can be further divided between abstract- and structured argumen-
tation, with the first treating arguments as atomic entities and the latter allowing to further inves-
tigate their internal structure. Assumption-based argumentation (ABA) is one of the main gen-
eral structured argumentation frameworks, in which dispute derivations (DDs) are methods for
determining the acceptance of claims in dialectical manner. With DDs arguments and counter-
arguments are constructed interchangeably between, as can be conceived, two fictitious players –
the proponent and the opponent of a set of claims under scrutiny.

Among the many formalisations of DDs for ABA, which have been proposed throughout the
past decades, flexible dispute derivations (FlexDDs) are the latest. FlexDDs offer a number of solu-
tions unprecedented in the former versions, including reusing one player’s arguments by the other
player or support for complete and stable argumentation semantics to name a few. Most notably
however, alongside the regular, backward, top-down reasoning from claims to premises they also
allow for construction of forward, bottom-up arguments, from premises to claims. Moreover,
FlexDDs comes in two versions – a more high-level and abstract argument-based version as well
as a more concrete and implementation-focused rule-based version.

In this thesis we focus on automatized search of successful dispute derivations for flexible dis-
pute derivations. We devise procedures and examine the properties of strategies tailored for spe-
cific semantics, with the aim of isolating features impacting the efficiency, among other concerns.
Furthermore, we investigate the influence of forward reasoning on the performance of the search
procedures.

We have performed a thorough empirical evaluation, the results of which are presented and
interpreted, to back up our claims and hypotheses. Moreover, our implementation for FlexDDs
has been significantly extended, currently capable of following the defined search strategies in an
automatic search for successful DDs as well as having rich support for interactive reasoning, be-
sides many other notable features which we report on in this work.

Keywords. Formal Argumentation ⋅ Structured Argumentation ⋅Assumption-Based Argumen-
tation ⋅Dispute derivations.
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1 Introduction

1.1 Motivation

Formal Argumentation (FA) offers various reasoning mechanisms for representing and evaluat-
ing arguments, conflicts between them, as well as determining sets of arguments being coherent
together in some specific manner. Two main forms of argumentation have been established over
the last decades of thorough research in FA [1, 2, 16]: Abstract Argumentation (AA) [3, 6] and
Structured Argumentation (SA) [5]. While the first treats arguments as atomic entities, the latter
further investigates their internal structure. In SA, within rule-based argumentation [22], we can
in turn distinguish between ASPIC [22, 23] and Assumption-Based Argumentation (ABA) [10, 12,
28]. Regardless of the form of argumentation chosen, arguments are always defined in terms of
so called frameworks. In AA arguments are given directly by the framework’s underlying directed
graph structure, in which nodes represent arguments and edges attack relations between them. In
SA, frameworks are tuples of various entities used to construct the arguments and attacks between
them.

For ABA, frameworks are tuples (L,R,A,− )withL being the alphabet (with elements called
statements);R a set of rules of the form h← B,h ∈ L,B ⊆ Lwith h and B called the head and
the body of the rule respectively;A ⊆ L the set called assumptions and − ∶ A→ L a total mapping
of assumptions to alphabet elements, where for each assumption a ∈ A, ā is called the contrary
of a.

Example 1.1.1 (ABA framework). Consider an ABA framework F ′ = (L,R,A,− ), whereA =
{a, b, c, d, e, f, g, h, i}, −(u) = ū for u ∈ A andL = A ∪ {{h}∪B ∣ h← B ∈R}∪{ū ∣ u ∈ A}
where:

R = {p← a, b, q; q ← ē, r; q ← i; r ← c; r ← d; ē← c; f̄ ← ē; ī← g;

ā← e, v; ā← z; v ← h; v ← i; z ← f}.

Intuitively, each (complete) argument Arg in ABA, given a framework F = (L,R,A,− ) can
be seen as a rooted tree, where the root is labelled with the main claim of the argument and with
branches from a node labelled with h to each node labelled with b ∈ B given that there is a rule
h ← B ∈ R. Every leaf of an argument must either be labelled with an assumption a ∈ A or
with an element h if there is a rule h ← ∅ ∈ R, otherwise the argument is called incomplete.
Furthermore, an argument Arg attacks an argument Arg ′ if there is a node labeled with a in
Arg ′ where a ∈ A and a node labelled with ā in Arg . We also say that an argument Arg defends
argument Arg ′′ (possibly Arg = Arg ′′) from argument Arg ′ if it holds that Arg ′ attacks Arg ′′

and Arg attacks Arg ′.
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Figure 1.1: An incomplete argument Argp for claim p (left) and a complete one, Arg ā, for ā (right) from
the framework from Example 1.1.1. Letters labeling nodes are elements of the alphabet, with
those in boldface indicating assumptions. Black edges denote support with the upper tip labelled
with a head of a rule and bottom tip labelled with a statement from a body of a rule. Red pointy
arrows indicate attacks. Argp having no color filling symbolizes its incompleteness, in contrast
to Arg ā.

In Figure 1.1 two arguments Argp and Arg ā constructible from the framework from Exam-
ple 1.1.1 are presented. Note that whenever branching from a parent node labeled with h to its
children labeled with b1, . . . , bn occurs, there must exist a rule h← b1, . . . , bn ∈R. For example
for the direct children labeled witha, b and q of the root node labeled withp ofArgp there is a rule
p← a, b, q ∈R. Also, the argument for ā is complete as all its leaves are labeled with assumptions
(e and h), whereas the argument for p is incomplete as the leaves ē and r are not assumptions.
Moreover Argp attacks Arg ā as it has a node labelled with ē and one of the two leaves of Arg ā is
labeled with e. The opposite also holds, with Arg ā attacking the assumption a of Argp with the
claim of its root node. Simultaneously Argp and Arg ā defend themselves from one another.

One of the key tasks in Formal Argumentation is that of determining (credulously) acceptable
arguments and claims. In ABA this problem, given a claim p, asks whether there exists a set of
complete arguments S = {Arg1, . . . ,Argn} (called an extension) containing an argument for
that claim p, such that some criteria are met. Those criteria are defined by so called argumentation
semantics, with the admissible semantics being the most basic one. Admissibility imposes two
requirements: i) S must be conflict free, meaning that there are no two arguments in S such that
one attacks the other, and ii)S must defend itself, meaning that for each complete argumentArg ′

outside of S attacking some argument in S (and therefore attacking the entire set S), there must
be some argument in S attacking Arg ′.

The green arguments from Figure 1.2 satisfy the condition of an admissible extension for the
claim p, because i) they are conflict-free (there are no attack arrows between any green arguments)
and they counter-attack all their attackers (yellow arguments). Note that there are no more com-
plete arguments which could be constructed in order to attack the extension. This extension is a
proof that p can be accepted under admissible semantics.

There are a few approaches to deciding acceptance of claims in ABA [7, 8, 9, 11, 13, 14, 18, 19, 20,
21, 27]. One of them is based on so called dispute-derivations, which mimics a dispute between
two fictional players, called proponent and opponent of a claim. Although other, reduction-based
methods [19, 20, 21] have proved to be much more efficient than dispute derivations, the latter
are still worth of consideration on various grounds, the main one being that they provide justi-
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Figure 1.2: Complete arguments for claims p, ā and f̄ constructed from framework from Example 1.1.1.
Arguments with green fillings are those that the extension consists of, whereas the ones with
yellow are those attacking the extension. Red arrows indicate the attacks.

fications of the claims in questions in form of arguments and counter-arguments resembling an
actual dispute.

In this approach players perform moves in the pursuit of forming arguments. The proponent
has to construct an argument for the claim under scrutiny, meanwhile the opponent has to as-
semble arguments attacking assumptions of the proponent’s constructed argument. This is in
turn followed by the proponent counter-attacking opponent’s arguments by forming arguments
attacking their assumptions. This process continues until one player is unable to proceed. The
winner determines the outcome, meaning that if there exists a way for the proponent to win, then
the claim can be accepted, otherwise it cannot.

Over the last few years many variations of dispute derivations have been proposed [7, 8, 9, 11, 13,
14, 18, 27], among others with Graphical Dispute Derivation [7, 9] as one of the most prominent
examples. Each newly introduced variation has improved on their predecessor’s shortcomings,
and it was no different with the Flexible Dispute Derivations (FlexDDs) [11] variant defined most
recently. Among other refinements FlexDDs introduced, it has defined a more effective procedure
minimizing the number of redundant moves.

Before a quick introductory example is presented, let us first become acquainted with some
key features of FlexDDs. We call the assumptions present in the proponent’s arguments defences
and the assumptions which the proponent attacks culprits. For instance, assuming that the ar-
guments from Figure 1.2 are a final dispute state in FlexDDs, we would have the set of defences
consisting of a, b, c and the set of culprits consisting of e, f . As has been stated previously, at
each stage of the dispute derivation both players decide to either continue to backward expand
their existing incomplete arguments or to start creating new ones to attack the other player. The
proponent however is constrained by the requirement of not using more than one rule for each
statement1. This alone causes the entire procedure to be non-deterministic, as the proponent has
to check every possibility (branch) whenever several rules are applicable. This does not hold for

1FlexDDs adopt this behaviour from Graphical Dispute Derivations [7, 9], whose authors convincingly argue against
having more than one rule with the same head in the set of proponent’s arguments for both conceptual and com-
putational reasons.
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the opponent, who, on the contrary, has to attack the proponent using all possible means. There
is an exception to that rule, i.e. the opponent cannot use rules containing culprits in their bodies
(naturally neither can the proponent as their arguments have to remain conflict-free, as required
by the admissibility).

Now, how could one approach constructing arguments when trying to find a successful FlexDD
given a goal? Since the moves of the proponent assume branching, whereas those of the opponent
do not, and given that the opponent has to construct all possible counter-arguments anyways, al-
lowing the opponent to perform all their moves before the proponent starts to perform theirs
seems justifiable. Such a dispute derivation could then look as in the Figure 1.3, where the tree
represents the search of all successful FlexDDs justifying the claim p. Note that the tree branches
at every non-deterministic choice point (as e.g. when there is more than one rule of a certain head
for the proponent to use). If one would be interested in obtaining a single positive solution only,
the search would then terminate at the first successful leaf node. If all branches are unsuccessful,
the search returns a negative answer, meaning that a claim (claims) cannot be credulously accepted
under certain semantics. In our examples (Figs. 1.3 and 1.5) we will show full search of successful
DDs, with the purpose of presenting how different choices would impact the outcome and how
the search would be resumed after a potential failure (i.e. from the most recent branching-point).

Step 0. of the search tree depicted in Figure 1.3 symbolizes that at this stage only the goal p
is a part of the current dispute state. Since it is not an assumption it cannot be attacked by the
opponent yet. At the next step (1.) the proponent uses rule p ← a,b, q to backward expand it.
Because there are no other rules supporting p this choice is deterministic – the proponent has
no other rule to use. But as soon as Step 1. is performed and a and b are introduced as the new
defences the opponent can start constructing arguments against them. They do so in Steps 2-6.
where the following arguments attacking a are constructed: ā ← e, [v ← h]; ā ← e, [v ← i]
and ā← [z ← f]. At this point, the opponent cannot perform any other moves, so the turn goes
back to the proponent who chooses to complete its argument forpby trying to justify q. There are
however two rules applicable at this point, namely q ← ē, r and q ← i, hence the proponent has
to branch to consider them both. Note that at the sub-tree rooted at node 7, due to e becoming a
culprit, the opponent arguments ā ← e, [v ← h] and ā ← e, [v ← i] become counter-attacked.
After Step 7. the proponent has to again make a choice between rules r ← c and r ← d resulting in
node 8 (and 11). In Steps 9., 10. (and 12., 13.) the argument for p gets completed by expanding the
statement ē with rule ē ← c and a counter argument against the assumption f in the opponents
argument ā ← [z ← f] is constructed, respectively. Note that after Step 10. the proponent does
not have to backward expand ē as it has already been justified in the previous moves2.

Step 10. is a successful state as the proponent was able to construct a complete argument for p
and counter attack all the opponent’s arguments. The set of arguments formed by both players
are the same as in Figure 1.2. The state at Step 13. is also a successful one, with the only difference
that there, the statement r is justified by the assumption d. The search terminates at Step 15.
with its last branch being unsuccessful, as the opponent has managed to construct an argument
attacking a defence i, namely ī← g, which the proponent has no means to counter-attack.

We will refer to this strategy as “patient” since it makes the proponent wait patiently until the
opponent finishes attacking their arguments. The “patient” strategy allowed to find a successful

2This behaviour is enforced by FlexDDs as an optimization and will be explained in the following chapter.
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0. p

1. p← a,b, q

2. ā← e, v

3. ā← z

4. v ← h

5. v ← i

6. z ← f

7. q ← ē, r

8. r ← c

9. ē← c

10. f̄ ← ē

11. r ← d

12. ē← c

13. f̄ ← ē

14. q ← i

15. ī← g

Figure 1.3: A “patient” strategy search tree for finding a successful dispute derivation. Nodes in green
colour indicate proponent moves, whereas those in yellow indicate opponent’s. Numbers la-
belling nodes specify the order in which the moves are performed. Assumptions are in boldface.
Note that the tree branches whenever the proponent has more than one rule to use, i.e. nodes
7 and 14 for a rule with q in the head or nodes 8 and 11 for a rule with r in the head.

dispute derivation in 10 steps. It is of interest to see whether this could have been done in a smaller
number of steps by considering a more “eager” strategy as shown in Figure 1.4.

The “eager” strategy presented in Figure 1.4 behaves conversely to the “patient” one, in that
it makes the proponent move all they can before allowing the opponent to move. Note that in
the sub-tree rooted at Step 2. the opponent does not use the rule ā ← e, v. This is due to the
constraint that the opponent must not use rules containing culprits, and sinceebecomes a culprit
at Step 2., such rules will never appear in the sub-tree rooted at Step 2. As a consequence, the
opponent does not have to backward expand v and neither v ← h nor v ← i are used in these
sub-trees. On the whole, a successful dispute derivation is found at Step 7. and 12. Once again a
fruitless node has been encountered, but this time one step earlier (at Step 14.).

For this particular example the “eager” strategy was successful 3 steps earlier than the “patient”
one. This example however should not lead the reader to believe that the latter strategy will be
superior in all cases. It is not difficult to think about a potential, slightly modified version of the
framework from Example 1.1.1, in which the branch rooted at Step 3. of Figure 1.4 fails and the one
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0. p

1. p← a,b, q

2. q ← ē, r

3. r ← c

4. ē← c

5. ā← z

6. z ← f

7. f̄ ← ē

8. r ← d

9. ē← c

10. ā← z

11. z ← f

12. f̄ ← ē

13. q ← i

14. ī← g

Figure 1.4: An “eager” strategy search tree for finding a successful dispute derivation.

rooted at Step 8. succeeds. Now, additionally assume that in this modified version the argument
constructed at Steps 5-6. (and 10-11.), namely ā ← [z ← f] would take more intermediate steps
(ā ← [z ← . . . ← f]). The computation of this argument would initially happen in the first,
fruitless branch, and then would be repeated in the latter. In such a situation in which the oppo-
nent’s argument construction is computationally demanding, the “patient” strategy can be more
useful. On the other hand, the “eager” strategy can also reduce the number of rules for the op-
ponent via the above-mentioned culprit constraint which filters out rules as shown in Figure 1.4.
Therefore it is not so obvious which approach is better in general, if any.

FlexDDs additionally introduce another mechanism, called (conservative and non-conserva-
tive) forward reasoning which can also highly impact the efficiency of the search for a successful
dispute derivation. Non-conservative forward reasoning allows the proponent to use assumptions
which are not related to the current dispute state and its conservative counterpart allows them to
use rules whose body consists solely of statements for which the proponent has generated (com-
plete) arguments. The rule choice is no longer non-deterministic when using forward moves, as
the proponent does not introduce any new statements he might later be unable to prove or de-
fend. This follows from the fact that the rule body of rules introduced by forward moves consists
of only justified statements and the rule head, being the only newly introduced statement, is being
justified when using the rule. Search utilizing forward moves is illustrated in Figure 1.5.

In Step 1. of the dispute derivation search depicted in Figure 1.5 the proponent adds the as-
sumption c to their argument set, which is not related to the dispute state at that stage. Because it
is an assumption, and therefore a complete argument, the proponent later uses rules whose body
contains only c (Steps 2. and 3.) thus constructing complete arguments for statements entailed
by these rules. This is later repeated, but with rules whose body consists of the new statements
they had created arguments for (Steps 4. and 5.). Ultimately they arrive at Step 6., where the goal

6
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0. p

1. c

2. ē← c

3. r ← c

4. f̄ ← ē

5. q ← ē, r

6. p← a,b, q

7. ā← z

. . .

Figure 1.5: A strategy search tree for finding a successful dispute derivation utilizing forward reasoning.

p is derived. In the next step the opponent tries to attack the proponent arguments, but fails to
construct a complete argument due to all rules relevant to the dispute being blocked (because of
culprits in bodies).

In the presented example, the “forward” approach has found a successful dispute derivation in
the same number of steps as the “eager” approach, but was able to do so with a reduced amount of
branching. The benefits of that approach should be clear, as deterministic choices in general lead
to faster computation. However, such non-deterministic assumption choices as the one at Step
1. (non-conservative forward moves), given that a framework contains numerous assumptions,
might cause the search space to “explode ” in practice.

We have seen three approaches for finding successful dispute derivations. Not only is that a
negligibly small portion of all possible approaches, but the approaches themselves can be defined
more precisely. E.g. it can be specified which statement s should be backward extended first, i.e.
the one for which there are the most rules with s in the head or the fewest. Consider for example
the search from Figure 1.3 again. Had the statement ē been chosen to be backward expanded next
after Step 7 (using rule ē ← c), the branching caused with the choice between r ← c and r ← d
would have been delayed by one step, causing the second successful dispute derivation to be found
one step earlier.

When choosing between several possible rules h ← B with the same head h, one could for ex-
ample decide between those with the smallest or the largest cardinality of the body ∣B∣. Assuming
the smallest body approach in the search from Figure 1.3 again, the order of visiting nodes 7. and
14. would have been swapped, leading to finding the successful dispute state a few steps later (after
considering the entire unsuccessful branch).

What is also interesting is to learn of the impact of the choice between depth-first-search (DFS)
or breadth-first-search (BFS). The considered examples are all ordered according to DFS, and the

7
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change of the search algorithm to BFS would result in the tree traversal by the steps ⟪0, 1, 23, 4,
5, 6, 7, 14, 8, 11, 15, 9, 12, 10, 13⟫ and ⟪0, 1, 2, 13, 3, 8, 14, 4, 9, 5, 10, 6, 11, 7, 12⟫ for
Figure 1.3 and Figure 1.4, respectively, making the search significantly longer. It is not so difficult
however to think of examples of situations where BFS search would come in handy.

Finally, the gain of efficiency of the intuitively major optimization of conservative forward rea-
soning is of interest, i.e. what is it compared to FlexDDs strategies not taking advantage of it and
compared to current state-of-the-art systems for dispute derivations which do not employ it.

In this thesis we will formalise the search approaches described above as strategies in FlexDDs
setup, devise search algorithms employing those strategies and evaluate them empirically, hope-
fully addressing issues posed above regarding various approaches to automatic search. We will also
present our interactive system flexABle, which, among other notable features, implements said
search procedures and compare its performance to the main state-of-the-art system for DDs in
ABA, called abagraph.

1.2 Contributions and Thesis Structure

The contributions of this thesis are manifold. Firstly, related literature regarding dispute deriva-
tion variants and potential search strategies was reviewed, the results being described in the fol-
lowing section. Secondly, a small modification correcting the termination condition of FlexDDs
for the complete semantics is shown in Chapter 3. Thirdly, search algorithms and strategies for
FlexDDs have been devised and are presented in Chapter 4. Fourthly, these findings were later
used when implementing a system supporting FlexDDs, called flexABle, capable of not only au-
tomatically searching for a successful dispute derivation, but also offering many other features
related to FlexDDs. In particular, several mechanisms for interactive exploration of FlexDDs are
incorporated in flexABle. The system and its most important features are discussed in Chapter 5.
Fifthly, a series of experiments was carried out resulting in an evaluation of FlexDDs performance
when used in flexABle, performance of several strategies for FlexDDs, as well as a comparison
with the main competing state-of-the-art dispute derivation system. This evaluation is the sub-
ject of Chapter 6.

Remaining chapters discuss necessary formal background (Chapter 2), conclusions (Chapter
7) and possible directions of further research in this area (Chapter 8).

1.3 Related Work

As mentioned earlier, there have been several variants of dispute derivations to date. They differ
between one another mostly in the representation of dispute states, which often has direct impact
on the efficiency of the variant. In other cases they also offer support for different argumentation
semantics.

Dispute derivations for ABA have first been introduced by Dung et al. [13], solely for the ad-
missible semantics. They are defined as finite sequences of quadruples (Pi,Oi,Ai,Ci), where
Pi (Oi) denotes the set of (sets of) statements held by the proponent (opponent), Ai is the set
of assumptions used by the proponent to justify their statements called defences and Ci the set
of assumptions the proponent decided to attack. The latter are called culprits. Statements in Pi
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and Oi can be seen as leaf nodes of argument trees built during the dispute which still need to be
examined – potentially attacked by the opposing player if such a statement is an assumption or
otherwise backward extended with a rule. A new dispute state is created in the first case by adding
the contrary of the now attacked assumption to the attacking player’s set. In the latter case a state-
ment is backward expanded, i.e. replaced with the body of a rule with this statement in the head.
Ultimately, if the derivation is successful the defences, being the set of assumptions supporting
the initial goal claim, are returned.

The aforementioned dispute derivation machinery has been further extended resulting in AB-,
GB-, and IB-Dispute Derivations [14] tailored for admissible, grounded and ideal semantics, re-
spectively, which have also been implemented in Prolog as part of the CaSAPI [17] system. AB-
Dispute Derivations were subject to yet another augmentation by Gaertner and Toni [18], giving
rise to Structured AB-Dispute Derivations, which additionally record the set of arguments Args
implicitly computed by both players together with the attack relation Att between them. More-
over, the players keep track of their states no longer with just sets of statements but rather with
“potential arguments” – tree structures representing incomplete arguments of the players which
once completed are moved to Args . Interestingly, Gaertner and Toni identify five choice points
which have to be defined in any system employing Structured AB-Dispute Derivations. Those
choice points are the choice of the player (proponent or opponent), the choice of potential ar-
gument given a player, the choice of a premise given a potential argument (returning one state-
ment belonging to the premises of the argument), the choice of rule given a statement (if more
than one are applicable) and the choice to attack an assumption or not (when the opponent is
selected and an assumption is picked as a premise of one of its arguments, the proponent can
choose between attacking or ignoring it). The authors reveal some of their concrete choices when
implementing the new version of CeSAPI (3.0) thus developing a search strategy, i.e. prioritizing
proponent (choice of player), prioritizing arguments which still have non-assumptions in their
premises (choice of argument) and prioritizing rules by the order in which they appear in the
input ABA framework file (choice of rule).

AB-Dispute Derivations have undergone two more modifications resulting from the require-
ments of the setup in which these dispute derivations have been used by Craven et al. [8]. Here the
authors attempt utilizing dispute derivations in support of medical decision-making, more specif-
ically regarding treatments for early-stage breast cancer. When representing arguments solely as
their pending premises (as is the case withPi andOi of AB-Dispute Derivations) the chain of rea-
soning from the goal statement to said premises through intermediate sub-arguments gets lost.
This information is of crucial importance for clinicians, therefore the first modification enforces
that each argument, apart from identifying its set of premises, is additionally represented by a
tree. Moreover, as the second modification, a preference ordering can be imposed on the set of
rules in an ABA framework. This is used to rank rules based on clinical trials according to the
reliability level of those trials. A system implementing such a modified version of AB-Dispute
Derivations, named sxdd has been developed in C++. Craven et al. have also pointed out a few
choice points the parameters in their modified version of AB-Dispute Derivations (player choice,
argument choice for both players, node choice given an argument for both players) and investi-
gated the possible domains for these parameters. They have also evaluated all definable combina-
tions using a single input framework. The presented results showed that only a small fraction of
the strategies have been successful given a certain cut-off time. The authors argue that in practi-
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cal setups spawning a large number of variants in parallel and relying on the assumption that at
least some of them would terminate in reasonable time is a justifiable approach, but they do not
attempt to find strategies being exceptionally superior on average.

In the meantime, Toni [27] has proposed Structured X-Dispute Derivations, generalising AB-,
GB- and IB-dispute derivations into one parametrized procedure and simultaneously recording
the complete arguments and attacks between them constructed in the process as in Structured
AB-Dispute Derivations.

Novel notions of rule-minimal arguments and argument graphs have enabled Craven and Toni
[9] and Craven et al. [7] to devise Graphical Dispute Derivations (Graph-DDs). This variant keeps
track of justifications of claims for both players obtained during the derivation, which can later
be re-used if claims again appear in the players sets. This avoids re-computation of claims already
argued for and ensures that obtained arguments are rule-minimal, i.e. constructed from no two
different rules with the same head, which is desirable from the perspective of performance as well
as for conceptual reasons. Graph-DDs support admissible and grounded semantics. The authors
have developed Prolog based systems for Graph-DDs and Structured X-Dispute Derivations, as
defined by Toni [27] (named abagraph and proxdd, respectively) in order to obtain an evaluation
of both approaches, which proved superiority of the first machinery over the latter. The authors
define a number of possible strategies resembling those mentioned before and state that any of
those can be manually selected in their system. For experiments they randomly selected a few of
them and configured both evaluated systems to follow the same strategies for the same problems.
This was however used to assess the implementations, rather than find out about more meaningful
or optimal search strategy.

Finally, Flexible Dispute Derivations (FlexDDs) have been introduced by Diller et al. [11]. Each
dispute state in FlexDDs contains “a closure” of arguments for both players, i.e. all rule-minimal
arguments constructible from rules and assumptions used by players throughout the derivation.
Moreover, FlexDDs optimizes the procedure by e.g. allowing the opponent to use the proponent
arguments as well as introducing forward reasoning to dispute derivations. Additionally, apart
from supporting admissible semantics, FlexDDs offer procedures for finding defence sets for se-
mantics never addressed in dispute derivations for ABA: stable and complete.
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2 Foundations

In this chapter we will formally introduce notions, starting off with the most general ones from
ABA and then considering relevant concepts from flexible dispute derivations necessary to under-
stand the issues investigated in this thesis.

2.1 Assumption-Based Argumentation

Definition 2.1.1 (Assumption-Based Argumentation (ABA) Framework). [28] An ABA frame-
work is a tuple F = (L,R,A,− )where:

• (L,R) is a deductive system, with the set L called the alphabet andR a set of inference
rules, each of the form h← B with {h},B ⊆ L. Elements h and B are often referred to as
the rule’s head and body, respectively, whereas the elements of L are called statements (or
claims),

• A ⊆ L is a (non-empty) subset of the alphabet, whose elements are referred to as assump-
tions

• − is a total mapping fromA into L, where, for an assumption a ∈ A, a is the contrary of
a.

Additionally, for a set of statements S ⊆ L we define its contraries as S = {u ∈ L ∣ u ∈ (S ∩
A)}. In all of this thesis (unless explicitly stated otherwise) we will assume the ABA framework to
be fixed and thus not define notions relative to an ABA framework. Furthermore, the fixed ABA
framework will be assumed to be flat, as defined in Definition 2.1.2.

Definition 2.1.2 (Flatness). An ABA Framework is said to be flat, if it holds that no assumption
appears in the head of any rule, formally {h ∣ h← B ∈R} ∩A = ∅.

The concept of an argument in ABA has been defined in several different ways. To remain
consistent with the notions which flexible dispute derivations operate on, we will stick to the
definition used in FlexDDs [11], which, in turn, borrow from ASPIC+ [22].

Definition 2.1.3 (ABA Argument). Given a flat ABA framework F = (L,R,A,− ), we define
a potential argument recursively as follows:

• A = s if s ∈ L. Then we have that Conc(A) = s,Prem(A) = s, Asm(A) = {s} ∩A,
Sub(A) = s.
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• A = s ← A1, . . . ,An if s ∈ L and A1, . . . ,An are arguments such that there exists a rule
s ← Conc(A1), . . . ,Conc(An) ∈ R. Then we have that Conc(A) = s, Prem(A) =
Prem(A1) ∪ . . . ∪ Prem(An), Asm(A) = Asm(A1) ∪ . . . ∪ Asm(An), Sub(A) =
{A} ∪ Sub(A1) ∪ . . . ∪ Sub(An).

Functions Conc,Prem ,Asm , and Sub return the conclusion, set of premises, assumptions,
and sub-arguments of a given argument, respectively. Given an argument A we say that the set of
statements Prem(A) supports A and we call A an argument for claim s if s = Conc(A).

As an example, consider the argument A = p ← a,b, [q ← e, r] constructible from the ABA
framework from Example 1.1.1. Then Conc(A) = p, Prem(A) = {a,b, e, r}, Asm(A) =
{a,b}, and Sub(A) = {A;a;b; q ← e, r; e; r}. A is an argument for the claim p.

Additionally, we call an argument A′ complete if it holds that Prem(A′) ⊆ A, otherwise A′
is a potential argument, which holds for the above-considered argument A as it has two non-
assumption premises, namely e and r. Usually, only the complete arguments are actually called
arguments in ABA. However, dispute derivations operate on their “potential” variant and hence
the need to extend the definition. We note in particular that stand-alone claims and rules also are
thus (simple one-step potential) arguments.

We extend the set of functions F = {Conc,Prem ,Asm , Sub} for sets of arguments Args in
the obvious manner, i.e. f(Args) = ⋃A∈Args f(A) for f ∈ F .

Definition 2.1.4 (Rule-minimality). [7] An argument A is said to be rule-minimal if there are
no two sub-arguments h← B, h′ ← B′ ∈ Sub(A) s.t. h = h′ and B ≠ B′.

We will extend this notion to a set of arguments Args in the following manner: Args is said to
be rule-minimal if there are no two sub-arguments h ← B, h′ ← B′ ∈ Sub(Args) s.t. h = h′

and B ≠ B′. Therefore not only every argument A ∈ Args is rule-minimal, but also every claim
is justified by exactly the same rule in each sub-argument contained in Args .

An argument A is said to attack another argument A′ if its conclusion is the contrary of one
of the assumptions of A′, formally if Conc(A) = u for some u ∈ Asm(A′) [28]. Furthermore,
if A′ attacks another argument A′′, then A is said to defend A′′ from A′.

Attack and defense have been further equivalently redefined w.r.t. sets of assumptions. A set of
assumptions U attacks another set of assumptions U ′ if an argument supported by U attacks an
argument supported by U ′. Naturally, if another set of assumptions U ′′ is attacked by U ′, then
U defends it from U ′.

Finally, the relations of attack and defence can also be defined in a hybrid way, between sets of
assumptions and arguments as in Definition 2.1.5.

Definition 2.1.5 (Hybrid attack relations). Given two sets of assumptions U and an argument
A, we say that:

• A attacks U if Conc(A) = u and u ∈ U ,

• U attacks A if there exists an argument AU s.t. Prem(AU) ⊆ U and AU attacks A.

Corresponding hybrid notions of defense can easily be obtained from Definition 2.1.5. Those
relations are also often extended to sets of entities, i.e. sets of arguments and sets of sets of as-
sumptions if a property holds for single elements of the sets. E.g. a set of arguments Args attacks
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another set of arguments Args ′ if there is an argument in Args which attacks an argument in
Args ′.

Semantics are the central notion in formal argumentation, determining the way to choose ar-
guments coherent with each other. Definition 2.1.6 describes semantics relevant to the thesis in
terms of sets of assumptions. Other, equivalent versions utilizing the arguments-based or the hy-
brid view can be obtained by using the argument-based or hybrid notions of attack and defense,
respectively.

Definition 2.1.6 (Considered argumentation semantics). [28] A set of assumptions U ⊆ A is
said to be a σ-extension, where σ is called:

• admissible if U does not attack itself (is conflict-free) and defends itself from all sets of
assumptions attacking it,

• complete if U is admissible and contains all assumptions that it defends,

• stable if U is admissible and contains all assumptions it does not attack,

• preferred if U is ⊆-maximal admissible, i.e. there is no admissible extension U ′ s.t. U ⊂ U ′,

• grounded if U is ⊆-minimal complete, i.e. there is no complete extension U ′ s.t. U ⊃ U ′.

Sticking to the convention of flexibility in operating on either sets of arguments or assumptions,
we will use the term σ-extension sometimes to refer to sets of arguments and sometimes to sets of
assumptions. We will only state exactly which we mean when this cannot clearly be inferred from
the context.

2.2 Flexible Dispute Derivations

In this section we will introduce notions related to flexible dispute derivations. All of them are
taken from [11].

Definition 2.2.1 (Argument expansion). An expansion of a set of arguments Args = {A1, . . . ,
An}w.r.t an argumentA′ withConc(A1)∪ . . .∪Conc(An) ⊆ Prem(A′) is obtained fromA′

by replacing at least one si ∈ Prem(A′) for which si = Conc(Ai) with Ai for each 1 ≤ i ≤ n.
We denote it A′ ⋖ Args . When n = 1, we will often denote the expansion as A′ ⋖ A1.

In line with Definition 2.2.1 we can further distinguish between a forward- and a backward
expansion. The forward expansion of a set of arguments Args w.r.t. the set of rulesR (treated as
1-step arguments) is of the form h ← B ⋖ Args , with h ← B ∈ Args . On the other hand, the
backward expansion of an argument A w.r.t. R is an expansion of the form A ⋖ h ← B, given
that h← B ∈R.

As an example consider the framework from Example 1.1.1 and a potential (incomplete) ar-
gument of the form A = p ← a,b, q with Prem(A) = {a,b, q} Given that there exists a
rule q ← ē, r ∈ R a backward expansion A′ = A ⋖ q ← ē, r yields another incomplete ar-
gument A′ = p ← a,b, [q ← e, r]. Alternatively, assuming that there exists a singleton set
Args = {e ← c} containing a complete argument for e and given a rule f ← e ∈ R, a forward
expansion A′′ = f ← e ⋖ Args yields an argument A′′ = f ← [e← c].
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Definition 2.2.2 (Argument set closure). Let Args be a set of arguments and A a single argu-
ment. Then Args &A is the closure of Args ∪ {A} under sub-arguments and argument expan-
sions, where a set of arguments Args ′ is said to be:

• closed under sub-arguments if Args ′ = Sub(Args ′) and

• closed under argument expansions if every argument A′ = A′′ ⋖ Args ′′ obtainable by
argument expansion from any A′′ ∈ Args ′, Args ′′ ⊆ Args ′ is in Args ′.

Args ⋊A denotes a rule-minimal closure of Args ∪ {A}. Then assuming that Args is closed
under sub-arguments, closed under argument expansions and rule minimal, Args ⋊A is the clo-
sure under sub-arguments and arguments expansions of Args ∪ {A} if this closure is also rule
minimal, while otherwise Args ⋊ A = Args (i.e. expansions making the argument set not rule-
minimal are disallowed).

Flexible dispute derivations (FlexDDs), which we described informally in the introduction as
a game between two fictional players, namely the proponent and the opponent of a set of claims
γ in question, consist of a sequence of tuples (B,P). Each tuple denotes a dispute state, whereB
and P represent the opponent’s and proponent’s sets of arguments, respectively. Note that one
of the refinements of FlexDDs was enabling the opponent to re-use the proponent’s arguments
and therefore given a sequence of dispute states of a FlexDDs (B1,P1), . . . , (Bn,Pn) it holds
that Pi ⊆ Bi for all 1 ≤ i ≤ n. That is also why the opponent’s set is not denoted with O (as
was in previous iterations of DDs for ABA), but instead with B (which stands for Both). Goals
are assumed to be consistent, i.e. γ ∩ γ = ∅. Each next dispute state is a result of a dispute
advancement carried out by either player and the initial dispute state is of the form (γ, γ), i.e.
contains goals only. Prior to defining an advancement, let us state the relevant auxiliary notations
defined by Diller et al. [11] in Table 2.1.
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Notation Description
D = Asm(P) Defences
C = {u ∈ A ∣ u ∈ Conc(P)} Culprits
R− = {h← B ∈R ∣ B ∩ C ≠ ∅} Blocked rules (culprits in bodies)
R∼ = {h← B ∈

R ∣ ({h} ∪B) ∩ (B ∪ C ∪D) ≠ ∅}
Rules blocked for the proponent (either
inconsistent or containing culprits or
contraries of defences in head or body)

P∗ = {a ∈ P ∣ Prem(a) ⊆ A} Proponent’s “complete” arguments
B∗ / − ={a ∈ B ∣ Prem(a) ⊆ (A / C)} Opponent’s “complete” unblocked

arguments
P+ = {a ∈ P / P∗ ∣ ¬∃a′ ≠ a ∈ P s.t.

Conc(a′) = Conc(a) and
a′ ∈ P∗or a ∈ Sub(a′)}

Maximal incomplete proponent
arguments

P#

γ∪C
= {a ∈ P+ ∣ Conc(a) ∈ γ ∪ C} Maximal incomplete proponent

arguments for goals and contraries of
culprits

B! /
−

S = {a ∈ B ∣ Asm(a) ∩ C = ∅,Conc(a) ∈
S}

Unblocked arguments with conclusions
in S ⊆ L

A! = {u ∈ A ∣ u ∈ Asm(B! /
−

D
)} Candidates for culprits

J = {u ∈ A / C ∣ u ∉ Conc(B∗ / −)} Assumptions defended at the dispute
state

H = {h ∣ h← B ⋖ A,h← B ∈
R /R∼,A ⊆ P∗}

Conclusions of arguments obtainable
fromP∗ by forward expansion

Table 2.1: Auxiliary notation for FlexDDs. All defined w.r.t. a dispute state (B,P).

In FlexDDs a proponent dispute state advancement from a dispute state (B,P) is a dispute
state (B′,P ′) with P ′ ⋊ {a} ≠ P , B′ = B & {a}, X1 ⊆ A, X2 ⊆ A, where a is defined as in
Table 2.2.

Move type V. a definition

PB- (A! ∪X1)
1 a = a′ ⋖ h← B for h← B ∈R /R∼, a′ ∈ P#

γ∪C

2 a = h← B for h← B ∈R /R∼ with h ∈ (A! ∪X1) / D

PF-((A! ∩A) ∪X2)
1 a = h← B ⋖ A for h← B ∈R /R∼, A ⊆ P∗

2 a = u for u ∈ ((A! ∩A) ∪X2) / (u ∪ C ∪D)

Table 2.2: Possible proponent moves in FlexDDs. Column “Move type” denotes the type of move and de-
fines variable parameters w.r.t. which moves can be defined. Each of the moves comes in two
variants, denoted in the column “V.”. Finally, each of the moves produces a different (potential)
argument a, described in column “a definition”, upon which the proponent dispute state ad-
vancement depends.
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On the other hand, an opponent dispute state advancement from a dispute state (B,P) is a
dispute state (B′,P)with B′ & {a}, Y1 ⊆ A, Y2 ⊆ A, where a is defined as in Table 2.3.

Move type V. a definition

OB-(D ∪ Y1)
1 a = a′ ⋖ h← B for a′ ∈ B! /

−

D∪Y1
, h← B ∈R /R−

2 a = h← B for h← B ∈R /R− with h ∈ D ∪ Y1

OF-((D ∩A) ∪ Y2)
1 a = h← B ⋖ A for A ⊆ B∗ / − , h← B ∈R /R−

2 a = u for u ∈ (D ∩A) ∪ Y2 / C

Table 2.3: Possible opponent moves in FlexDDs. Column “Move type” denotes the type of move and the
move’s variable parameters, and “V.” the variant. “a definition” defines the new argument con-
structed within the move.

Note that both players have two types of moves (proponent having PB-(A! ∪ X1) and PF-

((A! ∩ A) ∪ X2) whereas opponent having OB-(D ∪ Y1) and OF-((D ∩ A) ∪ Y2)), each of
which have, in turn, two variants. This yields four ways for either player to construct the new
argument a and create a new dispute state. Furthermore, observe that the moves are parametrized
– their behaviour can be altered by modifying parameters X1 and X2 for the proponent and Y1
andY2 for the opponent. Table 2.4 presents advancement types – predefined ways of constraining
players’ moves, by specifying types of moves which can be used together with the parameters.
Note that the DF advancement type is the “least constraining” variant, whereas DAB is the “most
constraining” one, which manifests itself two ways. Firstly, contrary to DAB, DF allows for PF1 and
OF1moves. Secondly, in DAB PF and OFmoves are defined w.r.t. a subset of all assumptions, whereas
PB and OB are defined w.r.t. a subset of assumptions’ contraries. Opposed to that, DF defines its
moves w.r.t. to all assumptions and all assumptions’ contraries, respectively. Other advancement
types, i.e. DABF, DS are less constrained than DAB and more than DF. With slight abuse of the ⊆
notation, we distinguish between more and less constrained variants, i.e. given two advancement
types AT ,AT ′ we denote AT ⊆ AT ′ if AT ′ is less constrained than AT (or equivalently all A
moves are A′ moves), yielding DAB ⊆ DABF, DABF ⊆ DS, and DS ⊆ DF.

Advancement Proponent Opponent
DAB PB-(A!), PF-(A! ∩A)-2 OB-(D), OF-(D ∩A)-2
DABF PB-(A!), PF-(A! ∩A) OB-(D), OF-(D ∩A)-2
DS PB-(A!), PF-(A) OB-(D), OF-(D ∩A)-2
DF PB-(A), PF-(A) OB-(A), OF-(A)

Table 2.4: Advancement types

Finally, FlexDDs define so called termination criteria for argumentation semantics determin-
ing the outcome of the dispute derivation, where a certain criterion being satisfied by an obtained
dispute state (B,P) guarantees that the arguments in P (or equivalently the set of defences D)
constitute an extension of the semantics associated with the criterion. Table 2.5 presents the ter-
mination criteria TA and TS for the admissible and stable semantics, respectively. We introduce
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a slight correction to the termination criteria TC proposed by Diller et al. [11] for the complete
semantics; this issue we will consider in detail in the next chapter.

C Prop. Winning Opp. Cannot Move Prop. Cannot Move
TA γ ∪ C ⊆ Conc(P∗),

B! / −
D

∩ B∗ / − = ∅
OB-(D) ∪ OF-(D ∩A)-2
or OF-(A)

PB-(A!) ∪ PF-(A! ∩A)-2 or
PF-(A)

TS γ ∪ C ⊆ Conc(P∗),
B! / −
D

∩ B∗ / − = ∅,
D ∪ C = A

OB-(D) ∪ OF-(D ∩A)-2
or OF-(A)

PB-(A!) ∪ PF-(A)

Table 2.5: Termination criteria for admissible and stable semantics

The meaning of the criteria is as follows: if an obtained dispute state (B,P) satisfies the con-
dition defined in the “Prop. Winning” column and the opponent cannot further advance the
dispute state in at least one of the two ways defined in the disjuncts of “Opp. Cannot Move” col-
umn, then the proponent wins andP (and henceD) is an extension associated with the criterion.
Otherwise, if the condition in the “Prop. Winning” is not satisfied and the proponent cannot ad-
vance in at least one of the two ways defined in “Prop. Cannot Move”, then the dispute derivation
terminates with a negative answer. If neither of the two cases hold, the dispute derivation does not
terminate and shall be continued.

Given an advancement type AT and a termination criterion C we refer to a flexible dispute
derivation variant in which each advancement is in accordance with AT and which is terminated
whenC is satisfied as aAT+C FlexDD. It has been shown by Diller et al. [11] that DF+TA FlexDDs
are sound for the admissible semantics, meaning that if there is a DF + TA FlexDD ending with a
dispute state (B,P) and the proponent as the winner, then the set of defencesD is an admissible
extension w.r.t. which the set of goals γ is acceptable. Naturally, this holds for all other “more
constraining” advancement types. Furthermore, similar results were obtained for DF+ TSFlexDDs
and the stable semantics.

It has also been shown that if L is finite, then DAB + TA FlexDDs are complete for credulous
acceptance w.r.t. the admissible semantics, meaning that if the set of goals γ is acceptable for some
admissible extension then there is a DAB+ TA FlexDD ending with a dispute state (B,P) and the
proponent as winner s.t.D is an admissible extension w.r.t. whichγ is acceptable. Again, naturally
this holds for all other “less restricting” advancement types and similar results were obtained for
DS + TS FlexDDs and the stable semantics.

Table 2.6 presents an example of a successful DAB + TA FlexDD for the framework from Exam-
ple 1.1.1. It terminates at Step 10. with a positive answer as TA is satisfied: a complete argument has
been constructed for the only goal p and the culprits f and e, hence fulfilling the first condition
of “Prop. winning”.
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Step and move type P B / P
0. {p} {}

1. (PB1, p← a,b, q) {p← aD,bD, q} {}

2. (OB2, a← e, v) {p← aD,bD, q} {a← e, v}

3. (OB2, a← z) {p← aD,bD, q} {a← e, v;a← z}

4. (OB1, v ← h) {p← aD,bD, q} {a← e, [v ← h];a← z}

5. (OB1, v ← i) {p← aD,bD, q} {a← e, [v ← h];a← e, [v ←
i];a← z}

6. (OB1, z ← f ) {p← aD,bD, q} {a← e, [v ← h];a← e, [v ←
i];a← [z ← f]}

7. (PB1, q ← e, r) {p← aD,bD, [q ← e, r]} {a← eC , [v ← h];a←
eC , [v ← i];a← [z ← f]}

8. (PB1, r ← c) {p← aD,bD, [q ← e, [r ←
c]]}

{a← eC , [v ← h];a←
eC , [v ← i];a← [z ← f]}

9. (PB1, e← c) {p← aD,bD, [q ← [e←
c], [r ← c]]}

{a← eC , [v ← h];a←
eC , [v ← i];a← [z ← f]}

10. (PB1, f ← e) {p← aD,bD, [q ← [e←
cD], [r ← cD]]; f ← [e←
cD]}

{a← eC , [v ← h];a←
eC , [v ← i];a← [z ← fC]}

Table 2.6: A DAB + TA FlexDD for Example 1.1.1. Only maximal arguments (i.e. arguments which are not
sub-arguments of other arguments within a players set) are shown. A statement s is marked as
sD if s is a defence or as sC if it is a culprit.

Although the opponent has managed to create three complete arguments against a defence
a, all of them contain a culprit in their premises, and therefore are blocked. This way the second
“proponent winning” condition is satisfied. Finally, note that the opponent cannot advance in the
OB-(D) manner: there are no unblocked arguments against defences which could be backward
expanded (OB-(D)-1), neither are there any more rules with heads as contraries of defences (OB-
(D)-2). What is more, no assumption is a contrary of any defence (OF-(D)-2). All this means the
fulfillment of the “Opp. Cannot Move” column condition, collectively causing the FlexDD to
terminate with an affirmative answer. Note that the performed moves correspond to the leftmost
branch of Figure 1.3.
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2.3 Flexible Dispute Derivations – Rule-Based Variant

Table 2.7 presents another example of a FlexDD for the same framework as before, only this
time it is of type DS + TA (it could also be a DF + TA). At step 1. a PF-((A! ∩A) ∪A)-2 move is
performed, yielding the new argument – assumption c – being a part of the set J , which would
not be possible in DAB + TA. Furthermore, at Steps 2-5. moves of types PF1 are performed which
again are disallowed in DAB.

At Step 7. the dispute terminates as once again the opponent is unable to continue according
to the selected advancement type: argument a ← z is not complete and cannot be backward ex-
panded withOB-(D)-1, because the only applicable rulez ← f contains a culpritf . Rulea← e, v
cannot be used either, because it contains a culprite. On the other hand, the proponent has man-
aged to construct complete arguments for the goal as well as culprit contraries and therefore wins
the dispute derivation. Note that the performed moves from this example are those of Figure 1.5.

Step and move type P B / P
0. {p} {}

1. (PF2, c) {p; cD} {}

2. (PF1, e← c) {p; e← cD} {}

3. (PF1, r ← c) {p; r ← cD, e← cD} {}

4. (PF1, f ← e) {p; r ← cD, f ← [e← cD]} {}

5. (PF1, q ← e, r) {p; q ← [e← cD], [r ← cD]; f ← [e← cD]} {}

6. (PB1, p← a,b, q) {p← aD,bD, [q ← [e← cD], [r ← cD]]; f ← [e←
cD]}

{}

7. (OB2, a← z) {p← aD,bD, [q ← [e← cD], [r ← cD]]; f ← [e←
cD]}

{a← z}

Table 2.7: A DS + TA FlexDD for Example 1.1.1

2.3 Flexible Dispute Derivations – Rule-Based Variant

An alternative representation of FlexDDs, namely rule-based flexible dispute derivations (RlFlex-
DDs) has also been proposed, in which both players put forward statements and rules, rather than
arguments. Similarly to regular FlexDDs, RlFlexDDs are sequences of dispute states of the form
(B,P), where B ⊆ (L∪R) and P ⊆ B, thus rather than storing arguments they record elements
of the framework. Again, a consistent set of goals γ is assumed, and the initial dispute state is of
the form (γ, γ) with the goals viewed as elements of the alphabet, rather than arguments as in
regular FlexDDs.

This kind of formalization of flexible dispute derivations leads to a more efficient implementa-
tion by avoiding the necessity of computing arguments and closures w.r.t. arguments. Instead, as
stated above, one can keep track of the dispute derivation by simply storing framework elements.

In order to define the rule-based advancements, in Table 2.8 we first define auxiliary notations
closely related to those from the regular FlexDDs, but now in the rule-based context.
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2 Foundations

Notation Description
D = P ∩A Defences
C = {u ∈ A ∣ u ∈ P} Culprits
JB = R / B Remaining rules for the

opponent
JP = R / P Remaining rules for the

proponent
J −B = {h← B ∈ JB ∣ B ∩ C ≠ ∅} Remaining rules blocked for

the opponent
J ∼P = {h← B ∈ JP ∣ ({h}∪B)∩(B∪C∪D) ≠ ∅} Remaining rules blocked for

the proponent
(P ∩L)↓ = {s ∈ P ∩L ∣ ¬∃h← B ∈ P with h = s} Played unexpanded statements

of the proponent
(B ∩L)↑↑ = {s ∈ (B ∩L) ∣ ¬∃h← B ∈ (JB / J −B with

h = s)}
Played fully expanded
statements

B− = (B ∩ C) ∪ {s ∈ (B ∩L)↑↑ / A ∣ ¬∃h← B ∈
(B ∩R) / B− with
h = s} ∪ {h← B ∈ B ∩R ∣ B ∩B− ≠ ∅}

Played blocked pieces

P∗ = (P ∩A) ∪ {h← B ∈ (P ∩R) ∣ B ⊆
P∗} ∪ {s ∈ (P ∩ (L / A)) ∣ ∃h← B ∈ P∗
with h = s}

“Complete” played pieces of
the proponent

B∗ / − = (B ∩ (A / C)) ∪ {h← B ∈
(B / B−) ∩R ∣ B ⊆ B∗ / −} ∪ {s ∈
(B / B−) ∩ (L / A) ∣ ∃h← B ∈ B∗ / − with
h = s}

Unblocked complete played
pieces of the opponent

B! / −
S = ((B / B−) ∩ S) ∪ {s ∈ (B / B−) ∩L ∣ ∃h←

B ∈ B! / −
S ∩Rwith

s ∈ B}∪{h← B ∈ (B / B−)∩R ∣ h ∈ B! / −
S }

Unblocked pieces supporting
statements in S ⊆ L

A! = A ∩B! / −

D
Culprit candidates

J = {u ∈ A / C ∣ u ∉ B∗ / −} Currently defended
assumptions

H = {h ∣ h← B ∈ JP / J ∼P ,B ⊆ P∗} Statements derivable from P∗

Table 2.8: Auxiliary notations for the rule-based approach. All notions defined w.r.t. a dispute state (B,P).

Then, in RlFlexDDs, a proponent dispute state advancement from a dispute state (B,P) is a
dispute state (B′,P′) with P′ = P ∪ T , B′ = B ∪ T , X1 ⊆ A, X1 ⊆ A, where T is defined as in
Table 2.9.
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2.3 Flexible Dispute Derivations – Rule-Based Variant

Move type V. T definition

PB- (A! ∪X1)
1 T = {h← B}∪B for h← B ∈ JP / J ∼P with h ∈ (P∩L)↓
2 T = {h} ∪ {h← B} ∪B for h← B ∈ JP / J ∼P with

h ∈ (A! ∪X1) / (P ∪D)

PF-((A! ∩A) ∪X2)
1 T = {h} ∪ {h← B}with h← B ∈ JP / J ∼P , with h ∉ P or

h ∈ (P ∩L)↓, B ⊆ P∗
2 T = {u} for u ∈ ((A! ∩A) ∪X2) / (P ∪ {u} ∪ C ∪D)

Table 2.9: Possible proponent moves in RlFlexDDs. Column “Move type” denotes the type of move and
move’s variable parameters, and “V.” the variant. “T definition” defines the new set of pieces
that the move adds to B and P.

On the other hand, a rule-based version of the opponent dispute state advancement from a
dispute state (B,P) is a dispute state (B′,P) with B′ = B ∪ T , Y1 ⊆ A, Y2 ⊆ A, where T is
defined as in Table 2.10.

Move type V. T definition

OB-(D ∪ Y1)
1 T = {h← B} ∪B for h← B ∈ JB / J ∼B with

h ∈ B! / −

D∪Y1
∩L

2 T = {h} ∪ {h← B} ∪B for for h← B ∈ JB / J ∼B with
h ∈ D ∪ Y1

OF-((D ∩A) ∪ Y2)
1 T = {h} ∪ {h← B} for h← B ∈ JB / J ∼B with B∗ / − for

each b ∈ B
2 T = {u} for u ∈ ((D ∩A) ∪ Y2) / (A ∩B)

Table 2.10: Possible opponent moves in RlFlexDDs. Column “Move type” denotes the type of move and
move’s variable parameters, and “V.” the variant. “T definition” defines the new set of pieces
that move adds to B.

Advancement types and termination criteria remain the same as for the regular FlexDDs ver-
sion, i.e. as presented in Table 2.4 and Table 2.5 with a small exception for the latter. Namely,
due to the fact that RlFlexDDs operate on dispute states in a different form – sets of statements
and rules rather than arguments – then the “Proponent winning” conditions have to be modified
accordingly as shown in Table 2.11.

C Prop. Winning
TA γ ∪ C ⊆ P∗,

D ∩B∗ / − = ∅
TS γ ∪ C ⊆ P∗,

D ∩B∗ / − = ∅,
D ∪ C = A

Table 2.11: “Proponent winning” conditions in termination criteria for RlFlexDDs.
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Table 2.12 presents a DS + TA RlFlexDD for the ABA framework from Example 1.1.1, corre-
sponding to the FlexDD from Table 2.7. At Step 2. the statement c is added to P. Because it is
an assumption, it automatically becomes a member of P∗ – the set of complete pieces played by
the proponent. In the next steps the proponent keeps putting forward rules, whose bodies are
contained in P∗ and hence adding their heads to P∗. At Step 6. rule p ← a,b, q is uttered by the
proponent. Note that at this point q is a “complete” statement and sincea and b are assumptions
then the goal p becomes “complete” as well. Therefore at Step 6. P∗ contains the goal p as well as
both culprit contraries e and f , hence satisfying the first condition for “proponent winning” of
TA in the rule-based setup, namely γ ∪ C ⊆ P∗.

Step and move type P B/P
0. {p} {}

1. (PF2, c) {p; cD∗} {}

2. (PF1, e← c) {p; e∗ ← cD∗} {}

3. (PF1, r ← c) {p; r∗ ← cD∗; e∗ ← cD∗} {}

4. (PF1, f ← e) {p; r∗ ← cD∗; f
∗ ← e∗; e∗ ← cD∗} {}

5. (PF1, q ← e, r) {p; q∗ ← e∗, r∗; e∗ ← cD∗; r∗ ← cD∗; f
∗ ←

e∗; e∗ ← cD∗}
{}

6. (PB1, p← a,b, q) {p∗ ← aD∗,bD∗, q∗; q∗ ← e∗, r∗; e∗ ←
cD∗, r∗ ← cD∗; f

∗ ← e∗; e∗ ← cD∗}
{}

7. (OB2, a← z) {p∗ ← aD∗,bD∗, q∗; q∗ ← e∗, r∗; e∗ ←
cD∗, r∗ ← cD∗; f

∗ ← e∗; e∗ ← cD∗}
{a− ← z−}

Table 2.12: A DS + TA RlFlexDD for framework from Example 1.1.1. For brevity reasons each statement s
being a part of a player’s set (either B or P) is represented by a rule present in this set containing
s in either the head or the body. E.g. at Step 2., statements e and c even though they are a part
of P are not explicitly listed and are supposed to be both represented by the rule e ← c. Since
P ⊆ B we only show the contents of B/P in the right-most column. Statements being a part of
P∗ are marked with ∗, those of B− with − and defences withD.

In the last step of Table 2.12 the opponent puts forward the rule a ← z to attack the defence
a. Note that the only rule with z in the head inR is z ← f , which due to the fact that f became
a culprit at Step 4. becomes an element of the set of blocked rules J −B . This in turn causes z
to become a part of (B ∩ L)↑↑ and in consequence also of B−. Also, a is a part of (B ∩ L)↑↑,
because all other rules with a in the head are blocked due to e becoming a culprit at Step 2. As a
consequence a also becomes an element of B−.

Note that no defence contrary at Step 7. is in B∗/−, fulfilling condition D ∩ B∗ / − = ∅ of
TA. Since there are no other means for the opponent to advance further, the dispute derivation
terminates with the proponent as the winner.
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2.4 Most Important Refinements Introduced By Flexible
Dispute Derivations

In flexible dispute derivations arguments of both players are represented by a graph, rather than
only those of the proponent as in graphical dispute derivations [7, 9]. Furthermore, in FlexDDs
the opponent makes use of the full argument graph obtained with the advancement of both play-
ers (as opposed to the proponent who only has a sub-graph of arguments created solely by them
at their disposal), enabling them to utilize arguments created by the proponent and releasing him
from the obligation to again derive arguments for already established claims.

Rule-based flexible dispute derivations offer a less abstract alternative to FlexDDs, in which
arguments are represented by rules and statements. While still enjoying the properties of FlexDDs,
RlFlexDDs are easier to implement.

Forward reasoning is an even more significant feature of FlexDDs, unused in previous variants
of dispute derivations. We have seen two versions of such reasoning: (1) the conservative forward
moves – deriving further conclusions from justified statements – and (2) the non-conservative for-
ward moves – allowing making use of assumptions not directly related with the current dispute
state. This kind of reasoning combined with the traditional backward approach allows to intro-
duce dispute derivations for semantics not considered in previous work, i.e. stable and complete,
of which the latter one will be described in full in the following chapter.
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3 A Modification in Flexible Dispute
Derivations for the Complete
Semantics

Flexible dispute derivations, as defined by Diller et al. [11], are capable of supporting the complete
semantics by defining an advancement type DC and termination criterion TC, specified for both,
FlexDDs and RlFlexDDs, in Table 3.1 and Table 3.2, respectively.

Proponent Opponent
PB-(A!), PF-((A! ∩A) ∪J ) OB-(D ∪J ), OF-((D ∪J ) ∩A)-2

Table 3.1: DC– advancement type for FlexDDs and the complete semantics.

Prop. Winning
FlexDDs RlFlexDDs Opp. Cannot Move Prop. Cannot Move
γ ∪ C ⊆ Conc(P∗),
B! / −
D

∩ B∗ / − = ∅,
J ⊆ D,
H ⊆ Conc(P∗)

γ ∪ C ⊆ P∗,
D ∩B∗ / − = ∅,
J ⊆ D,H ⊆ P∗

OB-(D) ∪
OF-(D ∩A)-2 or
OF-(A)

PB-(A!) ∪
PF-((A! ∩A) ∪J )
or PF-(A)

Table 3.2: Termination criteriaTC for the complete semantics. Note that the proponent winning condition
is specified for both versions, regular FlexDDs and RlFlexDDs, whereas the conditions regard-
ing the ability of each player to move are common for both versions as for the other semantics.
Conditions marked with blue colour in the “Prop. Winning” were not present in the original
work on FlexDDs [11] and have been additionally specified to guarantee the soundness.

However, a small but important modification is present in the termination criteria TC pre-
sented in Table 3.2 relative to the original formalization in form of an additional conditionH ⊆
Conc(P∗) for FlexDDs (andH ⊆ P∗ for RlFlexDDs). By providing a counter-example in Ta-
ble 3.3 for the framework from Example 3.0.1, we will show why a DC + TC FlexDD without this
additional condition is not guaranteed to be sound for the complete semantics.

Example 3.0.1 (ABA framework). Consider an ABA frameworkF ′ = (L,R,A,− ), whereA =
{a, b, c, d},R = {c̄← d, b̄← c}, −(u) = ū for u ∈ A andL = A ∪A.
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3 A Modification in Flexible Dispute Derivations for the Complete Semantics

St. & m. type P B / P J / D
0. {a} {} {b,c,d}
1. (OB2, b← c) {a} {b← c} {c,d}
2. (OB2, c← d) {a} {b← c; c← d} {d}
3. (PF2, d) {aD,dD} {b← c; c← dD} {}
4. (PF1, c← d) {a, c← dD} {b← cC} {b}
5. (PF2, b) {a, c← dD;bD} {b← cC} {}

Table 3.3: Counterexample of a DC + TC FlexDD for goals γ = {a} and the ABA framework from Exam-
ple 3.0.1. Contrary to previous examples of FlexDDs, this time a new columnJ /D is introduced
in order to keep track of the assumptions defended by the proponent at a dispute state which
are not defences.

Assuming the additional condition is not present in TC, the dispute derivation would have ter-
minated at Step 3. with a positive answer, claiming that the set of assumptions {a,d} is a com-
plete extension. However, as seen in Figure 3.1 this is not true: there exists an argument A s.t.
Prem(A) ⊆ {a,d} which defends b, namely A = c ← d. Once this argument gets constructed
by the proponent (Step 4.) the opponent’s argument b ← c gets defeated due to c becoming a
culprit. At this point b re-appears in J /D, and the proponent has to claim it in order to make
the extension complete. This shows, that the notion J of “currently defended assumptions by
the proponent” is limited only to those assumptions defended by arguments constructed by the
proponent, rather than the defences.

a b

c

d

b

c

Figure 3.1: Argument representation of the dispute state at Step 3. from Table 3.3.

In the remainder of this chapter, we will prove that the additional adjustment to TC suffices to
guarantee the soundness of DC + TC FlexDDs for the complete semantics. Following the original
proofs [11] we will do it indirectly, by showing the soundness of DF + TC FlexDDs, from which
also follows the soundness for the more restricted advancement types. Moreover, we will only
prove it for the FlexDDs version, relying on the correspondence that exists between FlexDDs and
RlFlexDDs (for this see [11]) that the same holds for RlFlexDDs.

Theorem 3.0.1. DF + TC FlexDDs are sound for the complete semantics, meaning that given a set
of goals γ if there is a DF + TC FlexDD ending with a dispute state (B,P) and the proponent as
winner, thenD is a complete extension w.r.t. which γ is acceptable.

Proof. Let (B,P) be a flexible dispute derivation state obtained by following the rules of DF ad-
vancement type and satisfying TC for a set of conflict-free goals γ. By showing thatD (and conse-
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quentlyP) constitute an admissible extension, we will first prove soundness of DF + TC FlexDDs
for the admissible semantics before turning to their complete counterpart. Since soundness for
the admissible semantics has already been proven by Diller et al. [11], this part of the proof will
have the form of a sketch.

(Admissible semantics.) First of all, at step (B,P) the goals γ must have been justified by
construction of complete arguments for each of them as indicated by the satisfied TC condition
γ ∪ C ⊆ P∗. As defined previously, an admissible extension is a conflict-free set of assump-
tions, that defends itself from all its attackers. By construction (definition of proponent’s moves)
D must always remain conflict-free as required by the proponent’s moves restrictions to not use
any rules nor assumptions containing culprits or attacking D. Now what remains to be shown
is that all attackers of D have been counter-attacked. By contradiction assume it is not the case.
Then either (1) there is some complete argument A′ ∈ B! / −

D
attacking a defence u ∈ D which is

not counter-attacked by a proponent’s complete argument or (2) such argument can still be con-
structed or completed. In case (1) we already encounter a contradiction as TC condition B! / −

D
∩

B∗ / − = ∅ results in A′ ∉ B∗ / − . Then either (i) Asm(A′) ∩ C ≠ ∅ or (ii) A′ is not a com-
plete argument, which is an immediate contradiction of our previous assumption. Case (i) on
the other hand indicates that A′ is indeed counter-attacked by some proponent’s argument A s.t.
Conc(A) ∈ (C ∩ Prem(A′)). Again, the γ ∪ C ⊆ P∗ condition ensures that A is complete
yielding contradiction in this case as well. In case (2) A′ (i) has not yet been constructed by the
opponent or (ii) is not yet complete. If (i) is the case the construction of A′ can be commenced
using OB-(D)-2 (thenA′ = h← B, given a ruleh← B ∈R s.t. h = u) or even completed within
one step with OF-(D∩A)-2 (thenA = u, given there is an assumptionu ∈ A). In (ii) caseA′ is in-
complete and can be backward-extended using OB-(D)-1 creating A′′ (then A′′ = A ⋖ h ← B,
given a rule h ← B ∈ R s.t. h ∈ Prem(A′)). However, neither of those moves is applicable
as required by the TC condition stating that the opponent cannot move using neither OB-(D) ∪
OF-(D ∩A)-2 nor OF-(A). Note that only one of those two disjuncts is enough to satisfy the
condition, as the second one can be seen as a stronger condition than the first one in that every
complete argument can be constructed by it (opponent can use any assumption and then prop-
agate forward using them as premises for new arguments effectively enabling opponent to yield
any complete argument constructible). Since only complete arguments attacking defences are of
interest and the second condition being satisfied means that no such argument can be constructed
we have a contradiction in either case.

(Complete semantics.) Now, knowing thatD is an admissible extension, let us assume that it
is not a complete one. From the definition of complete semantics it follows that in such a case there
must exist an assumption u s.t. u ∉ D andD defends u. The latter means that if there is a set of
arguments Args ′ s.t. Conc(Args ′) = u and a set of assumptions U ′ ⊆ Asm(Args ′) s.t. ∀A′ ∈
Args ′ ∃u′ ∈ Asm(A′) s.t. u′ ∈ U ′ then there also exists a set of conflict-free arguments Args =
{A ∣ Prem(A) ⊆ D} s.t. U ′ ⊆ Conc(Args). Assuming no such set Args ′ exists (meaning that
u is not attacked) we have that u ∈ J and by the J ⊆ D condition of TC it must consequently
hold that u ∈ D leading to a contradiction with our assumption that u ∉ D. Therefore Args ′

must exist. Now let us assume that Args ⊆ P∗, and therefore Conc(Args) ⊆ Conc(P∗). In
such case Args ′ would be blocked, i.e. Args ′ ∩ B∗ /− = ∅ and therefore u ∉ Conc(B∗ /−)
again resulting the contradictory conclusion that u ∈ J . Therefore Conc(Args) /⊆ Conc(P∗)
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and consequently Args /⊆ P∗. Note that since D ⊆ P∗ and P∗ and Args are conflict-free (by
admissibility and assumption respectively), then it holds that Args ⊆ (P∗ ∪ {h ← B ⋖ A ∣ h ←
B ∈ R / R∼,Args ∈ P∗}). Then Conc(Args) ⊆ H. From the additional TC condition we
know thatH ⊆ Conc(P∗). By transitivity we then have that Conc(Args) ⊆ Conc(P∗)which
again is a contradiction.
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4 Automatic Search

4.1 Move-Type-Preference Based Strategies

As shown previously, flexible dispute derivations are defined in terms of several types of moves
for each player. At each dispute state a number of moves of possibly different types are applicable.
Therefore, in the pursuit of meaningful ways to carry out the search for a successful dispute deriva-
tion, it seems only reasonable to define preference orderings for types of move and, additionally,
specify what should happen when more than one move of a certain type can be executed.

In the previous chapters move types have been defined parametrically containing variables ac-
cording to the chosen advancement types. E.g. for the DAB advancement type we have defined the
move PF-(A! ∩A)-2, whereas the corresponding move type in DS is PF-(A)-2. In what follows,
whenever the advancement type (and therefore the parameter value) is of no interest we will de-
note the moves simply without parameters, e.g. PF2. If both moves of some kind are considered,
the number will simply be dropped, i.e. PF would stand for both PF1 and PF2. We will also use
symbols ⟪⟫ to denote sequences, i.e. collections in which the order of elements appearing in them
is of significance.

The methods described in this chapter serve as theoretical underpinning of the system support-
ing FlexDDs we developed, hence the presented definitions will be relative to the more implemen-
tation-focused, rule-based variant of flexible dispute derivations.

Definition 4.1.1 (Potential move). Given an ABA framework (L,R,A,− ) a potential move m
is defined as a pair m = (type,piece)where:

piece =
⎧⎪⎪⎨⎪⎪⎩

h← B ∈R if type ∈ {PB, PF1, OB}
a ∈ A if type ∈ {PF2, OF2}

A potential move, as defined in Definition 4.1.1, contains the type of the move and a related
framework piece, i.e. a rule for moves of types utilizing rules (rule moves) or an assumption for
moves exploiting uttering of a single assumption (assumption moves).

Definition 4.1.2 (Preference ordering of move types). A preference ordering of move typesM =
{PB1, PB2, PF1, PF2, OB1, OB2, OF2} is a strict total order <M on the move types. For two move
types t, t′ ∈M we say that t is preferred to t′ if t <M t′. Given a non-empty set of possible moves
O = {(t1, p1), . . . , (tn, pn)} we define as <M (O) = {p ∣ (min<M {t1, . . . , tn}, p) ∈ O} the
set of moves of type chosen from O by <M .

Definition 4.1.2 explains a rather intuitive notion of preference ordering, i.e. given an ordering
<M and a set of possible moves O, an ordering will select the most preferred move type according
to <M and pieces from possible moves from O of this type.
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Definition 4.1.3 (Rule head choice). Given a set of rules R ⊆R, we denote by Rh′ the subset of
R consisting only of rules with head h′, formally Rh′ = {h← B ∈ R ∣ h = h′}. Furthermore, we
define two families of rule head choice functions 2R ↦ 2R, namely MostRules and LeastRules.
For every function mostRules ∈ MostRules it holds for every R ⊆ R that mostRules(R) ∈
{Rh′ ∣ ¬∃h′′ with ∣Rh′′ ∣ > ∣Rh′ ∣}. Similarly, for every function leastRules ∈ LeastRules it
holds for every R ⊆R that leastRules(R) ∈ {Rh′ ∣ ¬∃h′′ with ∣Rh′ ∣ > ∣Rh′′ ∣}.

When applied to a set of rules, a rule choice function r from Definition 4.1.3 will simply return
a subset of rules having the same head. The returned subset will be of greatest cardinality among
such subsets if r ∈ MostRules, otherwise of least cardinality (if r ∈ LeastRules).

Definition 4.1.4 (State distance). Let us denote by S the set of all possible dispute states. Given
a dispute state (B,P), set of goals γ and a termination criterion c ∈ {TA, TC, TS} stateDistance
is a function {TA, TC, TS} × 2L × S ↦ N defined as follows:

stateDistance(c, γ, (B,P)) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣D ∩B∗ / −∣ + ∣(γ ∪ C) / P∗∣ if c = TA
∣D ∩B∗ / −∣ + ∣(γ ∪ C) / P∗∣ + ∣J / D∣ if c = TC
∣D ∩B∗ / −∣ + ∣(γ ∪ C) / P∗∣ + ∣A / (D ∪ C)∣ if c = TS

Informally, the function stateDistance from Definition 4.1.4 measures how close the current
dispute state is to one satisfying the given termination criterion.

Definition 4.1.5 (The set of statements in the dispute state after application of a rule). Given
a dispute state (B,P), a ruleh← B and a playerp ∈ {proponent, opponent} the set of statements
in the dispute state after application of a rule is defined as:

(B,P)(h←B,p) =
⎧⎪⎪⎨⎪⎪⎩

((B ∩L) ∪ {h} ∪B, P ∩L) if p = opponent
((B ∩L) ∪ {h} ∪B, (P ∩L) ∪ {h} ∪B) if p = proponent

Definition 4.1.6 (Rule comparison). Rule comparison functions (at a dispute state) are func-
tions of the formR × S × 2L × {proponent, opponent} × {TA, TC, TS} ↦ N. We define the fol-
lowing rule comparison functions: bodySize, newStatementsSize and lookaheadSize. Given a
rule r = h ← B, a dispute state (B,P), a set of goals γ, a player p ∈ {proponent, opponent} and
a termination criterion c ∈ {TA, TC, TS}, we have:

• bodySize(r, (B,P), γ, p, c) = ∣B∣

• lookaheadSize(r, (B,P), γ, p, c) = stateDistance(c, γ, (B,P)(r,p))

• newStatementsSize(h← B, (B,P), γ, p, c) =

∣({h} ∪B) / X∣where X =
⎧⎪⎪⎨⎪⎪⎩

B if p = opponent
P if p = proponent

Definition 4.1.7 (Rule sorting). Let us again denote by S the set of all possible dispute states.
Given a rule comparison function dist and asc ∈ {⊺,�} sorting functions w.r.t. dist and asc
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are functions sortdist ,asc : 2R × 2L × S × {proponent, opponent} × {TA, TC, TS} satisfying for
R ⊆ R, a dispute state (B,P), a player p ∈ {proponent, opponent} and a termination criteria
c ∈ {TA, TC, TS}:

i) sortdist ,asc(R,γ, (B,P), p, c) = ⟪r1, . . . , rn⟫with ri ∈ R iff ri ∈ ⟪r1, . . . , rn⟫
for each 1 ≤ i ≤ n,

ii) if sortdist ,⊺(R,γ, (B,P), p, c) = ⟪r1, . . . , rn⟫ then dist(ri, γ, (B,P), p, c) ≤
dist(rj , γ, (B,P), p, c)whenever i ≤ j for each 1 ≤ i, j ≤ n,

iii) if sortdist ,�(R,γ, (B,P), p, c) = ⟪r1, . . . , rn⟫ then dist(ri, γ, (B,P), p, c) ≥
dist(rj , γ, (B,P), p, c)whenever i ≤ j for each 1 ≤ i, j ≤ n,

Functions defined in Definition 4.1.6 provide ways of ranking rules by assigning natural num-
bers to them. Then, sorting functions from Definition 4.1.7 enables to sort the rules in either
ascending or descending order by their assigned number. This allows us to formally define the
order in which rules should be considered in the automatic search for dispute derivations. E.g. a
sorting function sortbodySize,⊺ would return a sequence of rules sorted in ascending order by the
body size.

Definition 4.1.8 (Strategy). A strategy Strat is a tuple (<M ,H,R,A), where <M is a prefer-
ence ordering of move types, H ∈ {mostRules, leastRules} is a head choice function, R ∈
{bodySize,newStatementsSize,lookaheadSize} is a rule comparison function andA ∈ {⊺,�}.
Given a set of possible moves O = {(t1,m1), . . . (tn,mn)} at a dispute state (B,P) and a ter-
mination criterion c ∈ {TA, TC, TS}, moves chosen by the strategy are defined as:

Strat(O) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(min<M {t1, . . . , tn},<M (O)) if min<M {t1, . . . , tn} ∈ {PF2, OF2}
(min<M {t1, . . . , tn}, sortR,A(H(<M (O)), (B,P), proponent, c))

if min<M {t1, . . . , tn} ∈ {PB1, PB2, PF1}
(min<M {t1, . . . , tn}, sortR,A(H(<M (O)), (B,P), opponent, c))

if min<M {t1, . . . , tn} ∈ {OB1, OB2}

As defined in Definition 4.1.8, assuming a set of possible moves, a strategy returns a pair, of
which the first element is the type of the chosen moves and the second is the sequence of actual
moves of this type, filtered and ordered according to the chosen strategy parameters. Note that
because we focused on moves using rules, then if the move type chosen by the strategy is an as-
sumption move (moves PF2 or OF2) all moves of this type are simply returned.

Naturally, theH ,R, andA elements ofStrat could be defined individually for both players. In
such case each player could examine rule moves in their own way. However, since that approach
would significantly increase the number of possible definable strategies, we decided to force both
players to proceed in the same manner1.

1However, our implementation described in Chapter 5 allows to specify the parameters H , R, and A independently
for each player.
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4 Automatic Search

4.2 Search Algorithms

We now turn to defining search algorithms for finding successful dispute derivations. Towards
these, we first need to extend the notion of dispute derivation state to obtain a data structure
aiding in optimizing the search or enabling to support grounded and preferred semantics.

Definition 4.2.1 (Extended dispute derivation state). Given an ABA framework (L,R,A,− )
and a (rule-based) dispute derivation state (B,P) an extended dispute derivation state is defined
as a tuple (B,P, Ia, Ic,Ctr) where Ia, Ic,Ctr ⊆ A we call the ignored proponent’s assumptions,
ignored culprit candidates and constraints, respectively.

The intuitive meaning of the additional elements in extended dispute derivation states as in
Definition 4.2.1 is as follows:

• Ia must not become defences, i.e. the proponent cannot put forward these assumptions
nor any rule containing these assumptions in its body during a dispute derivation,

• Ic must not become culprits, i.e. if u ∈ Ic, then the proponent cannot let u become a
part of P, neither by putting forward the statement u if u is an assumption, nor by putting
forward a rule having u in its head or body.

• Ctr again, must not become defences. Although in this sense these assumptions satisfy
the same constraint as those in Ia, they come to have this role for a different reason in the
algorithms we put forward in what follows, thus the need to distinguish between them.

Definition 4.2.2 introduces the filter function, which removes possible moves violating the
above conditions. We will explain how filtering of such moves impact the search in what comes
after.

Definition 4.2.2 (Filtering moves). Given a set of possible movesO = {(t1,m1), . . . (tn,mn)},
and an extended dispute stateS = (B,P, Ia, Ic,Ctr)we define the following auxiliary functions:

• filterPR(O,S) ={(t, h← B) ∈ O) ∣ h← B ∈R,B ∩ (Ctr ∪ Ia) = ∅,
{u ∈ A ∣ u ∩ ({h} ∪B) ≠ ∅} ∩ Ic = ∅, t ∈ {PB, PF1}}

• filterPA(O,S) ={(t, a) ∈ O ∣ a ∈ A, a ∉ (Ctr ∪ Ia),{u ∈ A ∣ u = a} ∩ Ic = ∅, t = PF2}

• filterO(O,S) ={(t,m) ∈ O ∣ t ∈ {OB, OF}}

Then, we define the function, which filters possible moves to be performed as:

filter(O,S) = filterPR(O,S) ∪ filterPA(O,S) ∪ filterO(O,S)

Ia are those assumptions, which during a dispute derivation could be added to P using PF2

moves. In such cases our non-deterministic search algorithm branches and creates two dispute
states: one which adds the assumption to P and the other which adds it to Ia, blocking it also
for the future dispute states of this branch. The motivation behind such behaviour is that if an
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assumption has not been added to the defence on the first occasion, then it seems reasonable to
not consider adding it in the later stages of the same branch of the search.

Similarly, Ic are those culprit candidates, which during a dispute derivation could have been at-
tacked by the proponent (using moves PB2 or PF2), who decided not to do so. When encountering
a culprit candidate, automatic search creates new branches for state(s) attacking said assumption
using all possible means as well as a state ignoring (not-attacking) it. On the other hand, Ctr is
used to support the grounded and preferred argumentation semantics and will be regarded later.
Algorithm 1 formally defines the behaviour of the search algorithm imposed by Ia and Ic (cases
PF2 and PB2). For PB1 moves states for all possible rules are created, preserving the order imposed
by the strategy. For PF1 moves as well as for all opponent moves a state related to the first move in
the ordered moves sequence is created, since there is no non-determinism involved.

Function GetNextStates from Algorithm 1 has the current dispute state, the chosen strategy
and a set of moves which are possible to be performed at the current dispute state as input data
and returns the sequence of dispute states to be examined next. In line 2 the strategy is applied
to the set of possible moves, returning the type of the chosen moves as well as the sequence of
the moves of that type chosen by the strategy. Furthermore, in a switch statement the new states
are prepared appropriately to the move type. Note that whenever choices are deterministic (as in
cases PF1, OB1, OB2 or OF2) a singleton sequence is simply returned with the next dispute state. In
other cases a sequence of next states representing all non-deterministic choices the algorithm has
is returned.

In case PB1, in which the proponent has to backward expand a statement, the algorithm re-
turns dispute states for each of the rules in the order specified by the strategy. Case PB2 assumes
attacking a culprit candidate (or culprit candidates, if heads of chosen rules attack more than one
assumption) by the proponent. However, the proponent can also choose not to attack. There-
fore, attackingStates contains the sequence of “attacking” dispute states for each applicable
rule, where the the order of rules enforced by the strategy is taken into account. Additionally,
an ignoringState is created, in which the proponent decides to give up on attacking the culprit
candidate by adding it to Ic.

In case PF2 the proponent can put forward an assumption. If the chosen advancement type is
DABor DABF, then the assumption is a contrary of some culprit candidate. However, if the advance-
ment type is beyond the aforementioned ones, then the assumption can be “unrelated” to the the
current dispute (a non-conservative move). Therefore, a dispute state which accepts adding the
assumption to the players’ sets is created (takingState) as well as another one, which ignores it
(ignoringState). In the latter case, there is a distinction: if the assumption attacks some culprit
candidates, then these culprit candidates are added to Ic. This represents the similar case as with
PB2, where the proponent could decide not to attack particular culprit candidates. However, if
the assumption is not attacking any culprit candidates (non-conservative move), the proponent
can simply choose to not put it forward, namely add it to Ia.
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Algorithm 1: GetNextStates function.
input : S = (B,P, Ia, Ic,Ctr) /* current dispute state */ ,

Strat = (<M ,H,R,A) /* strategy */ ,
O = {(t1,m1), . . . , (tn,mn)} /* a set of possible moves at the current state S w.r.t. to the chosen
advancement type and termination criteria */

output: newStates = ⟪(B1,P1, Ia1 , Ic1 ,Ctr1), . . . , (Bl,Pl, Ial , Icl ,Ctr l)⟫ /* chosen sequence states
to be examined next */

1 function GetNextStates(S, Strat , O)
2 (chosenMoveType, chosenMovesSequence)←Ð Strat(O) /* get chosen move type and moves

sequence using strategy Strat */
3 newStates ←Ð ⟪⟫ /* initialize newStates */
4 switch chosenMoveType do
5 case PB1 do /* chosenMovesSequence is a sequence of rules */
6 newStates ←Ð ⟪(B ∪ ({h} ∪B1),P ∪ ({h} ∪B1), Ia, Ic,Ctr), . . . , (B ∪ ({h} ∪

Bn),P ∪ ({h} ∪Bn), Ia, Ic,Ctr)⟫ for h← Bi ∈ chosenMovesSequence /* create a
sequence of new dispute states using rules in chosenMovesSequence , preserve the order */

7 case PB2 do /* chosenMovesSequence is a sequence of rules */
8 attackingStates ←Ð ⟪(B ∪ ({h} ∪B1),P ∪ ({h} ∪B1), Ia, Ic,Ctr), . . . , (B ∪ ({h} ∪

Bn),P ∪ ({h} ∪Bn), Ia, Ic,Ctr)⟫ for h← Bi ∈ chosenMovesSequence /* create a
sequence of new dispute states in which prop. attacks some culprit candidate using rules in
chosenMovesSequence , preserve the order */

9 attackedAssumptions ←Ð {a ∈ A ∣ a← B ∈ chosenMovesSequence} /* get the set of
assumptions attacked by head of rules from chosenMovesSequence */

10 ignoringState ←Ð (B,P, Ia, Ic ∪ attackedAssumptions,Ctr) /* get new state in which
the attacked assumptions get ignored */

11 newStates ←Ð attackingStates.append(ignoringState) /* append ignoringState to
attackingStates */

12 case PF1 do /* chosenMovesSequence is a sequence of rules */
13 h← B ←Ð chosenMovesSequence[0] /* take first rule, does not matter which */
14 newStates ←Ð ⟪(B∪ ({h}∪B),P∪ ({h}∪B), Ia, Ic,Ctr)⟫ /* get new state by adding

rule to B and P */

15 case PF2 do /* chosenMovesSequence is a sequence of assumptions */
16 b←Ð chosenMovesSequence[0] /* take first assumption b */
17 takingState ←Ð (B ∪ {a},P ∪ {a}, Ia, Ic,Ctr)/* get new state by adding b to B and P */
18 attackedAssumptions ←Ð {a ∈ A ∣ a = b} /* get set of assumptions attacked by b */
19 ignoringState ←Ð Nil /* initialize ignoringState */
20 if attackedAssumptions ≠ ∅ then /* if b attacks some assumptions */
21 ignoringState ←Ð (B,P, Ia, Ic ∪ attackedAssumptions,Ctr) /* get new

ignoringState by adding attacked assumptions to ignored culprit candidates Ic */
22 else /* otherwise, get new ignoringState by adding b to ignored assumptions Ia */
23 ignoringState ←Ð (B,P, Ia ∪ {b}, Ic,Ctr)
24 newStates ←Ð ⟪takingState, ignoringState⟫ /* return both states */

25 case OB1 or OB2 or OF1 do /* chosenMovesSequence is a sequence of rules */
26 h← B ←Ð chosenMovesSequence[0] /* take first rule */
27 newStates ←Ð ⟪(B ∪ ({h} ∪B),P, Ia, Ic,Ctr)⟫ /* get new state by adding rule to B */

28 case OF2 do /* chosenMovesSequence is a sequence of assumptions */
29 a←Ð chosenMovesSequence[0] /* take first assumption a */
30 newStates ←Ð ⟪(B ∪ {a},P, Ia, Ic,Ctr)⟫ /* get new state by adding a to B */

31 return newStates
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The recursive function GetSuccessfulDDs from Algorithm 2 is the main automatic-search
procedure, responsible for constructing and operating on the dispute derivation search tree. It
starts with checking the guard condition – if no more dispute states are remaining – and returns
the successful dispute states found in the process if that is the case. Otherwise, it removes the first
dispute state from the collectionStates and generates the set of possible moves at this state accord-
ing to the advancement typeA. This is represented by the function getPossibleMoves , which is
not explicitly listed here, but returns the moves applicable for dispute state advancement accord-
ing to Table 2.9 and Table 2.10, as well as advancement types defined in Table 2.4 or Table 3.1
from previous chapters. The moves are further filtered using the function from Definition 4.2.2.
In line 9 another implicitly defined function is used, namely isOver , which checks whether the
termination criterion C is satisfied as defined in Table 2.11 or Table 3.2, using the current state
currState to verify if the “proponent winning” condition is fulfilled and possibleMoves to
check each player’s advancement possibilities. This function can return one of the following out-
comes: the proponent has won, the opponent has won, or the dispute derivation is still ongoing.
In the first case the obtained dispute state is appended to the set of found successful states. In
the latter case, the dispute state is simply abandoned. Finally, if the dispute state has not finished
yet, further advancement alternatives are obtained using the function GetNextStates defined in
Algorithm 1. The obtained sequence of the next possible search steps is then either appended at
the beginning or the end of the remaining dispute state collection, depending on the search type
St . In case of depth-first search (DFS), the first option applies, and the collection of states states ′
can be seen as a stack. In the latter breadth-first search (BFS) case, states ′ resembles a queue.
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Algorithm 2: GetSuccessfulDDs recursive function. Assuming it is called at the begin-
ning of a dispute derivation and a set of goals γ, fixed strategy Strat , termination crite-
ria C , advancement type A and search type St the initial function call is GetSuccess-
fulDDs(⟪(γ, γ,∅,∅,∅)⟫, ∅, Strat , C , A, St ). Here, as well as in the following listings
method pop() called on a sequence returns the first element of it and removes it from the
sequence. If called on a set it simply returns a single element from the set and removes it
from the set.

input : States = ⟪(B1,P1, Ia1 , Ic1 ,Ctr1), . . . , (Bn,Pn, Ian , Icn ,Ctrn)⟫, /* current dispute states */
SuccStates = {(B1,P1, Ia1 , Ic1 ,Ctr1), . . . , (Bl,Pl, Ial , Icl ,Ctr l)} /* currently found
successful states */,
Strat = (<M ,H,R,A), /* strategy */
C ∈ {TA,TC,TS} /* termination criteria */,
A ∈ {DAB,DABF,DC,DS} /* advancement type */,
St ∈ {DFS,BFS} /* search type, depth-first-search or breadth-first search */

output: succStates = {(B1,P1, Ia1 , Ic1 ,Ctr1), . . . , (Bm,Pm, Iam , Icm ,Ctrm)} /* successful states
found */

1 function GetSuccessfulDDs(States , SuccStates , Strat , C , A, St)
2 if States = ⟪⟫ then /* if there are no more states to examine */
3 return SuccStates /* return found successful states */

4 currState ←Ð States.pop() /* take first state from States */
5 possibleMoves ←Ð getPossibleMoves(currState,A) /* get possible moves at the current state

according to advancement A */
6 possibleMoves ←Ð filter(possibleMoves, currState) /* filter possible moves */
7 states ′ ←Ð States /* initialize states ′ with remaining states */
8 succStates ′ ←Ð SuccStates /* initialize succStates ′ with currently found successful states */
9 switch isOver(currState,possibleMoves,C) do /* check if dispute over according to termination

criteria C */
10 case ProponentWon do /* C indicates that proponent has won */
11 succStates ′.append(currState)
12 case OpponentWon do /* C indicates that opponent has won */

// do nothing. . .

13 case NotOver do /* C indicates that dispute has not terminated */
14 newStates ←Ð GetNextStates (currState, Strat , possibleMoves)
15 if searchType = DFS then /* if DFS prepend newStates to the beginning of the list */
16 states ′ ←Ð newStates.join(states ′)
17 else // else, if BFS append newStates at the end
18 states ′ ←Ð states ′.join(newStates)

19 GetSuccessfulDDs(states ′, succStates ′, Strat , C , A, St) /* continue searching using new states
states ′ */

We have additionally decided to re-use the procedure from Algorithm 2 for the complete se-
mantics in order to define algorithms searching for grounded and preferred extensions, utilizing
the mechanism of constraints (Ctr ) from Definition 4.2.1.
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Algorithm 3: GetSuccessfulGrdDDs recursive function. For a set of goalsγ, a fixed strat-
egyStrat and a search typeSt the initial function call isGetSuccessfulGrdDDs(0,γ,{∅},
Strat , St ).

input : N , /* an integer, current assumption set size */
γ ⊆ L, /* goals */
Asms = {U1, . . . , Un}, Ui ⊆ A for 1 ≤ i ≤ n, /* set of sets of assumptions */
Strat = (<M ,H,R,A), /* strategy */
St ∈ {DFS,BFS} /* search type */

output: succStates = {(B1,P1, Ia1 , Ic1 ,Ctr1), . . . , (Bl,Pl, Ial , Icl ,Ctr l)} /* success. states found */

1 function GetSuccessfulGrdDDs(N , γ, Asms , Strat , St)
2 if Asms = ∅ then /* if all assumption sets in Asms checked */
3 n′ ←Ð N + 1 /* increase the cardinality of next assumption sets */
4 asms ′ ←Ð {x ⊆ A ∣ ∣x∣ = n′} /* get new, larger assumption sets */
5 GetSuccessfulGrdDDs (n′, γ, asms ′, Strat , St) /* search for grounded extensions using new

assumption sets asms ′ */
6 else
7 aSet ←Ð Asms.pop() /* take any assumption set from Asms */
8 ctrs ←Ð A / aSet /* fix the contraries as the complement of aSet */
9 succGrd ←Ð GetSuccessfulDDs({(aSet ,aSet ,∅,∅,Ctr)},∅, Strat , TC, DC, St)

/* find all successful grounded dispute states using aSet */
10 if succGrd = ∅ then /* if no successful found */
11 GetSuccessfulGrdDDs (N , γ, Asms , Strat , St) /* check remaining sets in Asms */
12 else /* otherwise, return those successful states which justify goals γ */
13 return {(B,P, Ia, Ic,Ctr) ∈ succGrd ∣ γ ⊆ P}

As has been previously defined, a grounded extension S is a ⊆-minimal complete extension,
meaning that no strict subset of a grounded extension is a complete extension. Hence, in the
procedure from Algorithm 3 we search for such an extension, by starting from the minimal set
of assumptions (the empty set) and gradually adding new assumptions (line 4) until a complete
extension is found. If a current set of assumptions aSet is considered, the rest of the assumptions
A / aSet become constraints (lines 7 and 8). Then (line 9) the GetSuccessfulDDs procedure is
used to check if aSet is a complete extension (note the use of DC and TC). If that is the case, then
the extension is returned, provided that it justifies the goals γ. Otherwise, the search continues.

Similarly to its grounded counterpart, the algorithm for the preferred semantics also utilizes
constraints and the procedure GetSuccessfulDDs to find successful dispute derivations satisfying
completeness. However, in case of the preferred semantics, the search starts from the maximal
set of assumptions (simply all assumptions, A) which gets gradually reduced. The procedure is
presented in Algorithm 4.
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Algorithm 4: GetSuccessfulPrefDDs recursive function. For a set of goals γ, a fixed
strategy Strat and a search type St the initial function call is GetSuccessfulPrefDDs(γ,
∅, {A},∅,∅, Strat , St ).

input : γ ⊆ L, /* goals */
SuccStates = {(B1,P1, Ia1 , Ic1 ,Ctr1), . . . , (Bn,Pn, Ian , Icn ,Ctrn)}, /* currently found
successful states */
Asms = {U1, . . . , Ul}, Ui ⊆ A for 1 ≤ i ≤ l, /* set of sets of assumptions */
SuccAsms = {U1, . . . , Uj}, Ui ⊆ A for 1 ≤ i ≤ j, /* set of successful assumption sets */
FailAsms = {U1, . . . , Uk}, Ui ⊆ A for 1 ≤ i ≤ k, /* set of failed assumption sets */
Strat = (<M ,H,R,A), /* strategy */
St ∈ {DFS,BFS} /* search type */

output: succStates = {(B1,P1, Ia1 , Ic1 ,Ctr1), . . . , (Bm,Pm, Iam , Icm ,Ctrm)} /* successful states
found */

1 function GetSuccessfulPrefDDs(γ, Asms , SuccAsms , FailAsms , Strat , St)
2 if Asms = ∅ then /* if all assumption sets in Asms checked */
3 asms ′ ←Ð {newASet ⊂ fail ∣ fail ∈ FailAsms, ∣newASet ∣ = ∣fail ∣ − 1,newASet ∉

FailAsms,¬∃aSet ∈ SuccAsms s.t. newASet ⊆ aSet} /* get new set of assumption sets */
4 if asms ′ = ∅ then /* if no new assumption set created, return from function */
5 return {(B,P, Ia, Ic,Ctr) ∈ SuccStates ∣ γ ⊆ P} /* return succ. states justifying γ */
6 else /* otherwise search new pref. extensions using the new set */
7 GetSuccessfulPrefDDs (γ, SuccStates , asms ′, SuccAsms , FailAsms , Strat , St)

8 else
9 aSet ←Ð Asms.pop() /* take any assumption set from Asms */

10 ctrs ←Ð A / aSet /* fix the contraries as the complement of aSet */
11 succPref ←Ð GetSuccessfulDDs (({(aSet ,aSet ,∅,∅, ctrs)},∅, Strat , TC, DC, St)

/* find all successful preferred dispute states using aSet */
12 if succPref = ∅ then /* if no successful found */
13 GetSuccessfulPrefDDs (γ, SuccStates , Asms , SuccAsms , FailAsms ∪ {aSet},

Strat , St) /* add aSet to set of failed assumption sets, check remaining sets in Asms */
14 else /* otherwise add aSet to successful assumptions and succPref to successful states */
15 GetSuccessfulPrefDDs (γ, SuccStates ∪ succPref , Asms , SuccAsms ∪ {aSet},

FailAsms , Strat , St)

4.3 Approximate reasoning

When computing successful dispute derivations becomes too inefficient (especially, in case of large
frameworks), approximate methods can offer a trade-off between faster computation and reduced
accuracy. The main motivation behind using approximate methods is the hypothesis that it allows
to obtain the answer more efficiently, when some simplifications are applied.

There has been some work in the use of approximate algorithms in formal argumentation. In
structured argumentation alone one can distinguish between the techniques proposed by Thimm
and Rienstra [26] and Sun [25]. Since the first one is defined in terms of the ASPIC+ structured
argumentation framework we will not consider it in this work and instead focus on a simplifica-
tion of an approach defined in the latter work, which is specifically tailored for dispute derivations
in ABA, called “rule sampling”.
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Rule sampling allows for conducting dispute derivations on parts of the original framework,
which reduces the number of rules in the framework. Rules are crucial to ABA, since they allow
to construct arguments, hence this approach assumes that many arguments will not have to be
constructed or counter-attacked if a subset of rules is removed. Additionally, note that the pres-
ence of many same-headed rules is one of the most significant sources of non-determinism and
inefficiency in our algorithms.

We can however distinguish at least two approaches to this kind of approximation, which we
will refer to as “static” and “dynamic” rule sampling. The first one removes a number of rules
from the framework at the beginning of the dispute derivation, banning them from being used
throughout the entire dispute derivation. On the other hand, the latter one does so during the
dispute derivation, i.e. when a number of possible rule-moves is applicable to the current dispute
state, some of them might be discarded. Although both approaches may seem very similar, there
are differences: first of all, the “static” approach may filter out rules, which would not be used
during the dispute derivation anyway, whereas the “dynamic” approach will remove rules relevant
to the current dispute state. Moreover, in the “dynamic” rule-sampling, some ruled-out moves
may again become available in further steps of the dispute derivation, assuming that they will not
be randomly chosen to be removed again. “Static” sampling behaves differently, i.e. once a rule is
randomly removed from the search at the beginning, it will never become available again.

Following the approach by Sun [25], sampling in this work is carried out for both players in-
dependently, i.e. each player gets assigned a value denoting the probability of a rule to not be
removed, namely pprop and popp for the proponent and the opponent, respectively.

In terms of the credulous acceptance problem, independent sampling has the advantage over
“general” sampling (single reduction of rules’ set for both players) in that, while it is an approx-
imation it still can guarantee some correctness for certain cases. Note that with no sampling
(pprop = 1, popp = 1) the obtained answers are guaranteed to be true. With sampling from the
opponent side (pprop = 1, popp ∈ [0,1]), the negative answers are guaranteed to be true. This
is a simple consequence of the fact that if the proponent cannot successfully defend from a sub-
set of all opponent’s constructible arguments, then certainly he cannot defend from all of them
either. The positive answers are not guaranteed to be true because, as mentioned before, there
might be arguments from which the proponent might be unable to defend himself, which have
not been constructed due to the reduction of the opponent’s rule set. The exact opposite holds
for sampling from the proponent, i.e. if pprop ∈ [0,1], popp = 1, where only the positive answers
are guaranteed to be correct. In case of bi-directional sampling (pprop ∈ [0,1], popp ∈ [0,1])
no answers are guaranteed to be correct. This shows that for large frameworks one could use ap-
proximation to obtain an answer more quickly and still be certain about its correctness for certain
cases.

Given that these kinds of distinctions between various sampling combinations have been de-
fined, it is of interest to examine not only the accuracy (probability, that an obtained answer is
correct) obtained by an approximation, but other indicators such as sensitivity (the probability
that an obtained positive answer is correct) and specificity (probability that an obtained negative
answer is correct). According to what has been stated before, we expect the results of sampling
from the proponent side to have specificity of 1.0 and sampling from the opponent side to have
sensitivity of 1.0.
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We have implemented the rule-based approach to FlexDDs in Scala version 2.13.5 as the system
which we call flexABle. The choice of programming language for this project was not accidental.
Given that most of the algorithms defined in Section 4 include recursive calls or the fact that ABA-
arguments are defined as trees (which cannot be operated on without recursion), many other
(non-functional) programming languages would require to optimize those functions and rule out
the recursion in order to avoid stack overflowing. However, recursive calls are the preferred way
of handling repetitive operations in functional programming languages (such as Scala), which are
converted to regular loops “under the hood” (tail recursion). This way the efficiency is not affected
and simultaneously, code written in Scala can remain simple, elegant and easy to understand. Ad-
ditionally, Scala offers a built-in support of numerous operations which enable implementing
many operations directly from their formal definitions. Finally, functional programming’s pat-
tern matching technique is of great use whenever one needs to differentiate between divergent
entities be that, in our case, the recognition between single statements s or rules h ← B for in-
stance within the set of elements put forward by each player (BorP) or between moves of different
types.

The system flexABle supports a variety of tasks related to (flexible) dispute derivations in ABA.
In the following section some of the main features will be described. The program and some
examples are available at

https://github.com/gorczyca/aba-dd-rule-based

5.1 Interactive Reasoning

The main objective of flexABle is to support the execution of rule-based flexible dispute deriva-
tions. Users can simulate moves of both players according to any advancement type or termina-
tion criterion. At each step all possible applicable moves can be viewed from which one can be
chosen to be performed next. The system prints the current dispute state and, whenever some
termination criterion is met, this is indicated to the user. Additionally, the user can backtrack in
order to e.g. pick a different move at a certain point. At any stage the termination criterion and
advancement type can be changed. Derivations can additionally be restored to any past state.

The depicted Dispute States 2. and 3. on the left side of Figure 5.1 correspond to States 14. and
15. of the dispute-search from Figure 1.4. The user interface of flexABle starts with the system
informing about the last move performed and the current dispute state by showing the contents
of the following sets: the proponent’s set P (P), the opponent’s set without proponent’s pieces
B / P (B/P), defencesD (D) and culprits C (C). This is followed by showing all applicable moves at
that stage upon the user’s request (command “?” in the figure). Next the user chooses the move
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to be performed by specifying its type and index as presented under “Possible moves”. At Step 3.
the termination of the derivation is announced together with its outcome.

2: PB1: q← i:

P:

*q← i; *a; *p← a,b,q;

*i; *p; *q; *b

B\P:

D:

a,i,b

C:

?

Possible moves:

OB2:

0: OB2: xa← e,v

1: OB2: xa← z

2: OB2: xi← g

ob2 2

3: OB2: xi← g:

P:

*q← i; *a; *p← a,b,q;

*i; *p; *q; *b

B\P:

*g; *xi; *xi← g

D:

a,i,b

C:

Game over. Opponent won.

6: OB1: z← f:

...

struct

[0] Proponent Inside

[1] Proponent Attacking

[2] Opponent Inside

[3] Opponent Attacking

1

Goal view:

UNBLOCKED DEFENCES CONTRARIES:

[0] xa

0

Argument view:

[0] xa← [z← [f]]

[1] xa← [e,v← [i]]

[2] xa← [e,v← [h]]

1

Statement view:

[0] e

[1] i

0

Rule/assumption view:

[0] PB2: xe← c

0

7: PB2: xe← c:

...

Figure 5.1: User interface of flexABle. Here, as well as in all other examples from this section, the used
input framework is the one from Example 1.1.1. The user input is highlighted with green colour.
For each assumptionu ∈ A, its contrary ū is denoted asxu. The left-side listing presents the reg-
ular support of rule-based FlexDDs execution. The right-side listing illustrates the “interactive-
structured” view.

Interactive, Structured Reasoning

Our system flexABle offers additional support for exploring dispute derivations, which we call
the “interactive-structured” view. This view provides four approaches, namely proponent’s inside
/ attacking and opponent’s inside / attacking, allowing to explore the current dispute state from
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the most general perspective to the most specific one and choose the next move to perform. E.g.
given a player, the inside views first present statements for which the player constructs arguments
and allows to choose one of them. Next the incomplete arguments of the player for this state-
ment are presented, from which the user can again choose one, followed by flexABle presenting
non-assumption premises of the argument and again allowing the user to choose one. Finally,
once a statement has been chosen, the system proposes all possible moves (rules) for the player to
expand it.

The attacking views behave in a similar manner, but with a small difference. Given a player
they present the opposing player’s arguments and allow the user to choose how they should be
attacked. As an example consider the right-side listing of Figure 5.1. The starting state is Step 6.
from the dispute derivation from Figure 1.3 when the user switches to the proponent’s attacking
view. First (goal view) ā (xa) is shown as the only statement for which the opponent builds their
arguments. After choosing the only option all arguments for ā that the opponent has constructed
by that time, and which have not yet been counter-attacked are presented (argument view), from
which the user chooses ā ← [e, v ← [i]]. This argument’s assumptions e and i are later pre-
sented as the only two possible points of attack of this argument (statement view), out of which e
gets chosen. In the last step (rule/assumption view) the only move attacking the chosen assump-
tion is presented and selected by the user resulting in the creation of the next dispute state.

The “interactive-structured” view thus provides a user of flexABlewith an insight of the inter-
nal structure of arguments and allows them to choose the next move from the “argument-based”
viewpoint of dispute derivations.

5.2 Automatic Search

The system flexABle is also capable of finding a successful (rule-based FlexDD) dispute deriva-
tion given an input ABA framework provided that there exists one supporting the goals. It sup-
ports the semantics mentioned in this work i.e. admissible, complete, stable – by choosing the
appropriate advancement type and termination criteria – as well as grounded and preferred – by
making use of the algorithms from Chapter 4. The search strategy can be set to any combination
of parameters expressible by Definition 4.1.8. A Prolog-inspired feature allows to either stop or
continue the search once a successful dispute derivation has been found.

The left-side listing of Figure 5.2 presents the result of the automatic search of a successful
dispute derivation given the framework from Example 1.1.1 and goal p and with DAB and TA as
advancement type and termination criteria, respectively. The user keeps searching for the next
successful dispute derivation until the entire search tree has been traversed. Note that the search
corresponds precisely to that from Figure 1.3. The search strategy producing this output, accord-
ing to the Definition 4.1.8, can be defined as follows: Str ′ = (<′M , mostRules, bodySize,⊺)
where <′M= ⟪PF1, OB2, OF2, OB1, PB1, PB2, PF2⟫.

The right-side listing of Figure 5.2 shows the use of a similar feature, namely performing n
moves forward according to specified strategy. The dispute derivation after performing 8 moves
arrives at Step 8. of the dispute derivation from Figure 1.3.

Additionally, flexABle supports approximate reasoning in both variants – “static” and “dy-
namic” described in the previous chapter. For each player, the user can also set the associated p
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value in order to obtain an approximated answer using the desired sampling direction and rule’s
selection probability.

auto 1

Finding a successful derivation.

This can take a moment...

Successful derivation found in

0.0157521s.

1: [PB1: p← a,b,q]

2: [OB2: xa← e,v]

3: [OB2: xa← z]

4: [OB1: v← h]

5: [OB1: v← i]

6: [OB1: z← f]

7: [PB1: q← xe,r]

8: [PB1: r← c]

9: [PF1: xe← c]

10: [PF1: xf← xe]

Press ENTER to finish, ; to find

another one

;

Successful derivation found in

0.003243s.

1: [PB1: p← a,b,q]

2: [OB2: xa← e,v]

3: [OB2: xa← z]

4: [OB1: v← h]

5: [OB1: v← i]

6: [OB1: z← f]

7: [PB1: q← xe,r]

8: [PB1: r← d]

9: [PB1: xe← c]

10: [PF1: xf← xe]

Press ENTER to finish, ; to find

another one

;

No successful derivations found

f 8

8 moves performed.

1: [PB1: p← a,b,q]

2: [OB2: xa← e,v]

3: [OB2: xa← z]

4: [OB1: v← h]

5: [OB1: v← i]

6: [OB1: z← f]

7: [PB1: q← xe,r]

8: [PB1: r← c]

8: PB1: r← c:

P:

*r← c; xe; *a; p← a,b,q; p; *r;

q; *b; *c; q← xe,r

B\P:

-e; -xa← e,v; *v← i; *f; *i; *v;

*z← f; *xa← z; *h; *v← h; *xa;

*z

D:

a,b,c

C:

e

Figure 5.2: Automatic successful dispute derivation search in flexABle. Listing on the left side presents
two full successful dispute derivations found. Listing on the right side presents the outcome of
performing 8 moves forward.
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b

p

c

xe

q

r

a

c

z

xa

f

f

b

xe

e

a

p

r

c

z

xa q

v

z ← f

q ← xe,r

p ← a,b,q

xe ← c

xa ← e,v

r ← c

xa ← z

Figure 5.3: Graphical representation of Step 6. of the dispute derivation from Figure 1.3 in both represen-
tations, “argument-based” (left) and “rule-based” (right). In the left sub-figure the solid grey
background indicates the arguments’ completeness as before. The owner of the argument is
represented with the arguments’ nodes colour, where green-node arguments belong to the pro-
ponent and yellow-node ones to the opponent. The shapes of the argument tree nodes hint at
the trait of the statement labelling the feature, with the triangular and diamond shapes marking
arguments’ main claims and assumptions respectively. Other ordinary statements have rectan-
gular shapes. Again black arrows indicate rule-support whereas red ones indicate attack. In the
right sub-figure each element of B is presented. Green elements belong to P and yellow ones to
B/P. As before, red arrows and black arrows indicate attack and support relation, respectively.
Assumptions have diamond, rules hexagonal, goals triangular and regular statements rectangu-
lar shapes. Culprits have red background. Note that the grey-coloured nodes are not elements
of B, but they indicate that such a rule or statement is blocked.
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5.3 Graphical Output

A vital feature of flexABle is the generation of a graphical representation given a rule-based dis-
pute derivation state (B,P). The system converts the sets of rules and assumptions from play-
ers’ sets and outputs the corresponding argument sets, i.e. the closure of arguments under sub-
arguments and argument expansions constructible from B and P for the opponent and propo-
nent, respectively. Then only maximal arguments for goals and contraries of culprits and con-
traries of defences are shown. The argument representation is encoded in the graph description
language DOT, which can be later visualised by tools such as Graphviz.

Additionally, flexABle offers the option of generating a graphical representation of the “rule-
based” dispute state (B,P). In this view, each element of B is shown and its properties are indi-
cated with certain colours or shapes. Additionally, support and attack relations are shown.

The left sub-figure of Figure 5.3 presents the result of such a conversion from sets of rules and
assumptions to arguments obtained by flexABle, where Step 6. of the dispute derivation from
Figure 1.3 is shown. Note that the system indicates whether an argument is complete. Moreover,
flexABle is capable of detecting and notifying about self-conflicting (attacking own assumptions)
or circular (containing branches with directed paths leading from a node labelled with some state-
ment s to another node labelled with the same statement s) arguments. The latter ensures ter-
mination of argument generation. The right sub-figure of Figure 5.3 presents the “rule-based”
graphical representation of the same dispute state.

5.4 Interactive, Argument-Based Reasoning

A final, worth mentioning feature of flexABle is the “interactive, argument-based” reasoning
mode. In this mode the user simply keeps choosing between the players and the system constructs
one random argument for the chosen player. This enables the user to traverse through the dispute
derivation much faster by putting forward complete arguments one-by-one. The system also in-
dicates when the the dispute derivation has terminated.

Figure 5.4 depicts three successive states using the “interactive, argument-based” reasoning
mode. The first, left state is the initial one for the framework from Example 1.1.1 with goal p. The
second, middle one is after creating a random argument for the incomplete proponent’s state-
ment p. Finally, the last, right state is the result of creating a random argument for the opponent.
At this point the dispute derivation terminates unsuccessfully, which is indicated with the red
background colour.

Integration of Different Features

All of the features described in this chapter can be freely used at any stage of the dispute deriva-
tion and mixed with other features. E.g. it is possible to begin the dispute derivation by moving
n moves forward, then, at the n-th step check possible moves and perform a chosen one. This
can be followed by switching into “interactive, structured” or “interactive argument-based” view.
From that state the user can decide to let the system find a successful state using automatic search.
At any point, the dispute can be restored to any previous point, the termination criterion and
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Figure 5.4: “Interactive, argument-based” reasoning.

advancement type can be modified and a graphical output (“argument” or “rule”-based) can be
generated. Furthermore, the graphical representation can be generated automatically after each
user’s action enabling users to observe dispute states as they grow.
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6.1 Experimental Setup

The number of strategies, definable as in Section 4, is too large to be evaluated in its entirety. All
possible orderings alone amount to 7! (5040) and this number would have to be multiplied by the
magnitude of parameters for head- and rule choice, and for both proponent and the opponent.
Therefore only some fraction of definable strategies can be used to conduct experiments on.

The idea behind the choice of meaningful strategies was to manually pick a couple of them,
whose behaviour should be as diversified as possible. At the same time, strategies should only differ
between one another in as few parameters as possible in order to enable us to draw conclusions
from their behaviour and link these to said parameters. Table 6.1 presents the strategies we chose
to focus on in our experiments.

The chosen strategies’ intuitive behaviour is as follows:

• S1 – prioritizing the opponent’s moves, “patient” strategy – starts with the opponent con-
structing all possible arguments attacking the proponent’s defences. Only if all of their
applicable moves have been performed, can the proponent continue to construct their ar-
guments or counter-attack the opponent. This strategy should maximally delay branching
and aim to avoid the situation in which the opponent constructs all arguments in an un-
successful branch. Additionally, delaying proponent’s branching reduces the probability
of constructing opponent’s arguments against defences which anyway cannot be defended
by the proponent.

• S2 – prioritizing the proponent’s moves, “eager” strategy – starts with the proponent con-
structing all necessary arguments for his yet unjustified claims and, as soon there is some

Strat. <M H R A

S1 ⟪ PF1, OB1, OB2, OF2, PB1, PB2, PF2 ⟫ leastRules newStatementsSize ⊺
S1a mostRules newStatementsSize �
S1b ⟪ OB1, OB2 , OF2, PB1, PB2, PF2, PF1 ⟫ leastRules newStatementsSize ⊺
S2 ⟪ PF1, PB2, PF2, PB1, OB2, OF2, OB1 ⟫ leastRules newStatementsSize ⊺
S2a mostRules newStatementsSize �
S2b ⟪ PB2, PF2, PB1, OB2, OF2, OB1, PF1 ⟫ leastRules newStatementsSize ⊺
SAG ⟪ PF1, PB1, OB2, OF2, OB1, PB2, PF2 ⟫ random lookaheadSize ⊺

Table 6.1: Strategies selected for experimental evaluation. TheH ,R, andA choices in each strategy indicate
the selected values for both players (both, the proponent and the opponent).
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candidate for a culprit, then the proponent constructs complete arguments attacking it.
Only when none of the proponent’s moves are applicable, can the opponent perform their
moves. This strategy allows for branching at the very early stages of the dispute derivation
(which can be computationally inefficient), but at the same time, each of those “eager”
branches restricts opponent moves by creating culprits.

In general, S1 aims at finding long dispute derivations with few non-deterministic choices,
whereasS2 branches a lot but each dispute derivation branch should be substantially shorter than
in the strategy S1.

When choosing a rule head, both players in strategiesS1 andS2 will always choose the one with
the fewest rules (H = leastRules). Given a set of rules of a certain head both players will choose
the one that introduces the fewest statements (R = newStatementsSize, A = ⊺). For these two
strategies additional variants, namely a and b, have been defined. Strategy Sxa only differs from
Sx in that it would choose a rule head with the greatest amount of rules and a rule introducing the
greatest number of new statements (H = mostRules, R = newStatementsSize, A = �). Strategy
Sxb on the other hand differs from Sx only in that the move type PF1 is moved to the end of the
<M . These subtle changes are designed to help in isolating the influence of the single parameters
on the performance of the strategies. In Sxa the influence of different head- and rule choice is of
interest, whereas in Sxb we want to investigate how beneficial conservative forward moves are.

Additionally, a strategy SAG has been defined, which is interesting for a number of reasons.
First of all, it has been devised to “resemble” the system abagraph’s default strategy (the expla-
nation of the similarities will be described in the next subsection devoted to abagraph and its
strategies). Moreover, it is interesting to see, whether it pays off to use a more sophisticated (and
computationally demanding) rule choice function (lookaheadSize).

Other evaluated systems

In order to compare the performance of flexABle with current state-of-the-art solutions, in our
experiments we also consider the other most relevant system offering support for similar ABA-
related problems called abagraph. It is an open-source system implementing graphical dispute
derivations [7, 9] in SICStus Prolog, and the most recent version of Prolog-based ABA dispute
derivation systems, upgrading its predecessors proxdd and grapharg [9]. It supports enumera-
tion of successful dispute derivations for ABA frameworks w.r.t. the admissible and grounded
semantics. For our experiments abagraph will be used with its default strategy and four more
custom strategies defined in Table 6.2 and will operate on SICStus Prolog version 4.7.1.

We will give a brief informal explanation of the strategies from Table 6.2 and refer to the work
of Craven and Toni [7] or http://robertcraven.org/proarg/abagraph.html for details. We
have decided to include the default strategy in our evaluation, assuming that it might have been
purposely chosen by the authors as notable, based on e.g. experiments they internally conducted
or their intuition. We additionally wanted to check a few more abagraph strategies in order to
at least slightly increase the chance of finding an optimal one for that system. To this end we
fixed a number of parameters for each value, i.e. Turn ∈ {Proponent ,Opponent}, Sentence ∈
{Patient ,Eager}, OppSet = Smallest , and Rule = Smallest body . Strategies 1-4 are all
resulting combinations of those parameters’ values.
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Str. Turn OppSet Sentence Rule

Default Proponent Smallest Patient Look -ahead 1-step
1 Proponent Smallest Patient Smallest body

2 Opponent Smallest Patient Smallest body

3 Proponent Smallest Eager Smallest body

4 Opponent Smallest Eager Smallest body

Table 6.2: Chosen abagraph strategies. Sentence and Rule parameters are the same for both players,
proponent and opponent, for each strategy.

In strategies’ definitions from Table 6.2Turn indicates which player will be prioritized. Setting
the OppSet parameter determines which opponent’s justification set will be chosen. Further-
more, Sentence denotes which sentence for the proponent (or given an opponent’s justification
set) will be chosen, with Patient meaning non-assumption if possible and Eager meaning the
contrary. Furthermore, if a sentence is chosen for backward extension then theRule choice offers
two alternatives: Look -ahead 1-step and selecting a rule with the smallest body.

In abagraph attacks of one player’s argument happen at the turn of that player, i.e. when a
player is chosen and an assumption from his set is selected then the opposing player can commence
creating an attack against that assumption. This seems counter-intuitive from the perspective
of FlexDDs definitions. It can however be mimicked to some degree in flexABle. Note that
the default abagraph strategy will prioritize the proponent (Turn = Proponent ). Then a non-
assumption will be selected if possible (Statement =Patient ) to be backward expanded using a
rule. This should be resembled by PB1 moves appearing second in the ordering <M of the strategy
SAG from Table 6.1. Otherwise, if no non-assumption is available, an assumption will be picked
and the opponent will start constructing an argument against it. This in turn will be resembled
in SAG with moves OB2 and OF2 appearing at positions 3. and 4. in <M . If no proponent moves
are possible, the turn switches to the opponent who by sticking to thePatient strategy will select
a non-assumption and try to backward extend it with a rule. This also will happen in SAG due
to OB1 at position 5. in <M . Otherwise, if an assumption is selected then the proponent has
the chance to attack it, and it is no different in <M of SAG where PB2 and PF2 occupy the last
two positions. The PF1 moves, having no counterpart in graphical dispute derivations, have been
placed at the beginning of <M to check its influence. However, for our experiments we will also
check strategies which do not use PF1 moves when evaluating the DAB advancement type. H has
been set to random due to there not being any equivalent choice point in abagraph. Finally, rule
choices in both strategies are set to 1-step look-ahead.

Input frameworks

Following Lehtonen et al. [19] we have used the 680 ABA frameworks1 used earlier in experiments
by Craven et al. [9] or Lehtonen et al. [20] and likewise similarly for each framework 10 sentences
were randomly chosen, forming 6800 benchmarks as framework-sentence pairs. Lehtonen et al.
[19] have filtered the benchmarks obtained this way, removing the ones established as trivial in
previous work [20] for decision problems. The trivial instances were those in which the sentence

1http://robertcraven.org/proarg/experiments.html
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was either derivable from the empty assumption set or not derivable at all. In our experiments
we decided that the output obtained in terms of dispute derivations might be insightful even for
trivial problems, therefore all 6800 benchmarks were used for all our experiments. Nevertheless,
results restricted to the non-trivial instances still indicate similar tendencies. Readers interested in
those results are referred to the appendix.

Experimental setup

All experiments have been performed in parallel on a cluster operating on Red Hat Enterprise
Linux Server version 7.9, kernel version 3.10.0-1127.19.1.el7.x86_64. Each task has been allocated
with a 2.5Ghz Intel Xeon E5-2680 v3 CPU with 16GB RAM and has been given a 600-second
timeout for tasks involving admissible semantics and a 1200-second timeout for other semantics.

6.2 Results

In Tables 6.3, 6.4 and 6.7 to 6.9 the leftmost “Str” column indicates a strategy, while columns DAB,
DABF, DC, and DS advancement types. Sub-columns indicate search type, either depth- (DFS) or
breadth-first search (BFS). The “#timeout.” row shows for how many instances computation time
exceeded the given cut-off value, “total time” and “95% time” denote, respectively, the combined
times for all instances and for 95% of instances with the fastest solving time in hours for a given
setup (consisting of a triple – strategy, advancement type and search type). The latter gives an
insight in how fast a strategy is if one decides to filter out a small portion of the most bothersome
instances.

Rows “min”, “median”, “mean”, and “max” present information about instances which did
not time out for a given setup in seconds. Their meaning is self-explanatory, i.e. “min” and “max”
stand for minimal and maximal time needed to solve an instance within a setup. “Mean” and “me-
dian” denote mean and median of all time spans needed to solve all instances within a setup. As
mentioned before, timed-out instances are not included in this analysis, which favours “mean”
and “median” in those setups for which the time needed often exceeded given bounds. This was
however done intentionally, as otherwise “max” value would denote the timeout value in almost
every case. The table rows with green background denote globally best obtained results (best val-
ues for the given parameter among all setups) whereas those with red background hint at the glob-
ally worst.

We acknowledge that all experimental results and therefore all drawn conclusions are based on
a single benchmark set, which may not be the most representative one. This choice was however a
consequence of the fact that said benchmarks served as input frameworks in numerous evaluations
of previous systems for ABA, hence we decided to follow this convention.

6.2.1 Admissible semantics

Table 6.3 presents results for the credulous admissible acceptance problem obtained by rule-based
FlexDDs as implemented in flexABle. In what follows we will examine them trying to answer
research questions posed in the introduction by isolating the impact of single features on the out-
come.
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Str. DAB DABF DC DS
DFS BFS DFS BFS DFS BFS DFS BFS

S1

#timeout. 193 179 0 2 13 13 36 39
total time [h] 38.39 35.70 3.73 4.05 7.37 7.84 11.84 12.56
95% time [h] 2.79 2.83 2.67 2.77 2.96 3.27 2.73 2.84

min [s] 1.15 1.21 1.15 1.19 1.15 1.28 1.19 1.21
median [s] 1.45 1.48 1.43 1.49 1.57 1.73 1.45 1.53

mean [s] 3.39 3.18 1.97 1.97 2.76 3.01 3.11 3.22
max [s] 595.72 587.20 468.25 497.25 501.04 461.19 488.27 554.67

S1a

#timeout. 868 369 9 11 17 22 82 76
total time [h] 153.97 68.50 6.37 6.32 9.29 9.25 21.24 20.52
95% time [h] 97.29 11.80 3.07 3.07 2.96 3.06 2.77 2.94

min [s] 1.22 1.11 1.21 1.24 1.20 1.20 1.14 1.21
median [s] 1.54 1.47 1.64 1.66 1.53 1.60 1.44 1.53

mean [s] 5.63 3.90 2.58 2.38 3.42 2.97 4.06 4.20
max [s] 563.50 586.91 541.11 471.05 530.01 394.96 536.21 588.57

S1b

#timeout. 193 179 195 180 272 236 300 257
total time [h] 38.24 35.79 38.55 35.69 52.23 45.33 56.28 48.84
95% time [h] 2.67 2.92 2.79 2.72 3.50 3.08 3.52 3.32

min [s] 1.16 1.17 1.15 1.14 1.19 1.16 1.18 1.18
median [s] 1.38 1.56 1.46 1.43 1.52 1.42 1.51 1.63

mean [s] 3.31 3.23 3.30 3.08 3.80 3.28 3.47 3.29
max [s] 577.92 586.83 591.18 523.41 561.56 584.93 594.66 573.06

S2

#timeout. 133 115 0 0 180 260 167 240
total time [h] 28.64 26.08 3.06 3.12 40.82 56.41 39.12 53.04
95% time [h] 2.98 3.00 2.68 2.73 3.92 6.48 3.77 5.46

min [s] 1.18 1.24 1.13 1.19 1.22 1.21 1.18 1.15
median [s] 1.63 1.64 1.47 1.49 1.58 1.64 1.57 1.49

mean [s] 3.49 3.72 1.62 1.65 5.88 7.19 6.12 7.15
max [s] 595.30 577.70 142.26 145.30 599.98 599.69 596.26 598.55

S2a

#timeout. 760 337 1 4 181 262 173 252
total time [h] 136.43 61.98 4.46 4.88 41.10 56.48 39.80 54.46
95% time [h] 79.75 5.36 2.73 2.88 3.93 6.46 3.68 5.84

min [s] 1.14 1.15 1.19 1.18 1.17 1.17 1.17 1.19
median [s] 1.45 1.49 1.47 1.56 1.57 1.59 1.49 1.63

mean [s] 5.80 3.22 2.27 2.23 5.95 7.04 5.96 6.84
max [s] 592.45 506.79 556.86 550.73 585.76 590.76 589.11 596.52

S2b

#timeout. 133 115 133 115 416 838 416 800
total time [h] 28.55 26.16 28.61 25.84 81.07 166.78 80.48 159.82
95% time [h] 2.95 3.05 2.93 2.65 24.39 110.09 23.80 103.13

min [s] 1.21 1.28 1.22 1.13 1.18 1.15 1.21 1.21
median [s] 1.60 1.67 1.58 1.43 1.50 1.60 1.62 1.55

mean [s] 3.44 3.76 3.47 3.59 6.61 16.34 6.28 15.86
max [s] 584.23 579.89 588.73 586.65 566.89 571.98 550.97 598.96

SAG

#timeout. 566 331 1 2 11 15 54 59
total time [h] 102.05 62.26 4.51 4.65 7.54 7.49 15.16 15.33
95% time [h] 45.37 5.91 2.95 2.95 3.20 2.67 2.89 2.80

min [s] 1.19 1.15 1.22 1.21 1.22 1.12 1.14 1.14
median [s] 1.61 1.50 1.58 1.57 1.71 1.38 1.54 1.46

mean [s] 4.45 3.93 2.30 2.29 3.03 2.65 3.29 2.93
max [s] 588.04 590.52 543.61 575.64 517.40 509.57 588.91 519.54

Table 6.3: Results for the admissible semantics using flexABle
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Impact of Conservative Forward Moves (PF1)

In all setups the DABF advancement type dominates its counterparts: it has the least number of
timeouts and requires the least amount of time to solve all instances. Note that the only exceptions
to that are theS1b andS2b strategies, which are those strategies which do not take advantage of the
conservative forward moves (PF1 move is at the end of <M of those strategies, effectively resulting
in those strategies being almost identical for both DAB and DABF which is confirmed by the data in
Table 6.3). Strategy S2 is of particular interest in DABF as it not only was able to solve all instances,
but also did that in the least amount of time (3.06h for its DFS variant). Additionally, it holds
the least mean of solving time (1.62s for DFS). This is surprising as none of the other setups,
which due to having some instances timed out and therefore ruled out for the computation of
this statistics, was able to beat the result of strategy S2 when used with DABF. Moreover, out of all
instances, strategyS2 with DABF needed only 142.26s to solve the most demanding instance. Note
that for almost all other setups this value is close to the timeout value of 600s.

Note that for DAB strategies Sxb = Sx for x ∈ {1,2} as there are no PF1 moves in DAB anyway.
For all other advancement types (DABF, DC, and DS) the Sxb strategies perform significantly worse
than Sx , which again indicates the advantageous nature of conservative forward moves.

The above indicates that the “non-branching” nature of the conservative forward moves is of
great value in terms of performance of dispute derivations.

Impact of Strategy

As discussed previously, strategy S2 when combined with DABF produced the best results. How-
ever, used with DABF all major strategies (S1,S2,SAG ) perform similarly well. One could therefore
conclude, that such good performance is the result of the use of conservative forward moves rather
than the strategy.

Nevertheless, S2 has obtained the best results among setups utilizing DAB. This suggest that
when there are no non-conservative moves available, the strategy with an “eager” proponent (fa-
vourising proponent moves over the opponent) is more efficient. This does not hold in the other
scenario however (with DC and DS advancement types). The reason is obvious, as an “eager” pro-
ponent more often has to guess an assumption (using non-conservative forward moves) which
substantially increases the search space.

Observe thatSxa performs worse thanSx forx ∈ {1,2}, particularly when used with DAB. This
is an indication that when choosing rule heads it is better to take those with fewest rules applicable
and when selecting a rule it is more reasonable to take those that introduce the least number of
new statements, regardless of advancement type, search type or strategy.

Finally, the SAG strategy is among the worst-performing ones for DAB. The reason for that
might be that often a head with many applicable rules is selected when this choice is random (this
would be suggested by the fact thatSAG performs slightly better thanS1a andS2a, which choose
heads having maximal number of rules). Additionally, the lookaheadSize computation of SAG

might cause additional inefficiencies. Note that for other advancement types SAG produces re-
sults comparable with the best strategies for those advancement types. This, in turn, might be
caused by taking advantage of the conservative forward moves. Additionally, the lookaheadSize
for TA might behave similarly to choosing rules which introduce the least number of new state-
ments which is a desired behaviour as discussed before. What is more, the non-conservative for-
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ward moves, causing DC and DS setups to be less efficient, are second to last in <M of SAG . All of
the above possibly results in SAG performing slightly worse than S1 for DC and DS.

Impact of Non-Conservative Forward Moves

As discussed previously, our results indicate, that the non-conservative forward moves do not of-
fer any improvement in terms of efficiency. Note that no setup employing DC or DS managed
to outperform the results of its DABF counterpart. This is particularly visible in S2 where non-
conservative moves are used the most and obtained results are significantly worse than in setups
with advancements without those kinds of moves. However, we think that for certain cases the
non-conservative forward moves might be beneficial. Particularly, when some “prior” knowledge,
especially regarding assumptions present in the successful dispute derivations’ defences is avail-
able, then this kind of moves could lead to finding such dispute derivations more efficiently. For
most of the cases however, the non-conservative forward moves cause additional inefficiencies.

Impact of Search Type

The results indicate that BFS leads to slightly better results when used with DAB in general, but
particularly better with DAB and strategies S1a, S2a, and SAG . These strategies tend to choose
rules introducing many new statements, which, as argued before, is inefficient. While in such
situations DFS would be stuck in those inefficient branches of the search tree, BFS helps to escape
them by jumping to a sibling branch. Efficiency gain in other strategies in DAB is negligibly small.

For DABF it is difficult to find any strong correlations between efficiency and search type, as this
advancement type is very efficient regardless.

BFS should however especially be avoided when non-conservative moves are frequently used
(see strategies S2, S2a and S2b). In such setups search often branches between unrelated assump-
tions. Many of such branches are fruitless, but BFS examines all of them equally.

Number of Moves in Successful Dispute Derivations – Analysis

While performing experiments we recorded a number of parameters to further investigate the
characteristics of the obtained dispute derivations. For each successful dispute state found we
saved the number of defences, culprits, proponent / opponent rules and statements as well as
the number of moves required to obtain the state. We will only consider the last parameter here,
whereas the rest can be found in the appendix.

Table 6.4 presents the statistics regarding the number of moves needed to obtain a success-
ful state for instances solved in all setups. Furthermore, we only include non-trivial instances (as
described by Lehtonen et. al [19, 20]) in order to emphasize the differences and avoid data con-
tamination.
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Str. DAB DABF DC DS
DFS BFS DFS BFS DFS BFS DFS BFS

S1

min 1.00 1.00 2.00 2.00 2.00 2.00 2.00 2.00
median 9.00 8.00 14.00 14.00 23.00 23.00 14.00 14.00

mean 19.29 18.91 20.67 20.43 29.17 29.17 20.63 20.40
max 107.00 107.00 75.00 75.00 79.00 77.00 75.00 75.00

S1a

min 1.00 1.00 2.00 2.00 3.00 3.00 2.00 2.00
median 8.00 6.00 13.00 13.00 24.00 24.00 13.00 13.00

mean 19.50 18.12 19.96 19.64 29.16 29.13 19.91 19.60
max 107.00 107.00 75.00 70.00 79.00 77.00 75.00 70.00

S1b

min 1.00 1.00 1.00 1.00 2.00 2.00 1.00 1.00
median 9.00 8.00 9.00 8.00 21.00 20.00 9.00 9.00

mean 19.29 18.91 19.29 18.91 30.85 30.84 19.23 18.80
max 107.00 107.00 107.00 107.00 107.00 107.00 107.00 107.00

S2

min 1.00 1.00 2.00 2.00 2.00 1.00 2.00 1.00
median 6.00 4.00 14.00 11.00 18.00 17.00 15.00 14.00

mean 14.19 5.72 18.93 11.90 23.12 19.78 20.31 16.91
max 107.00 65.00 75.00 65.00 73.00 55.00 75.00 54.00

S2a

min 1.00 1.00 2.00 2.00 3.00 1.00 2.00 1.00
median 6.00 4.00 13.00 11.00 18.00 16.00 14.00 13.00

mean 14.77 5.79 18.16 11.59 22.92 19.79 19.68 16.54
max 107.00 65.00 75.00 65.00 74.00 59.00 71.00 54.00

S2b

min 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
median 6.00 4.00 6.00 4.00 13.00 11.00 6.00 6.00

mean 14.19 5.72 14.19 5.72 18.98 12.85 15.18 8.94
max 107.00 65.00 107.00 65.00 109.00 49.00 107.00 49.00

SAG

min 1.00 1.00 1.00 2.00 2.00 1.00 2.00 2.00
median 9.00 8.00 14.00 14.00 20.00 19.00 14.00 14.00

mean 19.14 18.72 20.38 20.25 25.63 25.37 20.36 20.22
max 107.00 107.00 75.00 70.00 80.00 78.00 75.00 70.00

Table 6.4: Statistics regarding the number of moves of successful dispute derivations for the admissible
semantics using flexABle.
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First of all, note that in no setup does the value for a BFS variant exceed its DFS counterpart2.
In most cases both values are the same or very similar but in some variants they vary significantly
(observe the “max” values in setups with DC and S2b where DFS holds the globally maximal value
and BFS the globally minimal one). This is an obvious consequence of the virtue of BFS which
guarantees to find the shortest path if one exists. Therefore, if one requires dispute derivation to
be brief, they should use BFS.

The maximal number of moves needed to find a successful dispute derivation was 109 in a setup
employing DC and strategy S2b with DFS. Almost all setups with DAB or with strategy S1b or S2b

obtained a similarly large number of 107. Such results suggest that avoiding conservative forward
moves can lead to dispute derivations being longer. Note that for some of the aforementioned
setups, when the search type was BFS and the strategy was S2b, the maximal number of moves is
significantly lower. In those cases an “eager” strategy might have caused the opponent’s moves to
be blocked what in turn leads to dispute derivations being shorter and, as argued before, shorter
paths are more likely to be found in a search tree when using BFS.

Data also implies that setups not taking advantage of the conservative forward moves usually
produce dispute derivations with the least number of steps (see “min”, “median” and “mean” in
setups with DAB). The reason behind this is that in those setups no unrelated moves are performed,
contrary to when forward moves are applicable. In the latter situation rules are automatically used
if their bodies are justified. Even longer paths are produced when non-conservative moves can be
applied, where random assumptions, and therefore complete pieces are added to the dispute states
resulting in even more rules being available for PF1 moves. This can be seen by DC setups yielding
maximal values for all parameters (“min”, “median”, “mean”, and “max”).
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Figure 6.1: Bar plots indicating the number of moves in successful dispute derivations for admissible se-
mantics using flexABle.

2There is an exception to that in statistics “min” for strategy SAG with DABF, namely the BFS variant provides a
higher value than DFS. This is however due to the fact that SAG chooses rule heads randomly, hence DFS and
BFS trees for this strategy can differ. Note that “mean”, “median”, “max” as well as “min” for other advancement
types within this strategy for BFS never exceeds the DFS variant meaning that usually BFS provides the shortest
path even when the rule choice is random.
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The two aforementioned results show that, although restricting moves to only backward ones
usually produces shorter dispute derivations, in some cases forward moves significantly shorten
the length of obtained dispute derivations. Figure 6.1 visualises this by representing the median
and the maximal number of moves for the three major strategies (S1, S2, and SAG ) with all
advancement- and search types.

Comparison with abagraph

To compare our system and the novel form of dispute derivations we have performed the same set
of experiments using abagraph– implementing graphical dispute derivations.

abagraph strategy
Default 1 2 3 4

#timeout. 142 139 258 139 764
total time [h] 62.53 76.73 120.86 80.52 256.42
95% time [h] 34.41 48.72 74.27 52.70 199.57

min [s] 0.66 0.67 0.65 0.74 0.65
median [s] 17.76 17.42 21.51 18.54 69.89

mean [s] 21.00 28.94 42.82 30.99 76.84
max [s] 544.24 542.47 562.49 461.95 589.76

Table 6.5: Results for the admissible semantics using abagraph

As stated before and backed by the results, the non-conservative moves do not seem to improve
the performance of flexABle. Therefore when comparing its efficiency with that of abagraphwe
will focus only on those FlexDD variants which employ DAB or DABF advancement types. This will
allow us to learn about how the FlexDD procedure performs when either restricted to backward
moves only (as in graphical dispute derivations which abagraph implements) or when the most
impactful optimization of conservative forward moves is compared to abagraph.

The results obtained for the same benchmarks using the latter system are presented in Table 6.5.
When juxtaposed with the results for our system the number of timeouts is the most conspicuous
statistic. Note that among all setups which take advantage of the conservative forward moves the
highest number of timeouts is 11 (DABF, BFS, S1a), whereas the best result amid abagraph strate-
gies is 139 (for strategies 1 and 3). Furthermore, again from setups utilizing PF1moves, strategyS1a

with DFS required the greatest amount of time to solve3 all instances (6.37h) and 95% of fastest
instances (3.07h). On the other hand, the fastest (Default) strategy of abagraph required around
10 times more time (62.53h and 34.41h for all and 95% of instances respectively). Those statis-
tics clearly imply that flexABle with PF1 moves dominates abagraph, and consequently some
variants of FlexDDs are superior to Graph-DDs in terms of performance.

The situation is different when FlexDDs, as implemented in flexABle, are deprived of PF1

moves. Note that the least number of timeouts among abagraph strategies is substantially lower
than in most DAB setups for flexABle, proving that the greatest optimization of FlexDDs are

3Note that timeouts are also included in solving times, i.e. for each instance that timed out the full cut-off value is
added to total and 95% times.
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those very moves. Furthermore, abagraph runs on a system called SICStus, built around a high-
performance Prolog engine as opposed to the comparably naive tree-traversal algorithmsflexABle
implements. Nevertheless, strategy S2 was still able to slightly outperform all abagraph strategies
in terms of both: timeouts and time needed to solve all instances, further showing that other op-
timizations of FlexDDs also play a role in terms of the efficiency of flexABle. This role however
should not be a major one, since abagraph outperformed flexABle with DAB for the only compa-
rable pair of strategies, i.e. the Default abagraph strategy and SAG strategy of flexABle.

By observing “mean” and “median” statistics we can conclude that an average instance should
be solved with flexABle several times faster than when using abagraph. We can see that also in
Figure 6.2, in which the performance of a selection of setups for each system is presented. We
have chosen the best and the worst variants in terms of timeouts for each: flexABle with DAB,
flexABle with DABF and abagraph. Additionally, we have included the only comparable setups
i.e. those with strategySAG for flexABle and the Default strategy for abagraph. The effectiveness
of flexABle for a single instance is visible from the fact that there is a straight vertical line for each
flexABle setup in the plot indicating that a set of instances is solved in negligible amount of time
compared to the maximal available cut-off time value. That set contains a vast majority (at least
5600 out of 6800, giving 82%) of instances. As can be seen in the figure, this does not hold for
abagraph. Furthermore, the figure indicates that DABF setups are capable of solving virtually all
problems and that the results of abagraph’s best strategy (1) performs comparably to flexABle

with S2.
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Figure 6.2: Inverted “cactus plots” comparing the performance of flexABle and abagraph. The lower
plot is a “zoomed-in” version of the upper one, in which the performance of the best solvers
and their setups is more visible. In both plots the instances are sorted in ascending order by the
time required, where x-axes indicate the time (in seconds) and y-axes instance ordinals.

Approximate reasoning

We also performed an evaluation of approximate algorithms as described in Chapter 4 in both
the “static” and “dynamic” variants. For the p parameter we chose the following range of val-
ues range(p) = {0.5, 0.6, 0.7, 0.8, 0.9}. We restricted combinations of pprop and popp to the
following 3 setups: (1) pprop ∈ range(p), popp = 1, (2) pprop = 1, popp ∈ range(p) and (3)
pprop ∈ range(p), pprop = popp . This way we were able to substantially reduce the number of
experiments and simultaneously investigate the properties of proponent side sampling, opponent
side sampling and bi-directional sampling.
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pprop
0.5 0.6 0.7 0.8 0.9 1

p
o
p
p

0.5
acc. 0.925 0.977

spec. 0.975 0.97
sens. 0.733

– – – –
1.0

0.6
acc. 0.943 0.982

spec. 0.981 0.978
sens.

–
0.796

– – –
1.0

0.7
acc. 0.959 0.988

spec. 0.986 0.984
sens.

– –
0.854

– –
1.0

0.8
acc. 0.973 0.992

spec. 0.991 0.99
sens.

– – –
0.907

–
1.0

0.9
acc. 0.987 0.996

spec. 0.996 0.995
sens.

– – – –
0.955 1.0

1
acc. 0.939 0.954 0.967 0.98 0.99

spec. 1.0 1.0 1.0 1.0 1.0
sens. 0.702 0.773 0.84 0.901 0.953

–

(a) “Static” sampling

pprop
0.5 0.6 0.7 0.8 0.9 1

p
o
p
p

0.5
acc. 0.926 0.976

spec. 0.974 0.97
sens. 0.741

– – – –
1.0

0.6
acc. 0.944 0.982

spec. 0.98 0.978
sens.

—
0.804

– – –
1.0

0.7
acc. 0.961 0.987

spec. 0.986 0.984
sens.

– –
0.865

– –
1.0

0.8
acc. 0.975 0.992

spec. 0.991 0.99
sens.

– – –
0.918

–
1.0

0.9
acc. 0.988 0.996

spec. 0.995 0.995
sens.

– – – –
0.962 1.0

1
acc. 0.945 0.959 0.971 0.983 0.992

spec. 1.0 1.0 1.0 1.0 1.0
sens. 0.732 0.802 0.862 0.916 0.962

–

(b) “Dynamic” sampling

Table 6.6: Results regarding accuracy, specificity and sensitivity of both “static” and “dynamic” sampling
for various values of the p parameter. The greyed-out fields indicate combinations for which we
did not perform experiments.

Table 6.6 presents the results we obtained when evaluating the approximate methods. In order
to obtain these we performed experiments for each pair (pprop , popp) in accordance to the above-
mentioned possible combinations of p-values and the dispute derivation variant setups from Ta-
ble 6.3 (thus giving us new approximate dispute derivation setups). Then we summed up the
number of all true positive-, true negative-, false positive- and false negative- answers and calcu-
lated accuracy, specificity and sensitivity.

Additionally, note that indeed some guarantees are ensured, i.e. guarantee of true positive an-
swers when popp = 1 or that of true negative answers when pprop = 1. This is reflected by the 1.0
results for specificity and sensitivity for setups involving these p-values. These kinds of certainties
can potentially be useful in situations when one needs to be sure that an obtained result is correct,
e.g. to confirm or rule out a treatment method in medical decision-making support.

Furthermore, one can observe that the results are very similar for both sampling types, hence
accuracy (and likewise sensitivity and specificity) of sampling type should not be a factor when
choosing one of the sampling types over another. The choice could rather be based upon perfor-
mance of sampling types, these being presented in Table 6.7 and Table 6.8 for the combinations
of (pprop , popp) involving the value 0.7. We have chosen this value to generally represent the
behaviour of approximate reasoning, because, while still being relatively high to use in a real-life
setting (hoping to obtain results of reasonable accuracy), it was low enough to indicate the tenden-
cies of various setups of approximations. Nevertheless, the tendencies were sustained for different
values of p, as can be seen in the appendix.

First let us focus on the “static” sampling method. Table 6.7a and Table 6.7c indicate that re-
stricting the set of rules available for the proponent, when non-conservative forward moves are
in use (setups with DC and DS), results in a decrease of efficiency of approximate reasoning. Such
reasoning suffers from similar problems as strategies S1b and S2b as seen in Table 6.3, which are
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Str. DAB DABF DC DS
DFS BFS DFS BFS DFS BFS DFS BFS

S1
#timeout. (-86) 107 (-84) 95 (+1) 1 (-2) 0 (-7) 6 (-1) 12 (+29) 65 (+23) 62

total time [h] (-11.91) 26.48 (-11.30) 24.40 (+0.65) 4.38 (+0.03) 4.08 (+0.75) 8.12 (-0.09) 7.75 (+6.29) 18.13 (+5.33) 17.89

S1a
#timeout. (-278) 590 (-85) 284 (-7) 2 (-8) 3 (-6) 11 (-4) 18 (+42) 124 (+56) 132

total time [h] (-41.0) 112.97 (-10.29) 58.21 (-1.56) 4.81 (-0.77) 5.55 (+0.36) 9.65 (+1.80) 11.05 (+8.44) 29.68 (+10.96) 31.48

S1b
#timeout. (-70) 123 (-75) 104 (-85) 110 (-69) 111 (-56) 216 (-48) 188 (-5) 295 (+12) 269

total time [h] (-9.92) 28.32 (-10.80) 24.99 (-11.66) 26.89 (-7.90) 27.79 (-5.87) 46.36 (-4.28) 41.05 (+2.80) 59.08 (+4.80) 53.64

S2
#timeout. (-74) 59 (-63) 52 (+0) 0 (+0) 0 (+89) 269 (+78) 338 (+96) 263 (+102) 342

total time [h] (-11.61) 17.03 (-10.83) 15.25 (+0.26) 3.32 (+0.35) 3.47 (+15.39) 56.21 (+13.73) 70.14 (+17.40) 56.52 (+17.85) 70.89

S2a
#timeout. (-273) 487 (-112) 225 (+0) 1 (-3) 1 (+101) 282 (+83) 345 (+84) 257 (+75) 327

total time [h] (-43.28) 93.15 (-14.05) 47.93 (-0.19) 4.27 (-1.16) 3.72 (+15.84) 56.94 (+13.47) 69.95 (+14.24) 54.04 (+12.83) 67.29

S2b
#timeout. (-62) 71 (-74) 41 (-74) 59 (-61) 54 (+49) 465 (-96) 742 (+46) 462 (-78) 722

total time [h] (-9.58) 18.97 (-12.54) 13.62 (-12.65) 15.96 (-10.89) 14.95 (+10.27) 91.34 (-13.31) 153.47 (+8.92) 89.40 (-13.16) 146.66

SAG
#timeout. (-182) 384 (-89) 242 (+0) 1 (-2) 0 (-2) 9 (-1) 14 (+42) 96 (+32) 91

total time [h] (-26.49) 75.56 (-10.56) 51.70 (-0.24) 4.27 (-0.55) 4.10 (+0.55) 8.09 (+0.95) 8.44 (+7.28) 22.44 (+5.93) 21.26

(a) pprop = 0.7, popp = 1

Str. DAB DABF DC DS
DFS BFS DFS BFS DFS BFS DFS BFS

S1
#timeout. (+8) 201 (+4) 183 (+0) 0 (-2) 0 (-5) 8 (+0) 13 (-4) 32 (-3) 36

total time [h] (+1.10) 39.49 (+1.48) 37.18 (+1.09) 4.82 (-0.22) 3.83 (-0.97) 6.40 (-0.47) 7.37 (-0.22) 11.62 (+0.01) 12.57

S1a
#timeout. (-43) 825 (-46) 323 (+0) 9 (-4) 7 (+5) 22 (-3) 19 (-13) 69 (-16) 60

total time [h] (-6.89) 147.08 (-7.76) 60.74 (+0.45) 6.82 (-0.45) 5.87 (+1.36) 10.65 (-0.46) 8.79 (-1.75) 19.49 (-2.71) 17.81

S1b
#timeout. (+8) 201 (-5) 174 (-1) 194 (+4) 184 (+4) 276 (-10) 226 (-21) 279 (-9) 248

total time [h] (+2.82) 41.06 (-0.49) 35.30 (+1.01) 39.56 (+1.18) 36.87 (+0.99) 53.22 (-1.82) 43.51 (-2.92) 53.36 (-1.38) 47.46

S2
#timeout. (+17) 150 (+15) 130 (+0) 0 (+0) 0 (-26) 154 (-12) 248 (-10) 157 (-9) 231

total time [h] (+2.12) 30.76 (+1.92) 28.0 (+0.37) 3.43 (+0.22) 3.34 (-3.34) 37.48 (-1.98) 54.43 (-2.43) 36.69 (-1.31) 51.73

S2a
#timeout. (-47) 713 (-40) 297 (+0) 1 (-1) 3 (-22) 159 (-15) 247 (-20) 153 (-13) 239

total time [h] (-7.81) 128.62 (-4.64) 57.34 (-0.10) 4.36 (-0.26) 4.62 (-4.50) 36.60 (-1.79) 54.69 (-2.57) 37.23 (-1.15) 53.31

S2b
#timeout. (+14) 147 (+13) 128 (+1) 134 (+14) 129 (+23) 439 (+67) 905 (+25) 441 (+62) 862

total time [h] (+2.13) 30.68 (+1.55) 27.71 (+2.35) 30.96 (+1.67) 27.51 (+4.24) 85.31 (+11.35) 178.13 (+3.48) 83.96 (+11.19) 171.01

SAG
#timeout. (-65) 501 (-53) 278 (+0) 1 (-1) 1 (+2) 13 (-4) 11 (-19) 35 (-21) 38

total time [h] (-11.06) 90.99 (-9.14) 53.12 (+2.09) 6.60 (-0.12) 4.53 (-0.36) 7.18 (-0.47) 7.02 (-2.28) 12.88 (-3.24) 12.09

(b) pprop = 1, popp = 0.7

Str. DAB DABF DC DS
DFS BFS DFS BFS DFS BFS DFS BFS

S1
#timeout. (-67) 126 (-68) 111 (+0) 0 (-2) 0 (+7) 20 (+7) 20 (+20) 56 (+17) 56

total time [h] (-7.32) 31.07 (-9.62) 26.08 (+0.20) 3.93 (-0.18) 3.87 (+2.17) 9.54 (+2.07) 9.91 (+3.45) 15.29 (+3.11) 15.67

S1a
#timeout. (-296) 572 (-112) 257 (-6) 3 (-9) 2 (-2) 15 (-1) 21 (+12) 94 (+7) 83

total time [h] (-46.05) 107.92 (-16.41) 52.09 (-0.93) 5.44 (-2.0) 4.32 (+0.18) 9.47 (+0.28) 9.53 (+2.47) 23.71 (+1.30) 21.82

S1b
#timeout. (-52) 141 (-72) 107 (-61) 134 (-61) 119 (-34) 238 (-37) 199 (+0) 300 (+0) 257

total time [h] (-6.41) 31.83 (-9.74) 26.05 (-8.53) 30.02 (-7.81) 27.88 (-2.85) 49.38 (-4.14) 41.19 (+1.95) 58.23 (+2.38) 51.22

S2
#timeout. (-41) 92 (-53) 62 (+0) 0 (+0) 0 (+78) 258 (+77) 337 (+71) 238 (+83) 323

total time [h] (-6.98) 21.66 (-9.54) 16.54 (+0.33) 3.39 (+0.44) 3.56 (+13.02) 53.84 (+11.72) 68.13 (+12.58) 51.70 (+12.50) 65.54

S2a
#timeout. (-291) 469 (-137) 200 (+2) 3 (-3) 1 (+77) 258 (+83) 345 (+75) 248 (+81) 333

total time [h] (-47.34) 89.09 (-21.16) 40.82 (+0.31) 4.77 (-0.67) 4.21 (+13.90) 55.0 (+12.30) 68.78 (+11.90) 51.70 (+12.99) 67.45

S2b
#timeout. (-58) 75 (-54) 61 (-50) 83 (-32) 83 (+68) 484 (-40) 798 (+64) 480 (-44) 756

total time [h] (-9.63) 18.92 (-9.01) 17.15 (-8.82) 19.79 (-5.67) 20.17 (+11.99) 93.06 (-5.38) 161.40 (+13.26) 93.74 (-7.52) 152.30

SAG
#timeout. (-223) 343 (-115) 216 (-1) 0 (-2) 0 (+7) 18 (-1) 14 (+21) 75 (+7) 66

total time [h] (-34.14) 67.91 (-17.74) 44.52 (-0.64) 3.87 (-0.52) 4.13 (+1.04) 8.58 (+0.56) 8.05 (+2.87) 18.03 (+1.20) 16.53

(c) pprop = 0.7, popp = 0.7

Table 6.7: “Static” rule sampling results for combinations of (pprop , popp) with value 0.7. Rows with
green, red and yellow background indicate an improvement, deterioration or no change with
respect to the exact (not-approximate) method in the same setup, respectively. A value in paren-
theses next to the result denotes the difference between the exact and approximate method.
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6.2 Results

inefficient due to the use of non-conservative forward moves when simultaneously not taking ad-
vantage of forward inferences using rules (PF1 moves), when the set of rules is limited for the pro-
ponent. At the same time note that the non-deterministic choice of a rule is one of the main causes
of decreased efficiency among DAB setups which result in the number of timeouts and amount of
time required significantly reduced when pprop = 0.7.

The behaviour of the approximate method with pprop = 1 and popp = 0.7 from Table 6.7b is
not very consistent, hindering us from drawing any meaningful conclusions. Note that for some
setups the efficiency is improved, whereas for others it is worse, but the influence does not seem to
be of major significance in any direction. This might imply that opponent moves involving rules
do not contribute as much to the procedures’ efficiency as those of the proponent due to the lack
of non-determinism in the opponent’s choices. At the same time, if some opponent’s arguments
need not be generated, then they do not have to be counter-attacked by the proponent. On the
other hand the solving time of some negative instances (those, for which the answer is negative)
might increase if the opponent is not able to quickly win due to having less rules at his disposal.

Sampling from the opponent side only leads to similar results for the “dynamic” variant (see
Table 6.8b). However, sampling from the proponent- or both sides produces a more congruent
outcome as presented in Table 6.8a and Table 6.8c. Note that the results obtained for setups with
DAB as well as those with DC and DS for proponent- and bi-directional sampling are improved. A
possible explanation could be that this kind of sampling reduces branching of proponent moves
utilising rules (PB1 and PB2 moves), because when more than one rule is applicable, there is a
chance that some of them will be ruled out. Rules enabling conservative forward moves can also
be filtered out at some points of the search, but there is a chance that they will be available for use
at later stages. This way “dynamic” sampling combines the best of both worlds: reducing number
of options for non-deterministic choices, while simultaneously taking advantage of conservative
forward moves.

A slight improvement can also be observed for most of the setups with DABF. However, in no
configuration was sampling able to improve the most efficient exact setup, i.e. (DABF, S2, DFS).
This suggests that these kind of approximations might be more useful when one decides on the
less optimal setups (i.e. those with advancement types other than DABF).

Note that, the only 3 setups, in which the “static” sampling is more efficient than the “dynamic”
sampling are those with the DAB advancement type and strategies S1a, S2a and SAG . The reason
behind such outcome might be similar to why in general those strategies perform poorly (see 6.3),
which is the choice of rules introducing many new statements. The “dynamic” sampling’s nature
might work to its disadvantage for these strategies, as such rules, even if removed at one step, can
again become problematic in the longer run. On the other hand, in “static” sampling, once a
problematic rule gets removed, it does not participate in the dispute derivation until its end.

Figure 6.3 presents the results of “static” and “dynamic” bi-directional sampling for all con-
sidered values of p, as well as the “exact” reasoning for the worst- and best performing strategies
for advancement types DAB and DABF and the search type DFS. As indicated by the data in the
Tables 6.7 and 6.8, there is no improvement when strategies employ the PF1 moves (in setups em-
ploying DABF). However, significant improvement can be seen in setups without the conservative
forward moves (employing DAB). As argued before, the inefficient S1a strategy performs much
better with “static” sampling applied. On the other hand, the latter, “dynamic” form of sampling
provides greater efficiency-improvements when using the best-performing strategy S2.
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Str. DAB DABF DC DS
DFS BFS DFS BFS DFS BFS DFS BFS

S1
#timeout. (-114) 79 (-117) 62 (+0) 0 (-2) 0 (-9) 4 (-8) 5 (-13) 23 (-17) 22

total time [h] (-16.88) 21.51 (-16.91) 18.79 (+0.21) 3.94 (-0.09) 3.96 (-2.10) 5.27 (-2.52) 5.32 (-3.35) 8.49 (-3.20) 9.36

S1a
#timeout. (-137) 731 (-8) 361 (-9) 0 (-11) 0 (-9) 8 (-13) 9 (-33) 49 (-20) 56

total time [h] (-20.60) 133.37 (+0.25) 68.75 (-1.99) 4.38 (-2.41) 3.91 (-3.04) 6.25 (-3.47) 5.78 (-5.40) 15.84 (-4.48) 16.04

S1b
#timeout. (-119) 74 (-121) 58 (-129) 66 (-122) 58 (-153) 119 (-134) 102 (-33) 267 (-45) 212

total time [h] (-16.57) 21.67 (-17.85) 17.94 (-18.86) 19.69 (-18.04) 17.65 (-23.96) 28.27 (-20.53) 24.80 (-3.24) 53.04 (-5.13) 43.71

S2
#timeout. (-110) 23 (-100) 15 (+0) 0 (+0) 0 (-48) 132 (-61) 199 (-47) 120 (-56) 184

total time [h] (-17.42) 11.22 (-18.16) 7.92 (+1.27) 4.33 (+0.26) 3.38 (-9.09) 31.73 (-11.69) 44.72 (-9.48) 29.64 (-10.02) 43.02

S2a
#timeout. (-141) 619 (-20) 317 (-1) 0 (-4) 0 (-52) 129 (-69) 193 (-49) 124 (-54) 198

total time [h] (-22.40) 114.03 (-0.63) 61.35 (-0.92) 3.54 (-1.30) 3.58 (-10.28) 30.82 (-13.12) 43.36 (-8.76) 31.04 (-8.45) 46.01

S2b
#timeout. (-114) 19 (-97) 18 (-105) 28 (-94) 21 (-32) 384 (-174) 664 (-39) 377 (-175) 625

total time [h] (-19.67) 8.88 (-18.27) 7.89 (-17.57) 11.04 (-17.75) 8.09 (-4.13) 76.94 (-26.70) 140.08 (-3.64) 76.84 (-30.28) 129.54

SAG
#timeout. (-118) 448 (-50) 281 (-1) 0 (-2) 0 (-3) 8 (-5) 10 (-8) 46 (-13) 46

total time [h] (-17.69) 84.36 (-5.96) 56.30 (-0.72) 3.79 (-1.21) 3.44 (-0.74) 6.80 (-1.30) 6.19 (-2.10) 13.06 (-2.22) 13.11

(a) pprop = 0.7, popp = 1

Str. DAB DABF DC DS
DFS BFS DFS BFS DFS BFS DFS BFS

S1
#timeout. (+36) 229 (+30) 209 (+0) 0 (-1) 1 (+1) 14 (-2) 11 (-1) 35 (-1) 38

total time [h] (+6.37) 44.76 (+5.35) 41.05 (+0.27) 4.0 (+1.0) 5.05 (+0.23) 7.60 (-1.21) 6.63 (+1.01) 12.85 (+0.21) 12.77

S1a
#timeout. (-4) 864 (-5) 364 (+0) 9 (-1) 10 (-2) 15 (-4) 18 (-6) 76 (-4) 72

total time [h] (+0.23) 154.20 (-0.38) 68.12 (-0.08) 6.29 (-0.10) 6.22 (-0.49) 8.80 (-0.41) 8.84 (+0.64) 21.88 (-0.84) 19.68

S1b
#timeout. (+38) 231 (+23) 202 (+42) 237 (+35) 215 (+16) 288 (+18) 254 (+34) 334 (+26) 283

total time [h] (+6.42) 44.66 (+4.27) 40.06 (+8.0) 46.55 (+6.73) 42.42 (+2.62) 54.85 (+4.26) 49.59 (+7.07) 63.35 (+4.74) 53.58

S2
#timeout. (+9) 142 (+13) 128 (+0) 0 (+0) 0 (-59) 121 (-86) 174 (-43) 124 (-84) 156

total time [h] (+1.94) 30.58 (+3.92) 30.0 (+0.48) 3.54 (+0.25) 3.37 (-9.95) 30.87 (-16.81) 39.60 (-8.27) 30.85 (-15.37) 37.67

S2a
#timeout. (-16) 744 (-48) 289 (+0) 1 (+1) 5 (-54) 127 (-92) 170 (-53) 120 (-94) 158

total time [h] (-2.08) 134.35 (-7.20) 54.78 (+0.92) 5.38 (+0.06) 4.94 (-8.95) 32.15 (-17.27) 39.21 (-9.06) 30.74 (-17.15) 37.31

S2b
#timeout. (+17) 150 (+11) 126 (+8) 141 (+22) 137 (+25) 441 (+18) 856 (+36) 452 (+13) 813

total time [h] (+2.65) 31.20 (+2.05) 28.21 (+2.47) 31.08 (+3.99) 29.83 (+1.75) 82.82 (+1.55) 168.33 (+4.60) 85.08 (-0.14) 159.68

SAG
#timeout. (-7) 559 (-5) 326 (+0) 1 (+1) 3 (-2) 9 (-3) 12 (-8) 46 (-10) 49

total time [h] (-1.16) 100.89 (-0.67) 61.59 (+0.21) 4.72 (+0.85) 5.50 (-0.90) 6.64 (+0.15) 7.64 (-1.12) 14.04 (-0.93) 14.40

(b) pprop = 1, popp = 0.7

Str. DAB DABF DC DS
DFS BFS DFS BFS DFS BFS DFS BFS

S1
#timeout. (-117) 76 (-100) 79 (+0) 0 (-2) 0 (-12) 1 (-11) 2 (-14) 22 (-16) 23

total time [h] (-16.91) 21.48 (-12.12) 23.58 (-0.48) 3.25 (-0.47) 3.58 (-3.11) 4.26 (-3.17) 4.67 (-2.64) 9.20 (-2.20) 10.36

S1a
#timeout. (-141) 727 (+3) 372 (-9) 0 (-11) 0 (-11) 6 (-14) 8 (-40) 42 (-27) 49

total time [h] (-22.02) 131.95 (+0.97) 69.47 (-1.76) 4.61 (-2.31) 4.01 (-3.80) 5.49 (-2.39) 6.86 (-7.62) 13.62 (-6.10) 14.42

S1b
#timeout. (-96) 97 (-91) 88 (-110) 85 (-106) 74 (-131) 141 (-115) 121 (-9) 291 (-13) 244

total time [h] (-13.83) 24.41 (-13.14) 22.65 (-15.20) 23.35 (-15.19) 20.50 (-20.50) 31.73 (-16.82) 28.51 (+0.55) 56.83 (+0.36) 49.20

S2
#timeout. (-104) 29 (-97) 18 (+0) 0 (+0) 0 (-115) 65 (-146) 114 (-95) 72 (-146) 94

total time [h] (-18.70) 9.94 (-18.24) 7.84 (+0.63) 3.69 (+0.36) 3.48 (-21.0) 19.82 (-29.34) 27.07 (-18.43) 20.69 (-27.74) 25.30

S2a
#timeout. (-160) 600 (-75) 262 (-1) 0 (-4) 0 (-108) 73 (-154) 108 (-102) 71 (-145) 107

total time [h] (-25.51) 110.92 (-9.67) 52.31 (-1.05) 3.41 (-1.48) 3.40 (-19.79) 21.31 (-29.17) 27.31 (-19.54) 20.26 (-27.0) 27.46

S2b
#timeout. (-100) 33 (-99) 16 (-103) 30 (-92) 23 (-38) 378 (-164) 674 (-35) 381 (-165) 635

total time [h] (-16.60) 11.95 (-18.02) 8.14 (-17.68) 10.93 (-16.80) 9.04 (-4.33) 76.74 (-29.80) 136.98 (-3.65) 76.83 (-30.24) 129.58

SAG
#timeout. (-146) 420 (-55) 276 (-1) 0 (-2) 0 (-6) 5 (-9) 6 (-19) 35 (-24) 35

total time [h] (-22.23) 79.82 (-7.0) 55.26 (-1.16) 3.35 (-0.89) 3.76 (-2.17) 5.37 (-1.48) 6.01 (-4.34) 10.82 (-4.76) 10.57

(c) pprop = 0.7, popp = 0.7

Table 6.8: “Dynamic” rule sampling results for combinations of (pprop , popp) with value 0.7. As be-
fore, rows with green, red and yellow background indicate an improvement, deterioration or
no change with respect to the exact (not-approximate) method in the same setup, respectively,
and a value in parentheses next to the result denotes the difference between the exact and approx-
imate method.
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6.2 Results

(a) “Static” sampling.

(b) “Dynamic” sampling.

Figure 6.3: Inverted “cactus plots” presenting the results of “static” and “dynamic” sampling for approx-
imate reasoning using pprop = popp = p, p ∈ {0.5, 0.6, 0.7, 0.8, 0.9} and exact reasoning
(p = 1.0) for the best (S2) and worst (S1a) performing strategies for DAB and DABF and DFS.
Results are grouped by their advancement type and strategy into similarly coloured groups, with
the darkest plot indicating the exact reasoning (p = 1.0). The brighter the colour of a plot, the
smaller the value of the p parameter, with the brightest colour indicating p = 0.5. In both plots
the instances are sorted in ascending order by the time required, where x-axes indicate the time
(in seconds) and y-axes instance ordinals.

6.2.2 Complete & Stable Semantics

We further investigated the performance of search strategies for semantics beyond admissible sup-
ported by FlexDDs, i.e. complete and stable. To this end we employed the DC+ TC dispute variants
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for the first and DS + TS for the latter case. We used the same set of benchmarks (framework-
statement pairs) as in the previous experiments, but now queried flexABle about acceptance of
the goal w.r.t. the complete and stable semantics. Because those problems are more complicated
the timeout value was doubled to 20 minutes (1200 seconds).

Knowing that each complete extension must also be an admissible one, we hypothesized that
starting with the task of finding an admissible extension first and then trying to extend it to a
complete one might produce better results, than when looking for a complete extension from
scratch. Hence in our experiments we compare the performance of two approaches: first, one
that restricts the moves to those of DABF until TA is satisfied and then allows for moves of DC

trying to find a state satisfying TC, and secondly the approach allowing for DC moves right from
the very beginning. Since each stable extension must necessarily be admissible as well, we also used
that approach for the stable semantics. Results for both semantics are presented in Table 6.9.

Note that first of all that starting with DABF+ TAprovides better results than when directly start-
ing with the advancement type and termination criteria of the desired semantics. Furthermore,
strategies not utilizing conservative forward moves (S1b andS2b) result in very poor performance.

The patient strategy (S1) performs much better for the complete semantics than the eager one
(S2). This can be explained, because, as we have seen before in Table 6.3, eagerly guessing assump-
tions with non-conservative moves leads to inefficiency.

As we said before, each stable and complete extension must be admissible. Moreover each ad-
missible one is a subset of some complete extension. However, the latter property does not hold
for the stable semantics. Therefore, even though the approach with first searching for an admissi-
ble extension performs better for the stable semantics than the direct approach, which admissible
extension is found before starting to extend it into a stable one is crucial. Remember that by TS

each assumption must either be a defence or a culprit. Hence, the proponent, when searching for
an admissible extension, should attack and commit to as many assumptions as possible which is
how strategyS2 works. Note that interestinglyS2a has slightly less timeouts thanS2 for the stable
semantics when starting with finding an admissible extension first, which is likely to be happening
due to S2a choosing rules which introduce more new statements to P, resulting also in more new
culprits and defences.

Strategy SAG performs moderately worse than S1 for both semantics. Note that this strategy
chooses rules based on the termination criteria, so it is tailored for each semantics individually.
However, this approach does not lead to improvement, possibly because of the additional com-
putations needed for each available rule.

6.2.3 Grounded & Preferred Semantics

As a final set of experiments, we evaluated flexABle for the grounded and preferred semantics
for the same set of benchmarks as in previous experiments. To this end we used the algorithms
described in Chapter 4 for those semantics, which use FlexDDs as a sub-routine to check if an
assumption set constitutes a complete extension. For the latter we used the same configurations as
those from Table 6.9. The timeout value remained the same as in the previous set of experiments,
namely 1200s. However, the results clearly indicated the inferiority of this approach with regard
to abagraph’s capabilities. Interested reader is referred to the appendix for detailed results.
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complete semantics stable semantics

Str. Start w/ DABF+TA Start w/ DC+ TC Start w/ DABF+TA Start w/ DS+ TS
DFS BFS DFS BFS DFS BFS DFS BFS

S1

#timeout. 20 34 73 101 168 163 526 549
total time [h] 18.70 20.67 51.84 61.85 71.28 72.12 230.24 237.71
95% time [h] 3.63 3.38 8.50 8.87 5.32 5.34 116.89 124.34

min [s] 1.23 1.24 1.37 1.37 1.50 1.49 1.29 1.23
median [s] 1.71 1.56 3.18 3.17 1.94 2.00 7.33 6.35

mean [s] 6.39 4.96 14.72 15.14 8.29 9.64 31.49 31.48
max [s] 1043.18 1027.22 1150.74 1191.46 1067.98 1191.26 1147.57 1159.78

S1a

#timeout. 26 45 87 120 171 174 533 557
total time [h] 21.85 25.62 58.06 69.32 74.76 75.38 231.30 241.24
95% time [h] 3.30 3.63 8.87 10.16 5.76 5.65 117.95 127.87

min [s] 1.15 1.23 1.29 1.39 1.47 1.50 1.32 1.45
median [s] 1.46 1.60 3.22 3.60 2.00 1.96 6.75 6.67

mean [s] 7.00 5.66 15.58 15.79 9.64 9.43 30.80 32.02
max [s] 1082.85 1181.78 1179.61 1140.69 1116.41 1138.50 1195.62 1198.85

S1b

#timeout. 275 682 663 1155 892 869
total time [h] 110.71 246.23 263.77 420.20 330.54 318.26
95% time [h] 8.49 132.85 150.43 306.81 217.19 204.88

– –

min [s] 1.14 1.13 1.37 1.34 1.22 1.21
median [s] 1.61 1.49 4.59 4.73 1.68 1.66

mean [s] 10.50 11.07 25.08 22.34 20.21 17.29
max [s] 1193.69 1178.69 1187.64 1183.59 1195.85 1191.52

– –

S2

#timeout. 212 230 887 1004 106 137 377 442
total time [h] 93.49 99.24 503.27 551.97 54.02 60.29 178.07 195.34
95% time [h] 7.03 7.50 389.93 438.60 4.68 4.76 64.73 81.97

min [s] 1.13 1.18 1.28 1.24 1.53 1.54 1.63 1.28
median [s] 1.44 1.53 16.29 14.95 1.98 2.02 5.70 5.46

mean [s] 12.47 12.36 126.38 134.92 10.05 7.89 29.37 27.16
max [s] 1103.37 1165.62 1194.59 1198.39 1188.77 1192.53 1195.66 1161.73

S2a

#timeout. 211 233 895 1022 104 133 382 443
total time [h] 96.35 102.98 516.70 559.69 55.00 61.52 178.67 195.20
95% time [h] 8.12 9.65 403.36 446.33 4.67 4.96 65.32 81.84

min [s] 1.17 1.16 1.32 1.27 1.48 1.51 1.67 1.33
median [s] 1.58 1.81 16.92 16.04 1.94 2.04 5.77 5.53

mean [s] 14.21 13.87 133.11 136.41 10.93 9.28 28.79 26.90
max [s] 1198.18 1156.81 1194.80 1199.87 1192.13 1197.52 1199.80 1199.09

S2b

#timeout. 853 931 891 896
total time [h] 328.05 350.38 337.54 332.56
95% time [h] 214.70 236.99

– –
224.19 219.18

– –

min [s] 1.15 1.19 1.22 1.13
median [s] 1.56 1.60 1.73 1.59

mean [s] 26.44 24.50 24.68 20.60
max [s] 1190.36 1147.35

– –

1195.93 1194.30

– –

SAG

#timeout. 21 34 93 125 175 176 557 580
total time [h] 19.97 21.69 62.92 71.38 76.14 76.54 250.66 259.80
95% time [h] 3.71 3.39 10.69 10.35 6.01 5.92 137.31 146.43

min [s] 1.22 1.20 1.35 1.29 1.48 1.45 1.29 1.30
median [s] 1.67 1.50 3.72 3.42 1.94 1.97 7.40 7.34

mean [s] 6.89 5.51 17.13 16.02 9.67 9.70 37.46 38.44
max [s] 1123.00 1194.65 1187.25 1196.56 1148.11 1143.22 1161.28 1196.50

Table 6.9: Results for the complete and stable semantics using flexABle. As before, green and red cell
backgrounds indicate best and worst results obtained globally. Greyed-out cells represent setups
which exceeded the total available running time.
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7 Conclusions

We were able to formally define automatic-search strategies for RlFlexDDs, based on the ordering
of the move types as well as functions determining the order in which rules should be considered.
We have carefully chosen a few of such definable strategies for empirical evaluation and identified
the possible influence that some features of the strategies may have on the performance of the
search.

We mostly focused on credulous acceptance w.r.t. admissible semantics, for which we con-
ducted experiments on the largest scale and also analysed the results in the greatest depth. Most
importantly, we have established the crucial influence of conservative forward moves, which allow
for bottom-up moves from a set of justified premises. We have seen that mostly due to this kind
of moves the procedure became very efficient, significantly overcoming the performance results of
the previous state-of-the art ABA DD system. Moreover, we discovered the impact of other fea-
tures, such as that of the strategy or the search type, and although its significance has been eclipsed
by the conservative forward moves, they also played a role, particularly when forward moves are
not used. We notice a decrease of efficiency when the non-conservative forward moves were used,
suggesting that on average moves of this kind would not improve the performance. Finally, we
incorporated two variants of approximate reasoning into the “credulous admissible acceptance”
experiments, which showed that for some cases the “dynamic” version might be more effective
than the “static” one, which actually can be even less effective than the “exact” (unapproximated)
reasoning. The results on evaluation of directional sampling has confirmed, that we can be posi-
tive about the outcome even when using approximation, which could have potential applications
in cases when a claim needs to be ruled in or ruled out respectively. Lastly, we checked the effi-
ciency of FlexDDs for semantics beyond admissible: stable, complete, grounded and preferred.
While the proposed algorithms and strategies for the last two semantics did not perform well, we
have still obtained reasonable results for the first two.

For all of the most remarkable results, we provided hypotheses trying to explain how strate-
gies’ design choices affecting the search resulted in the obtained outcome. Additionally, we pre-
sented an implementation supporting automatic search of dispute derivations as defined within
this work, which was used to perform the experiments. The implementation however provides
much more than merely automatic search. It also offers aid in interactively searching for a success-
ful dispute derivation including a rich graphical interface.
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8 Future Work

There are a number of ways that one could continue the current work, e.g. regarding future ex-
periments. First of all, the input benchmarks could be more diversified. Although, when deciding
for the chosen benchmark set, we followed the methodology of evaluation from previous dispute
derivation systems, we have already encountered an indication that this benchmark set might not
be very representative (recall that rule sampling even for small p values produced results of high
accuracy). Hence, the input frameworks should originate from more than a single source.

Nevertheless, the current benchmarks source, which is a Prolog-based generator implemented
by Craven and Toni [7], can still be used in further evaluation. Following the experiments from
[19] more complicated benchmarks could be gradually generated, until they become too com-
plicated for the most efficient search setups (such as the strategy S2 with DABF). This way the
limitations of our system and FlexDDs could be more clearly found.

One could also aim at a different approach at selecting strategies for evaluation. In our case
we chose strategies based on our intuition, to which an alternative could be using more formal
methods. E.g. one could use some clustering algorithms to group similarly-behaving strategies to-
gether and then choose one representative from each group, hoping that this would make selected
strategies more likely diverse. Alternatively, one could try to simply evaluate a larger number of
strategies, or even all of them.

The implementation would certainly also benefit from some further modifications, e.g. the
branching algorithms could be optimized to somehow identify parts of the dispute state which
led to an unsuccessful state in the previously considered branches, in order to sooner recognize
fruitless dispute states in the following search stages. Creating an actual graphical user interface
(GUI) instead of the current command-line interface (CLI) would definitely improve the user’s
experience. Ideally, such a GUI system could e.g. represent the current dispute state in form of a
directed graph of nodes, seen as “abstract” arguments. Then zooming in would reveal arguments’
internal structure, enabling users to choose arguments’ elements which e.g. should be backward
extended or attacked.

Further advancements described above are regarding the implementation and evaluation parts
of this work. There are however many new directions on the more abstract conceptual level in
which this work could proceed. E.g. grounded- or preferred-based search algorithms could be
defined, in which the proponent during the dispute derivation would either try to use as few as
possible new assumptions in the former case, or as many as possible in the latter. Dispute deriva-
tions obtained this way would not be guaranteed to represent grounded or preferred extensions,
but would be inspired by those semantics.

Even though in our experiments the non-conservative forward moves have not improved the
efficiency (and in most cases even worsened it), we hypothesised that in some very specific cases
it could be useful. These cases include situations when there is some “knowledge” about the
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successful dispute state available “from the outside”, i.e. it is known that some assumptions will
be included in the fruitful dispute state. To this end, one could utilize different, more efficient,
reduction-based ABA solvers, such as aspforaba [19] to first obtain the defences and then control
the amount of the defences being fed to FlexDDs as the “knowledge from the outside”, hence
evaluating the use of non-conservative forward moves when further knowledge is available about
the domain on which a dispute is carried out.

Finally, the FlexDDs (and consequently our system) could be modified to support non-flat
ABA frameworks (where rules with assumption occurring in the heads is allowed). The behaviour
of such procedures could then be further evaluated to also take into account the influence of a
framework’s flatness in the search of successful DDs.
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Appendix

Non-trivial Instances Results

abagraph strategy
1 2 3 4 5

#timeout. 93 191 93 400 97
total time [h] 24.89 43.87 24.84 82.38 23.08
95% time [h] 15.22 34.18 15.16 72.67 13.40

min [s] 0.76 0.67 0.76 0.65 0.66
median [s] 17.04 21.95 18.10 62.99 17.09

mean [s] 31.99 45.09 31.80 74.90 23.60
max [s] 542.47 562.49 461.95 589.76 418.82

Table 1: Results for admissible semantics using abagraph and the set of input benchmarks restricted to
the non-trivial ones.
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Str. DAB DABF DC DS
DFS BFS DFS BFS DFS BFS DFS BFS

S1

#timeout. 118 108 0 2 12 12 32 34
total time [h] 22.23 20.17 1.32 1.54 4.38 4.51 7.92 8.34
95% time [h] 12.56 10.50 0.58 0.60 0.80 0.84 0.94 0.98

min [s] 1.20 1.26 1.22 1.28 1.28 1.41 1.31 1.28
median [s] 1.71 1.76 1.85 1.90 2.19 2.41 1.91 2.03

mean [s] 8.94 7.47 4.13 3.80 7.53 7.94 8.34 8.63
max [s] 595.72 510.72 468.25 497.25 501.04 461.19 488.27 554.67

S1a

#timeout. 394 285 8 9 14 19 71 65
total time [h] 69.33 51.16 2.94 2.81 5.82 5.54 16.20 15.15
95% time [h] 59.66 41.49 0.77 0.76 1.08 0.98 6.53 5.48

min [s] 1.27 1.20 1.36 1.36 1.29 1.31 1.21 1.38
median [s] 2.23 1.97 2.15 2.14 2.30 2.38 2.02 2.14

mean [s] 17.42 15.15 5.08 4.15 11.06 7.57 14.59 14.32
max [s] 563.50 586.91 541.11 318.78 530.01 394.96 536.21 588.57

S1b

#timeout. 118 108 120 108 181 148 199 163
total time [h] 22.20 20.19 22.32 20.21 33.22 27.52 36.43 30.03
95% time [h] 12.53 10.51 12.65 10.53 23.55 17.84 26.76 20.36

min [s] 1.21 1.23 1.22 1.19 1.29 1.21 1.25 1.24
median [s] 1.65 1.81 1.73 1.69 2.08 2.02 1.80 1.97

mean [s] 8.82 7.53 8.11 7.60 11.35 10.20 12.34 10.41
max [s] 577.92 507.17 591.18 523.41 536.70 584.93 594.66 573.06

S2

#timeout. 89 73 0 0 140 219 130 199
total time [h] 17.72 15.57 0.73 0.75 29.63 44.78 28.12 41.86
95% time [h] 8.05 5.90 0.56 0.56 19.96 35.11 18.45 32.18

min [s] 1.24 1.36 1.21 1.27 1.43 1.44 1.31 1.23
median [s] 1.89 1.85 1.82 1.85 3.22 5.86 3.12 5.17

mean [s] 9.79 11.38 2.30 2.34 22.45 32.01 22.77 32.88
max [s] 595.30 577.70 142.26 145.30 599.98 599.69 596.26 598.55

S2a

#timeout. 356 276 1 4 140 221 135 211
total time [h] 63.20 49.05 1.80 2.02 29.92 44.98 28.89 42.99
95% time [h] 53.53 39.38 0.60 0.63 20.25 35.31 19.22 33.32

min [s] 1.20 1.20 1.28 1.29 1.33 1.27 1.26 1.35
median [s] 1.89 1.87 1.88 1.97 3.36 6.24 3.15 5.72

mean [s] 17.48 12.48 5.13 4.24 23.47 31.55 22.67 29.96
max [s] 582.90 506.79 556.86 425.75 585.76 590.76 576.10 596.52

S2b

#timeout. 89 73 89 73 309 423 308 400
total time [h] 17.67 15.61 17.72 15.61 58.56 80.98 57.94 75.78
95% time [h] 8 5.94 8.05 5.94 48.89 71.31 48.27 66.11

min [s] 1.26 1.33 1.30 1.17 1.41 1.55 1.43 1.61
median [s] 1.84 1.87 1.83 1.67 6.71 28.17 6.58 23.43

mean [s] 9.64 11.51 9.80 11.49 30.22 51.85 28.23 43.68
max [s] 584.23 579.89 588.73 586.65 566.89 568.17 550.97 598.96

SAG

#timeout. 325 272 1 2 11 15 54 59
total time [h] 57.44 49.07 1.85 2.02 4.73 5.14 12.60 12.84
95% time [h] 47.77 39.39 0.74 0.75 0.98 0.90 2.98 3.17

min [s] 1.27 1.22 1.33 1.37 1.34 1.21 1.30 1.27
median [s] 2.23 2.15 2.14 2.12 2.48 2.13 2.13 2.14

mean [s] 14.25 15.24 5.29 5.31 9.16 8.36 11.82 9.90
max [s] 588.04 517.74 543.61 575.64 517.40 509.57 588.91 519.54

Table 2: Results for admissible semantics using flexABle and the set of input benchmarks restricted to
the non-trivial ones.
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Culprits

Str. DAB DABF DC DS
DFS BFS DFS BFS DFS BFS DFS BFS

S1

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
median 1.00 1.00 3.00 3.00 3.00 3.00 3.00 3.00

mean 1.58 1.62 3.35 3.35 3.32 3.33 3.34 3.44
max 8.00 7.00 11.00 11.00 11.00 11.00 11.00 11.00

S1a

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
median 1.00 1.00 3.00 3.00 3.00 3.00 3.00 3.00

mean 1.77 1.67 3.34 3.36 3.31 3.32 3.34 3.44
max 9.00 7.00 11.00 11.00 11.00 11.00 11.00 11.00

S1b

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
median 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

mean 1.58 1.62 1.58 1.62 1.58 1.63 1.57 1.76
max 8.00 7.00 8.00 7.00 8.00 7.00 8.00 9.00

S2

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
median 1.00 2.00 3.00 3.00 3.00 4.00 3.00 4.00

mean 1.59 2.13 3.34 3.85 3.35 4.63 3.35 4.31
max 8.00 9.00 11.00 11.00 11.00 11.00 11.00 11.00

S2a

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
median 1.00 2.00 3.00 3.00 3.00 4.00 3.00 4.00

mean 1.79 2.21 3.34 3.88 3.34 4.61 3.34 4.28
max 9.00 9.00 11.00 11.00 11.00 11.00 11.00 11.00

S2b

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
median 1.00 2.00 1.00 2.00 1.00 3.00 1.00 2.00

mean 1.59 2.13 1.59 2.13 1.55 2.92 1.55 2.59
max 8.00 9.00 8.00 9.00 8.00 9.00 8.00 9.00

SAG

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
median 1.00 1.00 3.00 3.00 3.00 3.00 3.00 3.00

mean 1.65 1.67 3.34 3.34 3.33 3.37 3.32 3.45
max 8.00 7.00 11.00 11.00 11.00 11.00 11.00 11.00

Table 3: Statistics regarding the number of culprits of successful dispute derivations for the admissible se-
mantics using flexABle.
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(a) Minimal value (b) Median

(c) Mean (d) Maximal value

Figure 1: Bar plots indicating the number of culprits in successful dispute derivations for admissible seman-
tics using flexABle.
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Defences

Str. DAB DABF DC DS
DFS BFS DFS BFS DFS BFS DFS BFS

S1

min 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
median 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

mean 1.70 1.70 1.64 1.65 1.64 1.67 1.64 1.75
max 8.00 9.00 8.00 9.00 8.00 9.00 8.00 9.00

S1a

min 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
median 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

mean 1.94 1.76 1.68 1.66 1.68 1.69 1.68 1.76
max 8.00 9.00 8.00 9.00 8.00 9.00 8.00 9.00

S1b

min 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
median 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

mean 1.70 1.70 1.70 1.70 1.70 1.73 1.70 1.87
max 8.00 9.00 8.00 9.00 8.00 9.00 8.00 9.00

S2

min 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
median 1.00 2.00 1.00 2.00 1.00 3.00 1.00 3.00

mean 1.70 2.07 1.64 2.08 1.63 3.16 1.63 2.99
max 8.00 9.00 8.00 9.00 8.00 10.00 8.00 10.00

S2a

min 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
median 1.00 2.00 1.00 2.00 1.00 3.00 1.00 2.00

mean 1.95 2.16 1.68 2.11 1.63 3.09 1.63 2.91
max 8.00 9.00 8.00 9.00 8.00 10.00 8.00 10.00

S2b

min 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
median 1.00 2.00 1.00 2.00 1.00 3.00 1.00 3.00

mean 1.70 2.07 1.70 2.07 1.63 3.18 1.63 3.00
max 8.00 9.00 8.00 9.00 8.00 10.00 8.00 10.00

SAG

min 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
median 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

mean 1.80 1.74 1.64 1.65 1.64 1.70 1.64 1.76
max 8.00 9.00 8.00 9.00 8.00 9.00 8.00 9.00

Table 4: Statistics regarding the number of defences of successful dispute derivations for the admissible
semantics using flexABle.
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(a) Minimal value (b) Median

(c) Mean (d) Maximal value

Figure 2: Bar plots indicating the number of defences in successful dispute derivations for admissible se-
mantics using flexABle.
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Opponent’s rules

Str. DAB DABF DC DS
DFS BFS DFS BFS DFS BFS DFS BFS

S1

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
median 8.00 7.00 3.00 3.00 15.00 15.00 3.00 3.00

mean 17.67 17.24 12.99 12.76 20.75 20.74 12.94 12.59
max 107.00 107.00 75.00 75.00 75.00 75.00 75.00 75.00

S1a

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
median 7.00 6.00 3.00 3.00 14.00 14.00 3.00 3.00

mean 17.55 16.44 12.24 11.96 20.92 20.89 12.20 11.79
max 107.00 107.00 70.00 70.00 74.00 74.00 70.00 70.00

S1b

min 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00
median 8.00 7.00 8.00 7.00 19.00 19.00 8.00 7.00

mean 17.67 17.24 17.67 17.24 28.54 28.49 17.62 16.91
max 107.00 107.00 107.00 107.00 107.00 107.00 107.00 107.00

S2

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
median 4.00 2.00 2.00 2.00 7.00 5.00 2.00 1.00

mean 12.53 3.55 11.22 3.73 13.87 8.89 11.97 6.88
max 107.00 65.00 75.00 65.00 72.00 43.00 75.00 43.00

S2a

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
median 4.00 2.00 2.00 2.00 7.00 5.00 2.00 2.00

mean 12.72 3.57 10.42 3.40 13.71 8.97 11.36 6.61
max 107.00 65.00 71.00 65.00 73.00 43.00 71.00 43.00

S2b

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
median 4.00 2.00 4.00 2.00 10.00 6.00 3.00 2.00

mean 12.53 3.55 12.53 3.55 16.14 8.27 12.92 4.99
max 107.00 65.00 107.00 65.00 107.00 39.00 107.00 39.00

SAG

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
median 8.00 7.00 3.00 3.00 10.00 10.00 3.00 3.00

mean 17.42 17.02 12.69 12.58 16.96 16.68 12.68 12.37
max 107.00 107.00 73.00 70.00 73.00 75.00 73.00 70.00

Table 5: Statistics regarding the number of opponent’s rules of successful dispute derivations for the ad-
missible semantics using flexABle.
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(a) Minimal value (b) Median

(c) Mean (d) Maximal value

Figure 3: Bar plots indicating the number of opponent’s rules in successful dispute derivations for admis-
sible semantics using flexABle.
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Opponent’s statements

Str. DAB DABF DC DS
DFS BFS DFS BFS DFS BFS DFS BFS

S1

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
median 18.00 17.00 8.00 8.00 29.00 29.00 8.00 8.00

mean 21.44 21.18 19.02 18.82 28.13 28.13 18.99 18.78
max 77.00 77.00 75.00 75.00 76.00 76.00 75.00 75.00

S1a

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
median 20.00 17.00 8.00 8.00 31.00 31.00 8.00 8.00

mean 22.12 21.22 19.14 18.87 29.93 29.93 19.11 18.82
max 77.00 77.00 75.00 75.00 76.00 76.00 75.00 75.00

S1b

min 0.00 0.00 0.00 0.00 2.00 2.00 0.00 0.00
median 18.00 17.00 18.00 17.00 33.00 33.00 18.00 17.00

mean 21.44 21.18 21.44 21.18 31.87 31.87 21.43 21.09
max 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00

S2

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
median 11.00 9.00 8.00 7.00 20.00 15.00 7.00 5.00

mean 18.96 13.63 17.94 13.61 23.29 20.36 18.24 15.97
max 69.00 49.00 63.00 49.00 63.00 60.00 62.00 52.00

S2a

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
median 13.00 9.00 8.00 7.00 24.00 16.00 7.00 5.00

mean 19.67 13.86 17.79 13.47 24.36 21.29 18.26 16.02
max 65.00 49.00 55.00 49.00 63.00 62.00 62.00 52.00

S2b

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
median 11.00 9.00 11.00 9.00 21.00 17.00 10.00 7.00

mean 18.96 13.63 18.96 13.63 25.18 20.88 18.91 14.76
max 69.00 49.00 69.00 49.00 68.00 59.00 68.00 52.00

SAG

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
median 18.00 17.00 8.00 8.00 25.00 25.00 8.00 8.00

mean 21.53 21.19 18.91 18.84 25.36 25.28 18.88 18.79
max 77.00 77.00 75.00 75.00 76.00 76.00 75.00 75.00

Table 6: Statistics regarding the number of opponent’s statements of successful dispute derivations for the
admissible semantics using flexABle.
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(a) Minimal value (b) Median

(c) Mean (d) Maximal value

Figure 4: Bar plots indicating the number of opponent’s statements in successful dispute derivations for
admissible semantics using flexABle.
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Proponent’s rules

Str. DAB DABF DC DS
DFS BFS DFS BFS DFS BFS DFS BFS

S1

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
median 1.00 1.00 7.00 7.00 7.00 7.00 7.00 8.00

mean 0.84 0.92 6.91 6.91 6.83 6.84 6.91 6.93
max 7.00 7.00 20.00 20.00 20.00 20.00 20.00 20.00

S1a

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
median 1.00 1.00 7.00 7.00 7.00 7.00 7.00 7.00

mean 1.05 0.93 6.93 6.90 6.83 6.83 6.93 6.92
max 11.00 7.00 20.00 20.00 20.00 20.00 20.00 20.00

S1b

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
median 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

mean 0.84 0.92 0.84 0.92 0.84 0.91 0.84 0.98
max 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00

S2

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
median 1.00 1.00 7.00 8.00 8.00 8.00 8.00 8.00

mean 0.84 1.07 6.92 6.98 6.94 7.21 6.94 7.11
max 7.00 7.00 20.00 20.00 20.00 20.00 20.00 20.00

S2a

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
median 1.00 1.00 7.00 8.00 8.00 8.00 8.00 8.00

mean 1.08 1.06 6.93 6.97 6.93 7.22 6.93 7.10
max 11.00 8.00 20.00 20.00 20.00 20.00 20.00 20.00

S2b

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
median 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

mean 0.84 1.07 0.84 1.07 0.88 1.20 0.88 1.07
max 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00

SAG

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
median 1.00 1.00 7.00 7.00 7.00 7.00 7.00 8.00

mean 0.84 0.94 6.90 6.89 6.87 6.90 6.89 6.95
max 7.00 7.00 20.00 20.00 20.00 20.00 20.00 20.00

Table 7: Statistics regarding the number of proponent’s rules of successful dispute derivations for the ad-
missible semantics using flexABle.
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(a) Minimal value (b) Median

(c) Mean (d) Maximal value

Figure 5: Bar plots indicating the number of proponent’s rules in successful dispute derivations for admis-
sible semantics using flexABle.
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Proponent’s statements

Str. DAB DABF DC DS
DFS BFS DFS BFS DFS BFS DFS BFS

S1

min 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
median 2.00 2.00 9.00 9.00 9.00 9.00 9.00 9.00

mean 2.54 2.62 8.55 8.55 8.48 8.51 8.55 8.68
max 9.00 10.00 23.00 23.00 23.00 23.00 23.00 23.00

S1a

min 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
median 2.00 2.00 9.00 9.00 9.00 9.00 9.00 9.00

mean 2.99 2.69 8.61 8.57 8.52 8.53 8.61 8.68
max 14.00 11.00 23.00 23.00 23.00 23.00 23.00 23.00

S1b

min 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
median 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

mean 2.54 2.62 2.54 2.62 2.54 2.63 2.54 2.85
max 9.00 10.00 9.00 10.00 9.00 10.00 9.00 11.00

S2

min 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
median 2.00 2.00 9.00 10.00 9.00 11.00 9.00 10.00

mean 2.54 3.13 8.56 9.06 8.57 10.36 8.57 10.10
max 9.00 11.00 23.00 23.00 23.00 24.00 23.00 23.00

S2a

min 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
median 2.00 2.00 9.00 10.00 9.00 11.00 9.00 10.00

mean 3.04 3.22 8.62 9.08 8.56 10.31 8.56 10.01
max 14.00 12.00 23.00 23.00 23.00 24.00 23.00 23.00

S2b

min 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
median 2.00 2.00 2.00 2.00 2.00 4.00 2.00 3.00

mean 2.54 3.13 2.54 3.13 2.51 4.38 2.51 4.06
max 9.00 11.00 9.00 11.00 9.00 12.00 9.00 12.00

SAG

min 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
median 2.00 2.00 9.00 9.00 9.00 9.00 9.00 9.00

mean 2.65 2.68 8.54 8.54 8.51 8.60 8.53 8.71
max 11.00 10.00 23.00 23.00 23.00 23.00 23.00 23.00

Table 8: Statistics regarding the number of proponent’s statements of successful dispute derivations for the
admissible semantics using flexABle.
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(a) Minimal value (b) Median

(c) Mean (d) Maximal value

Figure 6: Bar plots indicating the number of proponent’s statements in successful dispute derivations for
admissible semantics using flexABle.
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Approximate reasoning

“Static” sampling

Str. DAB DABF DC DS
DFS BFS DFS BFS DFS BFS DFS BFS

S1
#timeout. (-131) 62 (-132) 47 (+0) 0 (-1) 1 (-9) 4 (+6) 19 (+54) 90 (+47) 86

total time [h] (-21.48) 16.91 (-21.38) 14.32 (+0.09) 3.82 (-0.34) 3.71 (+0.35) 7.72 (+2.89) 10.73 (+10.95) 22.79 (+8.88) 21.44

S1a
#timeout. (-512) 356 (-200) 169 (-7) 2 (-9) 2 (-7) 10 (-10) 12 (+61) 143 (+61) 137

total time [h] (-82.36) 71.61 (-31.11) 37.39 (-0.51) 5.86 (-2.08) 4.24 (-0.54) 8.75 (+0.0) 9.25 (+15.25) 36.49 (+13.44) 33.96

S1b
#timeout. (-127) 66 (-117) 62 (-128) 67 (-134) 46 (-157) 115 (-114) 122 (-45) 255 (-30) 227

total time [h] (-19.51) 18.73 (-18.87) 16.92 (-19.79) 18.76 (-21.37) 14.32 (-21.77) 30.46 (-14.78) 30.55 (-4.09) 52.19 (-2.04) 46.80

S2
#timeout. (-83) 50 (-91) 24 (+0) 0 (+1) 1 (+153) 333 (+110) 370 (+135) 302 (+125) 365

total time [h] (-15.07) 13.57 (-17.53) 8.55 (+0.11) 3.17 (+0.31) 3.43 (+25.57) 66.39 (+18.01) 74.42 (+21.57) 60.69 (+20.60) 73.64

S2a
#timeout. (-471) 289 (-213) 124 (-1) 0 (-2) 2 (+141) 322 (+108) 370 (+138) 311 (+120) 372

total time [h] (-78.52) 57.91 (-32.66) 29.32 (-1.05) 3.41 (-0.77) 4.11 (+23.06) 64.16 (+21.14) 77.62 (+23.07) 62.87 (+19.10) 73.56

S2b
#timeout. (-95) 38 (-91) 24 (-104) 29 (-85) 30 (+71) 487 (-150) 688 (+78) 494 (-141) 659

total time [h] (-17.46) 11.09 (-17.23) 8.93 (-18.93) 9.68 (-15.60) 10.24 (+15.57) 96.64 (-24.62) 142.16 (+15.57) 96.05 (-23.41) 136.41

SAG
#timeout. (-320) 246 (-182) 149 (-1) 0 (-1) 1 (-5) 6 (-5) 10 (+54) 108 (+72) 131

total time [h] (-51.78) 50.27 (-28.49) 33.77 (+0.51) 5.02 (+1.73) 6.38 (+0.04) 7.58 (+0.62) 8.11 (+9.63) 24.79 (+13.21) 28.54

(a) pprop = 0.5, popp = 1
Str. DAB DABF DC DS

DFS BFS DFS BFS DFS BFS DFS BFS

S1
#timeout. (-8) 185 (-16) 163 (+0) 0 (-2) 0 (-3) 10 (-3) 10 (-2) 34 (-9) 30

total time [h] (-1.06) 37.33 (-2.50) 33.20 (+0.71) 4.44 (-0.01) 4.04 (-0.32) 7.05 (-1.29) 6.55 (+2.46) 14.30 (-1.94) 10.62

S1a
#timeout. (-74) 794 (-91) 278 (-4) 5 (-6) 5 (+4) 21 (-8) 14 (-22) 60 (-31) 45

total time [h] (-11.90) 142.07 (-16.75) 51.75 (-0.92) 5.45 (-1.24) 5.08 (+0.25) 9.54 (-1.20) 8.05 (-3.50) 17.74 (-6.88) 13.64

S1b
#timeout. (-16) 177 (-4) 175 (+6) 201 (-17) 163 (-16) 256 (-34) 202 (-29) 271 (-27) 230

total time [h] (-2.54) 35.70 (+0.28) 36.07 (+0.53) 39.08 (-2.90) 32.79 (-1.40) 50.83 (-5.25) 40.08 (-4.33) 51.95 (-5.30) 43.54

S2
#timeout. (-1) 132 (+6) 121 (+0) 0 (+0) 0 (-45) 135 (-25) 235 (-32) 135 (-27) 213

total time [h] (-0.98) 27.66 (+0.29) 26.37 (+0.50) 3.56 (+0.52) 3.64 (-7.70) 33.12 (-4.89) 51.52 (-6.62) 32.50 (-4.88) 48.16

S2a
#timeout. (-100) 660 (-91) 246 (+0) 1 (-1) 3 (-40) 141 (-35) 227 (-28) 145 (-36) 216

total time [h] (-16.62) 119.81 (-15.25) 46.73 (-0.14) 4.32 (-0.11) 4.77 (-7.22) 33.88 (-6.40) 50.08 (-4.45) 35.35 (-6.08) 48.38

S2b
#timeout. (+1) 134 (+3) 118 (+0) 133 (+13) 128 (-12) 404 (+71) 909 (-5) 411 (+54) 854

total time [h] (+0.17) 28.72 (-0.13) 26.03 (-0.45) 28.16 (+1.28) 27.12 (-3.55) 77.52 (+10.91) 177.69 (-1.64) 78.84 (+7.75) 167.57

SAG
#timeout. (-122) 444 (-95) 236 (-1) 0 (-2) 0 (+1) 12 (-8) 7 (-33) 21 (-38) 21

total time [h] (-21.08) 80.97 (-17.04) 45.22 (-0.93) 3.58 (-0.62) 4.03 (-0.90) 6.64 (-1.65) 5.84 (-6.51) 8.65 (-7.02) 8.31

(b) pprop = 1, popp = 0.5
Str. DAB DABF DC DS

DFS BFS DFS BFS DFS BFS DFS BFS

S1
#timeout. (-101) 92 (-106) 73 (+1) 1 (-2) 0 (-3) 10 (-1) 12 (+24) 60 (+13) 52

total time [h] (-16.0) 22.39 (-17.23) 18.47 (-0.25) 3.48 (-0.14) 3.91 (+0.02) 7.39 (+0.60) 8.44 (+4.50) 16.34 (+2.34) 14.90

S1a
#timeout. (-537) 331 (-221) 148 (-7) 2 (-10) 1 (+4) 21 (+5) 27 (+6) 88 (+16) 92

total time [h] (-88.22) 65.75 (-36.75) 31.75 (-1.64) 4.73 (-2.16) 4.16 (+1.32) 10.61 (+1.09) 10.34 (+1.30) 22.54 (+2.25) 22.77

S1b
#timeout. (-98) 95 (-105) 74 (-99) 96 (-118) 62 (-87) 185 (-105) 131 (-68) 232 (-37) 220

total time [h] (-16.47) 21.77 (-17.56) 18.23 (-15.31) 23.24 (-19.33) 16.36 (-8.51) 43.72 (-13.12) 32.21 (-8.54) 47.74 (-3.89) 44.95

S2
#timeout. (-68) 65 (-76) 39 (+0) 0 (+1) 1 (+75) 255 (+92) 352 (+91) 258 (+116) 356

total time [h] (-13.66) 14.98 (-14.15) 11.93 (+0.10) 3.16 (+0.09) 3.21 (+11.73) 52.55 (+14.07) 70.48 (+14.28) 53.40 (+17.16) 70.20

S2a
#timeout. (-491) 269 (-228) 109 (+0) 1 (-3) 1 (+112) 293 (+93) 355 (+78) 251 (+99) 351

total time [h] (-81.41) 55.02 (-33.90) 28.08 (-0.71) 3.75 (-1.36) 3.52 (+19.42) 60.52 (+14.37) 70.85 (+12.28) 52.08 (+14.63) 69.09

S2b
#timeout. (-62) 71 (-68) 47 (-76) 57 (-55) 60 (+72) 488 (-96) 742 (+56) 472 (-102) 698

total time [h] (-11.37) 17.18 (-13.30) 12.86 (-14.52) 14.09 (-11.33) 14.51 (+13.50) 94.57 (-17.35) 149.43 (+10.25) 90.73 (-20.83) 138.99

SAG
#timeout. (-350) 216 (-212) 119 (-1) 0 (-2) 0 (+0) 11 (+0) 15 (-3) 51 (+8) 67

total time [h] (-58.59) 43.46 (-35.05) 27.21 (-0.23) 4.28 (-0.62) 4.03 (-0.82) 6.72 (+2.73) 10.22 (-0.67) 14.49 (+1.83) 17.16

(c) pprop = 0.5, popp = 0.5

Table 9: “Static” rule sampling results for combinations of (pprop , popp)with value 0.5.
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Str. DAB DABF DC DS
DFS BFS DFS BFS DFS BFS DFS BFS

S1
#timeout. (-103) 90 (-106) 73 (+0) 0 (-2) 0 (-6) 7 (-1) 12 (+30) 66 (+29) 68

total time [h] (-14.81) 23.58 (-15.53) 20.17 (-0.36) 3.37 (-0.37) 3.68 (+0.25) 7.62 (-0.45) 7.39 (+7.75) 19.59 (+5.93) 18.49

S1a
#timeout. (-393) 475 (-156) 213 (-9) 0 (-9) 2 (-9) 8 (-6) 16 (+40) 122 (+63) 139

total time [h] (-60.89) 93.08 (-22.11) 46.39 (-1.67) 4.70 (-1.61) 4.71 (-0.77) 8.52 (+0.06) 9.31 (+8.55) 29.79 (+11.54) 32.06

S1b
#timeout. (-114) 79 (-120) 59 (-117) 78 (-110) 70 (-94) 178 (-90) 146 (-6) 294 (-14) 243

total time [h] (-17.30) 20.94 (-18.38) 17.41 (-16.85) 21.70 (-16.40) 19.29 (-11.64) 40.59 (-10.20) 35.13 (+2.46) 58.74 (+1.02) 49.86

S2
#timeout. (-94) 39 (-83) 32 (+0) 0 (+0) 0 (+136) 316 (+92) 352 (+112) 279 (+99) 339

total time [h] (-16.40) 12.24 (-16.06) 10.02 (+0.90) 3.96 (+0.57) 3.69 (+22.67) 63.49 (+13.64) 70.05 (+18.22) 57.34 (+16.07) 69.11

S2a
#timeout. (-371) 389 (-165) 172 (-1) 0 (-4) 0 (+118) 299 (+92) 354 (+117) 290 (+84) 336

total time [h] (-60.50) 75.93 (-22.48) 39.50 (-0.71) 3.75 (-1.17) 3.71 (+19.11) 60.21 (+16.49) 72.97 (+18.30) 58.10 (+13.53) 67.99

S2b
#timeout. (-86) 47 (-85) 30 (-101) 32 (-87) 28 (+55) 471 (-134) 704 (+79) 495 (-106) 694

total time [h] (-15.99) 12.56 (-14.61) 11.55 (-17.73) 10.88 (-15.41) 10.43 (+12.32) 93.39 (-21.18) 145.60 (+14.44) 94.92 (-17.45) 142.37

SAG
#timeout. (-259) 307 (-138) 193 (-1) 0 (-2) 0 (+0) 11 (-1) 14 (+62) 116 (+41) 100

total time [h] (-38.89) 63.16 (-19.08) 43.18 (-0.07) 4.44 (-0.51) 4.14 (+0.53) 8.07 (+0.74) 8.23 (+11.46) 26.62 (+8.17) 23.50

(a) pprop = 0.6, popp = 1
Str. DAB DABF DC DS

DFS BFS DFS BFS DFS BFS DFS BFS

S1
#timeout. (+9) 202 (-8) 171 (+2) 2 (-1) 1 (-2) 11 (-6) 7 (-7) 29 (+1) 40

total time [h] (+2.86) 41.25 (-1.87) 33.83 (+1.90) 5.63 (+0.26) 4.31 (-0.24) 7.13 (-1.44) 6.40 (-0.41) 11.43 (+1.35) 13.91

S1a
#timeout. (-56) 812 (-71) 298 (-2) 7 (-5) 6 (+2) 19 (-5) 17 (-18) 64 (-16) 60

total time [h] (-8.49) 145.48 (-12.16) 56.34 (+0.14) 6.51 (-0.61) 5.71 (-0.17) 9.12 (+1.57) 10.82 (-3.75) 17.49 (-4.23) 16.29

S1b
#timeout. (-9) 184 (-4) 175 (+9) 204 (+3) 183 (+7) 279 (-20) 216 (-26) 274 (-9) 248

total time [h] (-0.98) 37.26 (-0.74) 35.05 (+2.17) 40.72 (-0.29) 35.40 (+0.93) 53.16 (-3.72) 41.61 (-3.40) 52.88 (-1.94) 46.90

S2
#timeout. (-7) 126 (+12) 127 (+0) 0 (+0) 0 (-32) 148 (-20) 240 (-28) 139 (-13) 227

total time [h] (-1.99) 26.65 (+1.42) 27.50 (+0.16) 3.22 (+0.33) 3.45 (-5.23) 35.59 (-3.74) 52.67 (-5.74) 33.38 (-2.64) 50.40

S2a
#timeout. (-65) 695 (-56) 281 (+0) 1 (+0) 4 (-30) 151 (-15) 247 (-28) 145 (-21) 231

total time [h] (-10.30) 126.13 (-9.95) 52.03 (-0.04) 4.42 (-0.20) 4.68 (-5.01) 36.09 (-1.83) 54.65 (-5.63) 34.17 (-3.66) 50.80

S2b
#timeout. (+0) 133 (+8) 123 (-2) 131 (+20) 135 (+11) 427 (+58) 896 (+2) 418 (+53) 853

total time [h] (-0.48) 28.07 (+0.39) 26.55 (-0.51) 28.10 (+2.75) 28.59 (-0.02) 81.05 (+9.51) 176.29 (-0.40) 80.08 (+7.98) 167.80

SAG
#timeout. (-79) 487 (-57) 274 (-1) 0 (-2) 0 (-1) 10 (-3) 12 (-23) 31 (-26) 33

total time [h] (-14.76) 87.29 (-10.46) 51.80 (+0.15) 4.66 (-0.14) 4.51 (-0.02) 7.52 (-0.60) 6.89 (-2.78) 12.38 (-4.34) 10.99

(b) pprop = 1, popp = 0.6
Str. DAB DABF DC DS

DFS BFS DFS BFS DFS BFS DFS BFS

S1
#timeout. (-97) 96 (-102) 77 (+0) 0 (-1) 1 (-1) 12 (+2) 15 (+9) 45 (+17) 56

total time [h] (-14.60) 23.79 (-14.96) 20.74 (-0.09) 3.64 (-0.24) 3.81 (+0.34) 7.71 (+0.44) 8.28 (+2.35) 14.19 (+4.01) 16.57

S1a
#timeout. (-425) 443 (-160) 209 (-8) 1 (-11) 0 (+0) 17 (-2) 20 (+16) 98 (+19) 95

total time [h] (-66.50) 87.47 (-24.50) 44.0 (-1.89) 4.48 (-2.18) 4.14 (+0.59) 9.88 (+1.02) 10.27 (+3.03) 24.27 (+2.65) 23.17

S1b
#timeout. (-85) 108 (-97) 82 (-84) 111 (-83) 97 (-51) 221 (-68) 168 (-1) 299 (-24) 233

total time [h] (-12.91) 25.33 (-13.59) 22.20 (-12.14) 26.41 (-11.42) 24.27 (-5.18) 47.05 (-6.31) 39.02 (+2.27) 58.55 (-1.86) 46.98

S2
#timeout. (-73) 60 (-66) 49 (+0) 0 (+0) 0 (+57) 237 (+82) 342 (+95) 262 (+97) 337

total time [h] (-13.08) 15.56 (-12.20) 13.88 (+0.42) 3.48 (+0.76) 3.88 (+9.42) 50.24 (+12.73) 69.14 (+14.30) 53.42 (+16.02) 69.06

S2a
#timeout. (-387) 373 (-173) 164 (-1) 0 (-4) 0 (+78) 259 (+94) 356 (+79) 252 (+73) 325

total time [h] (-64.45) 71.98 (-26.45) 35.53 (-0.96) 3.50 (-1.50) 3.38 (+13.17) 54.27 (+13.71) 70.19 (+11.69) 51.49 (+11.52) 65.98

S2b
#timeout. (-63) 70 (-59) 56 (-67) 66 (-68) 47 (+89) 505 (-66) 772 (+64) 480 (-49) 751

total time [h] (-10.74) 17.81 (-10.66) 15.50 (-11.77) 16.84 (-11.81) 14.03 (+16.54) 97.61 (-12.59) 154.19 (+12.56) 93.04 (-10.69) 149.13

SAG
#timeout. (-298) 268 (-183) 148 (-1) 0 (-2) 0 (+6) 17 (-3) 12 (+12) 66 (+12) 71

total time [h] (-46.50) 55.55 (-28.67) 33.59 (-0.99) 3.52 (-0.86) 3.79 (+1.46) 9.0 (+0.63) 8.12 (+1.64) 16.80 (+2.21) 17.54

(c) pprop = 0.6, popp = 0.6

Table 10: “Static” rule sampling results for combinations of (pprop , popp)with value 0.6.
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Str. DAB DABF DC DS
DFS BFS DFS BFS DFS BFS DFS BFS

S1
#timeout. (-50) 143 (-39) 140 (+1) 1 (-2) 0 (+2) 15 (-2) 11 (+9) 45 (+22) 61

total time [h] (-6.92) 31.47 (-5.13) 30.57 (+0.02) 3.75 (+0.26) 4.31 (+4.11) 11.48 (+0.02) 7.86 (+2.98) 14.82 (+4.87) 17.43

S1a
#timeout. (-153) 715 (-21) 348 (-5) 4 (-5) 6 (-1) 16 (-2) 20 (+34) 116 (+22) 98

total time [h] (-23.32) 130.65 (-2.47) 66.03 (-0.77) 5.60 (-0.03) 6.29 (+0.93) 10.22 (+0.06) 9.31 (+7.17) 28.41 (+4.36) 24.88

S1b
#timeout. (-34) 159 (-32) 147 (-42) 153 (-29) 151 (-49) 223 (-28) 208 (+4) 304 (-5) 252

total time [h] (-4.57) 33.67 (-3.41) 32.38 (-5.25) 33.30 (-3.98) 31.71 (-4.88) 47.35 (-2.46) 42.87 (+3.88) 60.16 (+0.85) 49.69

S2
#timeout. (-44) 89 (-39) 76 (+0) 0 (+0) 0 (+57) 237 (+52) 312 (+70) 237 (+55) 295

total time [h] (-8.34) 20.30 (-7.05) 19.03 (+0.33) 3.39 (+0.49) 3.61 (+9.68) 50.50 (+8.65) 65.06 (+12.80) 51.92 (+9.94) 62.98

S2a
#timeout. (-174) 586 (-59) 278 (+0) 1 (-2) 2 (+65) 246 (+58) 320 (+70) 243 (+66) 318

total time [h] (-26.32) 110.11 (-5.09) 56.89 (-0.18) 4.28 (-0.68) 4.20 (+10.96) 52.06 (+10.37) 66.85 (+12.03) 51.83 (+9.62) 64.08

S2b
#timeout. (-43) 90 (-35) 80 (-35) 98 (-37) 78 (+42) 458 (-51) 787 (+14) 430 (-45) 755

total time [h] (-6.54) 22.01 (-7.05) 19.11 (-5.72) 22.89 (-6.48) 19.36 (+8.81) 89.88 (-8.10) 158.68 (+4.06) 84.54 (-6.42) 153.40

SAG
#timeout. (-99) 467 (-39) 292 (-1) 0 (-2) 0 (+4) 15 (-6) 9 (+26) 80 (+23) 82

total time [h] (-15.53) 86.52 (-5.22) 57.04 (-0.49) 4.02 (+0.14) 4.79 (+1.48) 9.02 (-0.08) 7.41 (+4.74) 19.90 (+6.28) 21.61

(a) pprop = 0.8, popp = 1
Str. DAB DABF DC DS

DFS BFS DFS BFS DFS BFS DFS BFS

S1
#timeout. (+15) 208 (+3) 182 (+0) 0 (-1) 1 (-3) 10 (+3) 16 (-2) 34 (+1) 40

total time [h] (+3.40) 41.79 (+0.91) 36.61 (+0.27) 4.0 (-0.24) 3.81 (+0.76) 8.13 (+0.40) 8.24 (+0.45) 12.29 (+0.30) 12.86

S1a
#timeout. (-11) 857 (-33) 336 (-2) 7 (-5) 6 (+5) 22 (-2) 20 (-3) 79 (-6) 70

total time [h] (-1.62) 152.35 (-5.49) 63.01 (-0.34) 6.03 (-0.45) 5.87 (+1.16) 10.45 (+1.37) 10.62 (-0.84) 20.40 (-1.10) 19.42

S1b
#timeout. (+10) 203 (+6) 185 (-3) 192 (-1) 179 (+0) 272 (+0) 236 (+8) 308 (+0) 257

total time [h] (+2.25) 40.49 (+1.07) 36.86 (+0.51) 39.06 (+0.57) 36.26 (+0.39) 52.62 (+0.05) 45.38 (+0.99) 57.27 (-0.25) 48.59

S2
#timeout. (+13) 146 (+3) 118 (+0) 0 (+0) 0 (-10) 170 (-4) 256 (-2) 165 (-5) 235

total time [h] (+1.96) 30.60 (+0.78) 26.86 (+0.75) 3.81 (+0.16) 3.28 (-1.88) 38.94 (-0.40) 56.01 (+0.40) 39.52 (+0.13) 53.17

S2a
#timeout. (-19) 741 (-18) 319 (+0) 1 (-1) 3 (-16) 165 (-4) 258 (-13) 160 (-7) 245

total time [h] (-3.47) 132.96 (-2.61) 59.37 (+0.36) 4.82 (-0.43) 4.45 (-3.32) 37.78 (-0.21) 56.27 (-1.81) 37.99 (-1.22) 53.24

S2b
#timeout. (+6) 139 (+6) 121 (+4) 137 (+9) 124 (+26) 442 (+68) 906 (+23) 439 (+46) 846

total time [h] (+1.02) 29.57 (+0.78) 26.94 (+0.90) 29.51 (+1.08) 26.92 (+4.20) 85.27 (+11.92) 178.70 (+3.81) 84.29 (+7.06) 166.88

SAG
#timeout. (-36) 530 (-26) 305 (+0) 1 (-1) 1 (+0) 11 (-3) 12 (+0) 54 (-12) 47

total time [h] (-5.91) 96.14 (-4.46) 57.80 (-0.30) 4.21 (-0.18) 4.47 (-0.64) 6.90 (+0.96) 8.45 (-0.67) 14.49 (-1.73) 13.60

(b) pprop = 1, popp = 0.8
Str. DAB DABF DC DS

DFS BFS DFS BFS DFS BFS DFS BFS

S1
#timeout. (-24) 169 (-35) 144 (+2) 2 (-1) 1 (-1) 12 (+5) 18 (+15) 51 (-1) 38

total time [h] (-1.24) 37.15 (-2.81) 32.89 (+1.35) 5.08 (-0.08) 3.97 (+1.27) 8.64 (+1.20) 9.04 (+3.91) 15.75 (+0.91) 13.47

S1a
#timeout. (-176) 692 (-53) 316 (-4) 5 (-6) 5 (+2) 19 (-2) 20 (+22) 104 (+11) 87

total time [h] (-27.56) 126.41 (-8.39) 60.11 (+0.0) 6.37 (-1.10) 5.22 (+1.16) 10.45 (+0.84) 10.09 (+5.49) 26.73 (+2.74) 23.26

S1b
#timeout. (-26) 167 (-34) 145 (-7) 188 (-26) 154 (-30) 242 (-19) 217 (-5) 295 (-2) 255

total time [h] (-2.70) 35.54 (-4.48) 31.31 (+0.18) 38.73 (-3.45) 32.24 (-3.40) 48.83 (-0.74) 44.59 (+1.44) 57.72 (+1.64) 50.48

S2
#timeout. (-19) 114 (-34) 81 (+0) 0 (+0) 0 (+52) 232 (+67) 327 (+41) 208 (+64) 304

total time [h] (-3.02) 25.62 (-5.96) 20.12 (+0.31) 3.37 (+1.07) 4.19 (+8.13) 48.95 (+12.17) 68.58 (+6.94) 46.06 (+10.18) 63.22

S2a
#timeout. (-182) 578 (-79) 258 (+2) 3 (-1) 3 (+32) 213 (+48) 310 (+56) 229 (+53) 305

total time [h] (-29.68) 106.75 (-10.52) 51.46 (-0.23) 4.23 (-0.35) 4.53 (+5.80) 46.90 (+7.72) 64.20 (+8.51) 48.31 (+9.20) 63.66

S2b
#timeout. (-37) 96 (-37) 78 (-44) 89 (-26) 89 (+58) 474 (-28) 810 (+46) 462 (+6) 806

total time [h] (-6.20) 22.35 (-7.81) 18.35 (-6.92) 21.69 (-4.45) 21.39 (+9.20) 90.27 (-2.0) 164.78 (+8.08) 88.56 (+0.31) 160.13

SAG
#timeout. (-130) 436 (-65) 266 (+0) 1 (+0) 2 (+3) 14 (+1) 16 (+13) 67 (+8) 67

total time [h] (-20.49) 81.56 (-9.46) 52.80 (+0.73) 5.24 (-0.19) 4.46 (+0.75) 8.29 (+0.82) 8.31 (+2.41) 17.57 (+1.84) 17.17

(c) pprop = 0.8, popp = 0.8

Table 11: “Static” rule sampling results for combinations of (pprop , popp)with value 0.8.
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Appendix

Str. DAB DABF DC DS
DFS BFS DFS BFS DFS BFS DFS BFS

S1
#timeout. (-23) 170 (+0) 179 (+0) 0 (-1) 1 (+2) 15 (+3) 16 (+8) 44 (+13) 52

total time [h] (-2.78) 35.61 (+0.76) 36.46 (+0.12) 3.85 (+0.77) 4.82 (+1.69) 9.06 (+1.30) 9.14 (+2.11) 13.95 (+2.90) 15.46

S1a
#timeout. (-71) 797 (+5) 374 (-6) 3 (-3) 8 (+4) 21 (-4) 18 (+14) 96 (+23) 99

total time [h] (-9.75) 144.22 (+0.78) 69.28 (+1.86) 8.23 (-0.13) 6.19 (+1.25) 10.54 (+1.18) 10.43 (+5.57) 26.81 (+5.13) 25.65

S1b
#timeout. (-10) 183 (-12) 167 (-11) 184 (-11) 169 (-21) 251 (+4) 240 (+13) 313 (-2) 255

total time [h] (-0.73) 37.51 (-1.63) 34.16 (-1.04) 37.51 (-1.72) 33.97 (-1.95) 50.28 (+2.0) 47.33 (+2.80) 59.08 (+0.84) 49.68

S2
#timeout. (-16) 117 (-24) 91 (+0) 0 (+0) 0 (+29) 209 (+25) 285 (+38) 205 (+45) 285

total time [h] (-3.18) 25.46 (-3.94) 22.14 (+0.37) 3.43 (+0.69) 3.81 (+5.84) 46.66 (+4.19) 60.60 (+6.51) 45.63 (+7.36) 60.40

S2a
#timeout. (-61) 699 (-10) 327 (+1) 2 (+1) 5 (+38) 219 (+34) 296 (+41) 214 (+33) 285

total time [h] (-9.59) 126.84 (-0.62) 61.36 (+0.13) 4.59 (+0.70) 5.58 (+7.98) 49.08 (+6.41) 62.89 (+6.48) 46.28 (+5.44) 59.90

S2b
#timeout. (-24) 109 (-24) 91 (-20) 113 (-14) 101 (+18) 434 (-28) 810 (+26) 442 (-9) 791

total time [h] (-2.23) 26.32 (-4.32) 21.84 (-3.38) 25.23 (-2.68) 23.16 (+3.17) 84.24 (-2.20) 164.58 (+4.65) 85.13 (-2.23) 157.59

SAG
#timeout. (-50) 516 (-20) 311 (+0) 1 (+0) 2 (+1) 12 (-1) 14 (+15) 69 (+8) 67

total time [h] (-6.67) 95.38 (-2.83) 59.43 (+0.18) 4.69 (+1.18) 5.83 (+1.15) 8.69 (+0.73) 8.22 (+4.25) 19.41 (+1.77) 17.10

(a) pprop = 0.9, popp = 1
Str. DAB DABF DC DS

DFS BFS DFS BFS DFS BFS DFS BFS

S1
#timeout. (+3) 196 (+9) 188 (+0) 0 (+0) 2 (+0) 13 (-1) 12 (-1) 35 (+0) 39

total time [h] (+1.16) 39.55 (+2.05) 37.75 (+0.55) 4.28 (+0.28) 4.33 (+0.10) 7.47 (+0.29) 8.13 (+0.47) 12.31 (+0.51) 13.07

S1a
#timeout. (-15) 853 (-13) 356 (+0) 9 (+0) 11 (+4) 21 (-2) 20 (-2) 80 (-2) 74

total time [h] (-1.49) 152.48 (-2.29) 66.21 (+0.20) 6.57 (+1.50) 7.82 (+1.97) 11.26 (+0.31) 9.56 (-0.08) 21.16 (-1.19) 19.33

S1b
#timeout. (+11) 204 (+1) 180 (-1) 194 (+7) 187 (+2) 274 (-8) 228 (-2) 298 (+0) 257

total time [h] (+2.75) 40.99 (+0.22) 36.01 (+0.64) 39.19 (+1.72) 37.41 (+0.21) 52.44 (-0.56) 44.77 (-0.59) 55.69 (+0.18) 49.02

S2
#timeout. (+6) 139 (+9) 124 (+0) 0 (+0) 0 (-2) 178 (-1) 259 (-1) 166 (+3) 243

total time [h] (+1.11) 29.75 (+1.27) 27.35 (+0.30) 3.36 (+0.18) 3.30 (-0.20) 40.62 (+0.02) 56.43 (-0.58) 38.54 (+0.90) 53.94

S2a
#timeout. (-12) 748 (-16) 321 (+1) 2 (+1) 5 (-6) 175 (-6) 256 (-4) 169 (-4) 248

total time [h] (-1.96) 134.47 (-1.92) 60.06 (+0.32) 4.78 (+0.83) 5.71 (-0.49) 40.61 (+0.10) 56.58 (-0.30) 39.50 (+0.06) 54.52

S2b
#timeout. (-2) 131 (+6) 121 (+0) 133 (+14) 129 (+10) 426 (+30) 868 (+18) 434 (+31) 831

total time [h] (+0.13) 28.68 (+1.05) 27.21 (+0.37) 28.98 (+2.91) 28.75 (+1.41) 82.48 (+5.97) 172.75 (+3.06) 83.54 (+5.10) 164.92

SAG
#timeout. (-15) 551 (-13) 318 (+1) 2 (+0) 2 (+0) 11 (+1) 16 (-4) 50 (-11) 48

total time [h] (-2.08) 99.97 (-1.86) 60.40 (+0.61) 5.12 (+0.21) 4.86 (-0.20) 7.34 (+1.43) 8.92 (-1.0) 14.16 (-0.96) 14.37

(b) pprop = 1, popp = 0.9
Str. DAB DABF DC DS

DFS BFS DFS BFS DFS BFS DFS BFS

S1
#timeout. (-7) 186 (+6) 185 (+0) 0 (-2) 0 (+2) 15 (+0) 13 (+9) 45 (+15) 54

total time [h] (-0.46) 37.93 (+1.84) 37.54 (+0.38) 4.11 (-0.02) 4.03 (+1.21) 8.58 (+0.67) 8.51 (+2.23) 14.07 (+2.90) 15.46

S1a
#timeout. (-82) 786 (-12) 357 (-5) 4 (-5) 6 (+5) 22 (-2) 20 (+11) 93 (+7) 83

total time [h] (-10.87) 143.10 (-2.04) 66.46 (-0.37) 6.0 (-0.24) 6.08 (+1.84) 11.13 (+0.99) 10.24 (+2.85) 24.09 (+1.29) 21.81

S1b
#timeout. (-14) 179 (-9) 170 (-7) 188 (-12) 168 (-19) 253 (+6) 242 (+2) 302 (-2) 255

total time [h] (-1.63) 36.61 (-1.27) 34.52 (-0.14) 38.41 (-0.38) 35.31 (-1.97) 50.26 (+0.96) 46.29 (+1.55) 57.83 (+0.96) 49.80

S2
#timeout. (-19) 114 (-11) 104 (+0) 0 (+0) 0 (+27) 207 (+30) 290 (+26) 193 (+27) 267

total time [h] (-2.82) 25.82 (-2.85) 23.23 (+0.97) 4.03 (+0.60) 3.72 (+5.35) 46.17 (+4.25) 60.66 (+4.86) 43.98 (+3.67) 56.71

S2a
#timeout. (-89) 671 (-40) 297 (+5) 6 (+0) 4 (+27) 208 (+31) 293 (+33) 206 (+20) 272

total time [h] (-12.82) 123.61 (-4.86) 57.12 (+0.81) 5.27 (+0.21) 5.09 (+3.57) 44.67 (+5.02) 61.50 (+5.24) 45.04 (+4.15) 58.61

S2b
#timeout. (-9) 124 (-19) 96 (-6) 127 (-10) 105 (+35) 451 (+19) 857 (+28) 444 (+9) 809

total time [h] (-1.93) 26.62 (-3.38) 22.78 (-0.88) 27.73 (-2.40) 23.44 (+5.78) 86.85 (+3.90) 170.68 (+4.85) 85.33 (+2.88) 162.70

SAG
#timeout. (-61) 505 (-25) 306 (+0) 1 (-1) 1 (-3) 8 (-5) 10 (+4) 58 (+5) 64

total time [h] (-9.83) 92.22 (-3.91) 58.35 (-0.22) 4.29 (+0.28) 4.93 (+0.14) 7.68 (+1.01) 8.50 (+0.36) 15.52 (+1.56) 16.89

(c) pprop = 0.9, popp = 0.9

Table 12: “Static” rule sampling results for combinations of (pprop , popp)with value 0.9.
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“Dynamic” sampling

Str. DAB DABF DC DS
DFS BFS DFS BFS DFS BFS DFS BFS

S1
#timeout. (-143) 50 (-142) 37 (+0) 0 (-2) 0 (-12) 1 (-10) 3 (-22) 14 (-24) 15

total time [h] (-23.89) 14.50 (-23.96) 11.74 (-0.48) 3.25 (-0.76) 3.29 (-2.77) 4.60 (-3.02) 4.82 (-5.09) 6.75 (-5.55) 7.01

S1a
#timeout. (-292) 576 (-50) 319 (-9) 0 (-11) 0 (-13) 4 (-17) 5 (-40) 42 (-31) 45

total time [h] (-45.81) 108.16 (-5.0) 63.50 (-3.18) 3.19 (-2.58) 3.74 (-4.05) 5.24 (-4.22) 5.03 (-7.94) 13.30 (-7.40) 13.12

S1b
#timeout. (-142) 51 (-148) 31 (-139) 56 (-138) 42 (-184) 88 (-173) 63 (-68) 232 (-72) 185

total time [h] (-24.33) 13.91 (-25.14) 10.65 (-23.70) 14.85 (-23.41) 12.28 (-28.81) 23.42 (-26.11) 19.22 (-8.48) 47.80 (-9.79) 39.05

S2
#timeout. (-103) 30 (-98) 17 (+0) 0 (+0) 0 (-67) 113 (-86) 174 (-65) 102 (-85) 155

total time [h] (-19.23) 9.41 (-19.14) 6.94 (+0.31) 3.37 (+0.91) 4.03 (-14.23) 26.59 (-17.04) 39.37 (-14.44) 24.68 (-17.39) 35.65

S2a
#timeout. (-285) 475 (-78) 259 (-1) 0 (-4) 0 (-69) 112 (-88) 174 (-65) 108 (-79) 173

total time [h] (-46.81) 89.62 (-9.70) 52.28 (-0.99) 3.47 (-1.88) 3.0 (-14.26) 26.84 (-17.09) 39.39 (-13.20) 26.60 (-14.76) 39.70

S2b
#timeout. (-94) 39 (-91) 24 (-101) 32 (-93) 22 (-87) 329 (-338) 500 (-97) 319 (-342) 458

total time [h] (-17.76) 10.79 (-18.07) 8.09 (-19.23) 9.38 (-16.08) 9.76 (-10.47) 70.60 (-56.45) 110.33 (-12.41) 68.07 (-58.08) 101.74

SAG
#timeout. (-274) 292 (-150) 181 (-1) 0 (-2) 0 (-8) 3 (-10) 5 (-13) 41 (-20) 39

total time [h] (-41.28) 60.77 (-21.52) 40.74 (-0.97) 3.54 (-1.62) 3.03 (-2.72) 4.82 (-2.39) 5.10 (-2.25) 12.91 (-3.82) 11.51

(a) pprop = 0.5, popp = 1
Str. DAB DABF DC DS

DFS BFS DFS BFS DFS BFS DFS BFS

S1
#timeout. (+53) 246 (+58) 237 (+0) 0 (-1) 1 (-6) 7 (-5) 8 (-1) 35 (-1) 38

total time [h] (+9.07) 47.46 (+10.55) 46.25 (+0.10) 3.83 (+0.61) 4.66 (-1.96) 5.41 (-1.76) 6.08 (+0.52) 12.36 (-0.11) 12.45

S1a
#timeout. (-14) 854 (-17) 352 (-1) 8 (-5) 6 (-5) 12 (-7) 15 (-24) 58 (-20) 56

total time [h] (-2.08) 151.89 (-3.32) 65.18 (-0.43) 5.94 (-0.71) 5.61 (-1.36) 7.93 (+0.70) 9.95 (-3.40) 17.84 (-3.51) 17.01

S1b
#timeout. (+54) 247 (+66) 245 (+67) 262 (+54) 234 (+8) 280 (+26) 262 (+50) 350 (+60) 317

total time [h] (+9.58) 47.82 (+11.57) 47.36 (+11.53) 50.08 (+10.16) 45.85 (+1.31) 53.54 (+4.67) 50.0 (+8.30) 64.58 (+10.55) 59.39

S2
#timeout. (+17) 150 (+8) 123 (+0) 0 (+0) 0 (-72) 108 (-117) 143 (-66) 101 (-108) 132

total time [h] (+3.14) 31.78 (+1.30) 27.38 (+0.41) 3.47 (+0.26) 3.38 (-13.67) 27.15 (-23.16) 33.25 (-12.97) 26.15 (-21.20) 31.84

S2a
#timeout. (-45) 715 (-93) 244 (+0) 1 (-1) 3 (-72) 109 (-111) 151 (-72) 101 (-118) 134

total time [h] (-7.50) 128.93 (-14.38) 47.60 (+0.63) 5.09 (+0.19) 5.07 (-13.73) 27.37 (-20.04) 36.44 (-13.84) 25.96 (-22.40) 32.06

S2b
#timeout. (+11) 144 (+10) 125 (+13) 146 (+13) 128 (-44) 372 (-56) 782 (-26) 390 (-52) 748

total time [h] (+2.47) 31.02 (+0.72) 26.88 (+1.99) 30.60 (+2.60) 28.44 (-10.15) 70.92 (-12.31) 154.47 (-5.45) 75.03 (-12.34) 147.48

SAG
#timeout. (-16) 550 (-14) 317 (-1) 0 (-1) 1 (-6) 5 (-5) 10 (-23) 31 (-31) 28

total time [h] (-3.19) 98.86 (-2.72) 59.54 (-0.25) 4.26 (-0.54) 4.11 (-2.15) 5.39 (-1.09) 6.40 (-3.15) 12.01 (-5.30) 10.03

(b) pprop = 1, popp = 0.5
Str. DAB DABF DC DS

DFS BFS DFS BFS DFS BFS DFS BFS

S1
#timeout. (-123) 70 (-134) 45 (+0) 0 (-2) 0 (-12) 1 (-13) 0 (-23) 13 (-21) 18

total time [h] (-20.87) 17.52 (-21.83) 13.87 (-0.09) 3.64 (-0.67) 3.38 (-2.89) 4.48 (-3.86) 3.98 (-5.44) 6.40 (-5.62) 6.94

S1a
#timeout. (-303) 565 (-60) 309 (-9) 0 (-11) 0 (-16) 1 (-21) 1 (-56) 26 (-54) 22

total time [h] (-49.22) 104.75 (-7.17) 61.33 (-2.68) 3.69 (-2.90) 3.42 (-4.82) 4.47 (-5.56) 3.69 (-12.36) 8.88 (-11.74) 8.78

S1b
#timeout. (-108) 85 (-110) 69 (-103) 92 (-117) 63 (-161) 111 (-161) 75 (-23) 277 (-26) 231

total time [h] (-17.46) 20.78 (-18.12) 17.67 (-17.83) 20.72 (-19.08) 16.61 (-27.01) 25.22 (-26.36) 18.97 (-0.53) 55.75 (-1.69) 47.15

S2
#timeout. (-90) 43 (-93) 22 (+0) 0 (+0) 0 (-145) 35 (-198) 62 (-135) 32 (-191) 49

total time [h] (-16.76) 11.88 (-17.56) 8.52 (-0.03) 3.03 (+0.69) 3.81 (-28.48) 12.34 (-40.14) 16.27 (-28.02) 11.10 (-38.43) 14.61

S2a
#timeout. (-322) 438 (-126) 211 (-1) 0 (-4) 0 (-144) 37 (-203) 59 (-140) 33 (-202) 50

total time [h] (-53.82) 82.61 (-18.95) 43.03 (-0.71) 3.75 (-1.13) 3.75 (-29.06) 12.04 (-40.14) 16.34 (-28.47) 11.33 (-39.19) 15.27

S2b
#timeout. (-98) 35 (-90) 25 (-82) 51 (-89) 26 (-156) 260 (-401) 437 (-163) 253 (-408) 392

total time [h] (-17.89) 10.66 (-17.77) 8.39 (-15.11) 13.50 (-17.08) 8.76 (-23.26) 57.81 (-69.01) 97.77 (-23.47) 57.01 (-70.86) 88.96

SAG
#timeout. (-296) 270 (-147) 184 (-1) 0 (-2) 0 (-10) 1 (-12) 3 (-34) 20 (-33) 26

total time [h] (-47.36) 54.69 (-21.08) 41.18 (-0.91) 3.60 (-1.46) 3.19 (-3.77) 3.77 (-3.04) 4.45 (-7.62) 7.54 (-7.17) 8.16

(c) pprop = 0.5, popp = 0.5

Table 13: “Dynamic” rule sampling results for combinations of (pprop , popp)with value 0.5.
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Appendix

Str. DAB DABF DC DS
DFS BFS DFS BFS DFS BFS DFS BFS

S1
#timeout. (-151) 42 (-141) 38 (+0) 0 (-2) 0 (-11) 2 (-11) 2 (-12) 24 (-17) 22

total time [h] (-24.87) 13.52 (-22.12) 13.58 (+0.02) 3.75 (-0.64) 3.41 (-1.33) 6.04 (-2.56) 5.28 (-3.25) 8.59 (-4.60) 7.96

S1a
#timeout. (-189) 679 (-24) 345 (-9) 0 (-11) 0 (-11) 6 (-14) 8 (-35) 47 (-31) 45

total time [h] (-29.63) 124.34 (-3.23) 65.27 (-2.36) 4.01 (-2.74) 3.58 (-2.71) 6.58 (-3.68) 5.57 (-6.74) 14.50 (-6.16) 14.36

S1b
#timeout. (-145) 48 (-143) 36 (-149) 46 (-151) 29 (-177) 95 (-174) 62 (-64) 236 (-53) 204

total time [h] (-22.84) 15.40 (-23.53) 12.26 (-23.29) 15.26 (-23.78) 11.91 (-27.27) 24.96 (-25.93) 19.40 (-7.79) 48.49 (-5.30) 43.54

S2
#timeout. (-107) 26 (-102) 13 (+0) 0 (+0) 0 (-64) 116 (-77) 183 (-58) 109 (-78) 162

total time [h] (-20.19) 8.45 (-19.89) 6.19 (-0.04) 3.02 (+0.93) 4.05 (-12.98) 27.84 (-13.58) 42.83 (-11.98) 27.14 (-14.35) 38.69

S2a
#timeout. (-202) 558 (-39) 298 (-1) 0 (-4) 0 (-66) 115 (-80) 182 (-62) 111 (-77) 175

total time [h] (-33.43) 103.0 (-3.66) 58.32 (-1.08) 3.38 (-1.58) 3.30 (-12.89) 28.21 (-14.58) 41.90 (-12.52) 27.28 (-15.51) 38.95

S2b
#timeout. (-102) 31 (-106) 9 (-103) 30 (-104) 11 (-55) 361 (-248) 590 (-56) 360 (-255) 545

total time [h] (-17.89) 10.66 (-20.36) 5.80 (-19.23) 9.38 (-19.57) 6.27 (-6.81) 74.26 (-40.38) 126.40 (-5.90) 74.58 (-42.52) 117.30

SAG
#timeout. (-193) 373 (-101) 230 (-1) 0 (-2) 0 (-7) 4 (-7) 8 (-5) 49 (-11) 48

total time [h] (-27.94) 74.11 (-13.69) 48.57 (-0.55) 3.96 (-0.84) 3.81 (-1.85) 5.69 (-2.06) 5.43 (+0.96) 16.12 (-2.24) 13.09

(a) pprop = 0.6, popp = 1
Str. DAB DABF DC DS

DFS BFS DFS BFS DFS BFS DFS BFS

S1
#timeout. (+43) 236 (+55) 234 (+0) 0 (+0) 2 (-4) 9 (-3) 10 (-7) 29 (-3) 36

total time [h] (+7.75) 46.14 (+9.90) 45.60 (+0.67) 4.40 (+0.73) 4.78 (-1.23) 6.14 (-0.96) 6.88 (-0.30) 11.54 (+0.27) 12.83

S1a
#timeout. (-6) 862 (-7) 362 (+1) 10 (+0) 11 (-2) 15 (-5) 17 (-19) 63 (-9) 67

total time [h] (-0.72) 153.25 (-1.01) 67.49 (-0.07) 6.30 (+1.08) 7.40 (-0.73) 8.56 (-1.28) 7.97 (-3.67) 17.57 (-2.08) 18.44

S1b
#timeout. (+53) 246 (+55) 234 (+45) 240 (+42) 222 (+21) 293 (+23) 259 (+46) 346 (+29) 286

total time [h] (+8.81) 47.05 (+9.91) 45.70 (+7.80) 46.35 (+7.61) 43.30 (+4.27) 56.50 (+4.62) 49.95 (+8.43) 64.71 (+5.03) 53.87

S2
#timeout. (+32) 165 (+1) 116 (+0) 0 (+0) 0 (-66) 114 (-104) 156 (-63) 104 (-100) 140

total time [h] (+7.40) 36.04 (+0.60) 26.68 (+0.14) 3.20 (-0.16) 2.96 (-11.86) 28.96 (-20.16) 36.25 (-11.62) 27.50 (-18.91) 34.13

S2a
#timeout. (-36) 724 (-73) 264 (+0) 1 (+1) 5 (-67) 114 (-110) 152 (-55) 118 (-111) 141

total time [h] (-4.58) 131.85 (-11.81) 50.17 (+0.39) 4.85 (+0.69) 5.57 (-12.26) 28.84 (-20.88) 35.60 (-9.15) 30.65 (-20.68) 33.78

S2b
#timeout. (+16) 149 (+10) 125 (+18) 151 (+18) 133 (-19) 397 (-14) 824 (+4) 420 (-19) 781

total time [h] (+3.02) 31.57 (+1.95) 28.11 (+4.38) 32.99 (+2.82) 28.66 (-5.39) 75.68 (-5.18) 161.60 (-1.22) 79.26 (-6.29) 153.53

SAG
#timeout. (-14) 552 (-10) 321 (+0) 1 (+1) 3 (-3) 8 (-5) 10 (-14) 40 (-21) 38

total time [h] (-2.47) 99.58 (-1.71) 60.55 (-0.05) 4.46 (+0.03) 4.68 (-0.68) 6.86 (-0.66) 6.83 (-2.73) 12.43 (-3.43) 11.90

(b) pprop = 1, popp = 0.6
Str. DAB DABF DC DS

DFS BFS DFS BFS DFS BFS DFS BFS

S1
#timeout. (-121) 72 (-129) 50 (+0) 0 (-2) 0 (-13) 0 (-10) 3 (-16) 20 (-18) 21

total time [h] (-19.15) 19.24 (-20.29) 15.41 (-0.27) 3.46 (-0.71) 3.34 (-3.70) 3.67 (-3.28) 4.56 (-3.64) 8.20 (-2.95) 9.61

S1a
#timeout. (-207) 661 (-15) 354 (-9) 0 (-11) 0 (-14) 3 (-17) 5 (-50) 32 (-41) 35

total time [h] (-33.72) 120.25 (-1.61) 66.89 (-2.75) 3.62 (-2.61) 3.71 (-4.75) 4.54 (-4.78) 4.47 (-10.13) 11.11 (-8.23) 12.29

S1b
#timeout. (-127) 66 (-129) 50 (-123) 72 (-126) 54 (-153) 119 (-147) 89 (-11) 289 (-14) 243

total time [h] (-19.72) 18.52 (-19.89) 15.90 (-18.30) 20.25 (-18.85) 16.84 (-23.16) 29.07 (-23.35) 21.98 (+2.24) 58.52 (+0.56) 49.40

S2
#timeout. (-99) 34 (-96) 19 (+0) 0 (+0) 0 (-131) 49 (-183) 77 (-123) 44 (-171) 69

total time [h] (-17.88) 10.76 (-17.69) 8.39 (+0.17) 3.23 (+0.17) 3.29 (-25.48) 15.34 (-36.68) 19.73 (-24.25) 14.87 (-33.77) 19.27

S2a
#timeout. (-242) 518 (-113) 224 (-1) 0 (-4) 0 (-132) 49 (-189) 73 (-130) 43 (-180) 72

total time [h] (-39.60) 96.83 (-16.13) 45.85 (-1.37) 3.09 (-1.38) 3.50 (-25.14) 15.96 (-36.16) 20.32 (-25.38) 14.42 (-34.95) 19.51

S2b
#timeout. (-95) 38 (-95) 20 (-88) 45 (-101) 14 (-113) 303 (-274) 564 (-76) 340 (-274) 526

total time [h] (-17.70) 10.85 (-19.04) 7.12 (-16.41) 12.20 (-19.44) 6.40 (-16.14) 64.93 (-49.13) 117.65 (-10.08) 70.40 (-48.41) 111.41

SAG
#timeout. (-215) 351 (-110) 221 (-1) 0 (-2) 0 (-9) 2 (-11) 4 (-28) 26 (-22) 37

total time [h] (-32.59) 69.46 (-15.14) 47.12 (-0.88) 3.63 (-1.06) 3.59 (-3.20) 4.34 (-2.18) 5.31 (-5.74) 9.42 (-3.71) 11.62

(c) pprop = 0.6, popp = 0.6

Table 14: “Dynamic” rule sampling results for combinations of (pprop , popp)with value 0.6.
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Str. DAB DABF DC DS
DFS BFS DFS BFS DFS BFS DFS BFS

S1
#timeout. (-88) 105 (-77) 102 (+0) 0 (-2) 0 (-8) 5 (-6) 7 (-7) 29 (-12) 27

total time [h] (-10.57) 27.82 (-10.52) 25.18 (+0.25) 3.98 (-0.58) 3.47 (-1.90) 5.47 (-2.08) 5.76 (-1.42) 10.42 (-1.54) 11.02

S1a
#timeout. (-74) 794 (+12) 381 (-9) 0 (-11) 0 (-8) 9 (-12) 10 (-29) 53 (-14) 62

total time [h] (-10.63) 143.34 (+2.49) 70.99 (-1.98) 4.39 (-1.19) 5.13 (-2.73) 6.56 (-2.58) 6.67 (-4.45) 16.79 (-3.09) 17.43

S1b
#timeout. (-84) 109 (-79) 100 (-91) 104 (-86) 94 (-115) 157 (-90) 146 (-23) 277 (-3) 254

total time [h] (-10.28) 27.96 (-10.76) 25.03 (-12.17) 26.38 (-10.29) 25.40 (-17.49) 34.74 (-13.10) 32.23 (-2.13) 54.15 (+1.52) 50.36

S2
#timeout. (-86) 47 (-88) 27 (+0) 0 (+0) 0 (-36) 144 (-47) 213 (-34) 133 (-45) 195

total time [h] (-14.32) 14.32 (-15.49) 10.59 (-0.05) 3.01 (+1.09) 4.21 (-7.77) 33.05 (-8.94) 47.47 (-7.93) 31.19 (-8.35) 44.69

S2a
#timeout. (-86) 674 (-11) 326 (-1) 0 (-4) 0 (-37) 144 (-51) 211 (-36) 137 (-52) 200

total time [h] (-13.12) 123.31 (+0.04) 62.02 (-0.47) 3.99 (-0.89) 3.99 (-6.54) 34.56 (-9.73) 46.75 (-7.41) 32.39 (-9.46) 45.0

S2b
#timeout. (-87) 46 (-73) 42 (-94) 39 (-78) 37 (-19) 397 (-116) 722 (-25) 391 (-127) 673

total time [h] (-13.83) 14.72 (-13.65) 12.51 (-16.06) 12.55 (-13.72) 12.12 (-1.29) 79.78 (-15.97) 150.81 (-2.19) 78.29 (-20.25) 139.57

SAG
#timeout. (-76) 490 (-19) 312 (-1) 0 (-2) 0 (-6) 5 (-5) 10 (-5) 49 (-4) 55

total time [h] (-11.40) 90.65 (-2.53) 59.73 (-0.93) 3.58 (-0.60) 4.05 (-1.01) 6.53 (-1.09) 6.40 (-1.34) 13.82 (+0.98) 16.31

(a) pprop = 0.8, popp = 1
Str. DAB DABF DC DS

DFS BFS DFS BFS DFS BFS DFS BFS

S1
#timeout. (+24) 217 (+22) 201 (+0) 0 (+1) 3 (-1) 12 (-2) 11 (+0) 36 (+7) 46

total time [h] (+4.15) 42.54 (+3.94) 39.64 (+1.02) 4.75 (+2.75) 6.80 (-0.30) 7.07 (-0.28) 7.56 (+0.43) 12.27 (+1.55) 14.11

S1a
#timeout. (-2) 866 (-5) 364 (+0) 9 (-2) 9 (+0) 17 (-1) 21 (-4) 78 (-1) 75

total time [h] (+0.13) 154.10 (-0.88) 67.62 (-0.05) 6.32 (+0.43) 6.75 (+0.67) 9.96 (+0.24) 9.49 (-0.26) 20.98 (-0.25) 20.27

S1b
#timeout. (+24) 217 (+26) 205 (+20) 215 (+18) 198 (+14) 286 (+18) 254 (+25) 325 (+13) 270

total time [h] (+4.43) 42.67 (+4.40) 40.19 (+3.55) 42.10 (+3.64) 39.33 (+2.75) 54.98 (+3.52) 48.85 (+6.30) 62.58 (+2.15) 50.99

S2
#timeout. (+8) 141 (+4) 119 (+0) 0 (+0) 0 (-37) 143 (-70) 190 (-33) 134 (-61) 179

total time [h] (+1.53) 30.17 (+1.25) 27.33 (+0.36) 3.42 (+0.25) 3.37 (-5.84) 34.98 (-12.28) 44.13 (-5.72) 33.40 (-10.81) 42.23

S2a
#timeout. (-4) 756 (-30) 307 (+1) 2 (+0) 4 (-42) 139 (-65) 197 (-29) 144 (-57) 195

total time [h] (-0.82) 135.61 (-3.85) 58.13 (+0.46) 4.92 (-0.03) 4.85 (-6.83) 34.27 (-11.78) 44.70 (-4.96) 34.84 (-10.78) 43.68

S2b
#timeout. (+11) 144 (+8) 123 (+7) 140 (+21) 136 (+38) 454 (+53) 891 (+53) 469 (+44) 844

total time [h] (+3.82) 32.37 (+1.50) 27.66 (+1.95) 30.56 (+3.12) 28.96 (+4.82) 85.89 (+6.69) 173.47 (+7.98) 88.46 (+6.38) 166.20

SAG
#timeout. (-2) 564 (+3) 334 (+0) 1 (+1) 3 (+0) 11 (-4) 11 (-7) 47 (-11) 48

total time [h] (-0.05) 102.0 (+0.55) 62.81 (-0.25) 4.26 (+0.27) 4.92 (-0.13) 7.41 (-0.06) 7.43 (-0.78) 14.38 (-0.99) 14.34

(b) pprop = 1, popp = 0.8
Str. DAB DABF DC DS

DFS BFS DFS BFS DFS BFS DFS BFS

S1
#timeout. (-53) 140 (-63) 116 (+0) 0 (-2) 0 (-7) 6 (-8) 5 (-12) 24 (-18) 21

total time [h] (-5.65) 32.74 (-7.72) 27.98 (+0.71) 4.44 (-0.77) 3.28 (-1.97) 5.40 (-2.92) 4.92 (-2.36) 9.48 (-3.69) 8.87

S1a
#timeout. (-72) 796 (+8) 377 (-7) 2 (-9) 2 (-10) 7 (-12) 10 (-27) 55 (-19) 57

total time [h] (-10.77) 143.20 (+1.05) 69.55 (-1.78) 4.59 (-0.94) 5.38 (-2.55) 6.74 (-2.75) 6.50 (-4.15) 17.09 (-3.88) 16.64

S1b
#timeout. (-69) 124 (-63) 116 (-68) 127 (-67) 113 (-97) 175 (-74) 162 (+3) 303 (+8) 265

total time [h] (-6.83) 31.41 (-6.92) 28.87 (-7.92) 30.63 (-7.87) 27.82 (-14.03) 38.20 (-11.45) 33.88 (+3.13) 59.41 (+3.02) 51.86

S2
#timeout. (-84) 49 (-79) 36 (+0) 0 (+0) 0 (-84) 96 (-108) 152 (-63) 104 (-100) 140

total time [h] (-14.36) 14.28 (-13.99) 12.09 (+0.17) 3.23 (+0.51) 3.63 (-14.08) 26.74 (-20.15) 36.26 (-11.67) 27.45 (-19.29) 33.75

S2a
#timeout. (-111) 649 (-39) 298 (-1) 0 (-4) 0 (-81) 100 (-116) 146 (-71) 102 (-114) 138

total time [h] (-17.10) 119.33 (-4.53) 57.45 (-0.84) 3.62 (-1.18) 3.70 (-14.63) 26.47 (-21.73) 34.75 (-13.19) 26.61 (-21.69) 32.77

S2b
#timeout. (-84) 49 (-77) 38 (-85) 48 (-72) 43 (-4) 412 (-94) 744 (+8) 424 (-91) 709

total time [h] (-13.27) 15.28 (-13.41) 12.75 (-13.62) 14.99 (-12.40) 13.44 (+0.62) 81.69 (-14.21) 152.57 (+2.11) 82.59 (-15.67) 144.15

SAG
#timeout. (-80) 486 (-24) 307 (-1) 0 (-2) 0 (-4) 7 (-5) 10 (-12) 42 (-11) 48

total time [h] (-12.53) 89.52 (-3.29) 58.97 (-0.70) 3.81 (-1.03) 3.62 (-1.72) 5.82 (-0.98) 6.51 (-0.89) 14.27 (-1.74) 13.59

(c) pprop = 0.8, popp = 0.8

Table 15: “Dynamic” rule sampling results for combinations of (pprop , popp)with value 0.8.
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Str. DAB DABF DC DS
DFS BFS DFS BFS DFS BFS DFS BFS

S1
#timeout. (-32) 161 (-26) 153 (+0) 0 (-2) 0 (-1) 12 (-3) 10 (-9) 27 (-9) 30

total time [h] (-4.59) 33.80 (-3.31) 32.39 (-0.01) 3.72 (-0.39) 3.66 (+0.57) 7.94 (-1.20) 6.64 (-1.19) 10.65 (-1.64) 10.92

S1a
#timeout. (-30) 838 (+13) 382 (-6) 3 (-4) 7 (-3) 14 (-5) 17 (-10) 72 (+1) 77

total time [h] (-4.44) 149.53 (+2.51) 71.01 (-0.98) 5.39 (-0.69) 5.63 (-1.06) 8.23 (-0.30) 8.95 (-1.37) 19.87 (+1.44) 21.96

S1b
#timeout. (-38) 155 (-30) 149 (-39) 156 (-29) 151 (-64) 208 (-52) 184 (-11) 289 (-4) 253

total time [h] (-4.81) 33.43 (-4.24) 31.55 (-4.58) 33.97 (-3.61) 32.08 (-10.65) 41.58 (-8.40) 36.93 (+0.11) 56.39 (+0.41) 49.25

S2
#timeout. (-53) 80 (-47) 68 (+0) 0 (+0) 0 (-18) 162 (-25) 235 (-22) 145 (-28) 212

total time [h] (-7.59) 21.05 (-7.78) 18.30 (+0.09) 3.15 (+0.30) 3.42 (-3.76) 37.06 (-5.62) 50.79 (-4.74) 34.38 (-5.19) 47.85

S2a
#timeout. (-34) 726 (+3) 340 (-1) 0 (-4) 0 (-22) 159 (-27) 235 (-21) 152 (-31) 221

total time [h] (-5.29) 131.14 (+1.65) 63.63 (+0.33) 4.79 (-0.42) 4.46 (-4.71) 36.39 (-3.60) 52.88 (-4.14) 35.66 (-5.72) 48.74

S2b
#timeout. (-48) 85 (-46) 69 (-52) 81 (-37) 78 (+3) 419 (-60) 778 (-1) 415 (-55) 745

total time [h] (-7.85) 20.70 (-7.62) 18.54 (-7.60) 21.01 (-6.62) 19.22 (+0.94) 82.01 (-7.38) 159.40 (+1.70) 82.18 (-7.62) 152.20

SAG
#timeout. (-32) 534 (-14) 317 (-1) 0 (-2) 0 (-3) 8 (-5) 10 (-3) 51 (-4) 55

total time [h] (-4.87) 97.18 (-0.95) 61.31 (-0.55) 3.96 (-0.74) 3.91 (-0.71) 6.83 (-0.67) 6.82 (-0.13) 15.03 (-0.33) 15.0

(a) pprop = 0.9, popp = 1
Str. DAB DABF DC DS

DFS BFS DFS BFS DFS BFS DFS BFS

S1
#timeout. (+13) 206 (+11) 190 (+0) 0 (-1) 1 (-1) 12 (-1) 12 (+1) 37 (+0) 39

total time [h] (+2.52) 40.91 (+2.29) 37.99 (+0.51) 4.24 (-0.14) 3.91 (+0.50) 7.87 (-0.28) 7.56 (+0.90) 12.74 (+0.37) 12.93

S1a
#timeout. (+0) 868 (+8) 377 (+0) 9 (+0) 11 (+0) 17 (-1) 21 (-1) 81 (-2) 74

total time [h] (+0.42) 154.39 (+2.33) 70.83 (+0.17) 6.54 (+0.34) 6.66 (+0.41) 9.70 (+0.15) 9.40 (+0.51) 21.75 (-0.01) 20.51

S1b
#timeout. (+12) 205 (+10) 189 (+16) 211 (+10) 190 (+5) 277 (+5) 241 (+6) 306 (+7) 264

total time [h] (+2.98) 41.22 (+1.70) 37.49 (+3.05) 41.60 (+2.30) 37.99 (+1.67) 53.90 (+1.54) 46.87 (+1.25) 57.53 (+1.27) 50.11

S2
#timeout. (+8) 141 (+6) 121 (+0) 0 (+0) 0 (-15) 165 (-30) 230 (-14) 153 (-30) 210

total time [h] (+1.41) 30.05 (+0.88) 26.96 (+0.71) 3.77 (+0.55) 3.67 (-2.41) 38.41 (-5.52) 50.89 (-2.22) 36.90 (-5.56) 47.48

S2a
#timeout. (+0) 760 (-18) 319 (+0) 1 (+0) 4 (-13) 168 (-35) 227 (-17) 156 (-38) 214

total time [h] (+0.08) 136.51 (-2.38) 59.60 (+0.28) 4.74 (-0.05) 4.83 (-0.47) 40.63 (-6.14) 50.34 (-2.75) 37.05 (-6.15) 48.31

S2b
#timeout. (+9) 142 (+2) 117 (+6) 139 (+4) 119 (+64) 480 (+71) 909 (+61) 477 (+66) 866

total time [h] (+1.28) 29.83 (+0.58) 26.74 (+1.14) 29.75 (+1.02) 26.86 (+9.38) 90.45 (+10.83) 177.61 (+9.90) 90.38 (+10.11) 169.93

SAG
#timeout. (+1) 567 (+1) 332 (+1) 2 (+0) 2 (+1) 12 (+0) 15 (-5) 49 (-5) 54

total time [h] (-0.03) 102.02 (+0.96) 63.22 (+0.51) 5.02 (+0.49) 5.14 (-0.05) 7.49 (+0.76) 8.25 (-0.46) 14.70 (-0.12) 15.21

(b) pprop = 1, popp = 0.9
Str. DAB DABF DC DS

DFS BFS DFS BFS DFS BFS DFS BFS

S1
#timeout. (-32) 161 (-13) 166 (+0) 0 (-2) 0 (-3) 10 (-2) 11 (-5) 31 (-11) 28

total time [h] (-3.09) 35.30 (-1.62) 34.08 (-0.02) 3.71 (-0.56) 3.49 (+0.65) 8.02 (-0.66) 7.18 (-1.25) 10.59 (-1.73) 10.83

S1a
#timeout. (-30) 838 (+7) 376 (-8) 1 (-7) 4 (-5) 12 (-8) 14 (-10) 72 (-13) 63

total time [h] (-4.89) 149.08 (+0.71) 69.21 (-1.08) 5.29 (-0.86) 5.46 (-1.73) 7.56 (-1.40) 7.85 (-1.95) 19.29 (-2.02) 18.50

S1b
#timeout. (-26) 167 (-13) 166 (-27) 168 (-14) 166 (-64) 208 (-41) 195 (+3) 303 (+1) 258

total time [h] (-3.40) 34.84 (-1.63) 34.16 (-3.21) 35.34 (-1.11) 34.58 (-9.48) 42.75 (-6.0) 39.33 (+1.46) 57.74 (+1.33) 50.17

S2
#timeout. (-44) 89 (-50) 65 (+0) 0 (+0) 0 (-38) 142 (-63) 197 (-40) 127 (-66) 174

total time [h] (-7.02) 21.62 (-7.72) 18.36 (+0.37) 3.43 (+0.43) 3.55 (-5.94) 34.88 (-12.47) 43.94 (-7.05) 32.07 (-11.98) 41.06

S2a
#timeout. (-28) 732 (-10) 327 (-1) 0 (-3) 1 (-47) 134 (-70) 192 (-43) 130 (-62) 190

total time [h] (-4.07) 132.36 (-0.61) 61.37 (-0.15) 4.31 (-0.91) 3.97 (-8.51) 32.59 (-12.94) 43.54 (-7.33) 32.47 (-10.56) 43.90

S2b
#timeout. (-49) 84 (-35) 80 (-47) 86 (-38) 77 (+60) 476 (+7) 845 (+55) 471 (-9) 791

total time [h] (-8.04) 20.51 (-6.48) 19.68 (-7.25) 21.36 (-6.30) 19.54 (+9.25) 90.32 (+1.80) 168.58 (+9.82) 90.30 (-1.57) 158.25

SAG
#timeout. (-30) 536 (-20) 311 (-1) 0 (-2) 0 (-3) 8 (-5) 10 (-4) 50 (-5) 54

total time [h] (-4.91) 97.14 (-3.54) 58.72 (-0.72) 3.79 (-0.74) 3.91 (-0.90) 6.64 (-0.48) 7.01 (-0.97) 14.19 (-0.86) 14.47

(c) pprop = 0.9, popp = 0.9

Table 16: “Dynamic” rule sampling results for combinations of (pprop , popp)with value 0.9.

Grounded and Preferred Semantics

Table 17 and Table 18 present the obtained results for grounded semantics using abagraph and
flexABle respectively. Additionally, the latter table includes results for preferred semantics using
flexABle.

Algorithms for grounded and preferred semantics involve high exponential complexity, as the
correct subset of assumptions has to be guessed, thus posing a problem for the algorithm used in
flexABle. Since computation exceeded our time limits (and anyway the results obtained in the
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meantime were not optimistic), we decided to present the results in a slightly different manner.
For each setup we show the results obtained within the given time-frame, i.e. 307h for grounded
and 300h for the preferred semantics. Within that time-frame each flexABle setup was fed the
same sequence of benchmarks. Note that in Table 18 we additionally introduce a “#solved” col-
umn denoting the number of instances for which the system returned an answer without running
out of time, without which it would be difficult to interpret the results.

Results for grounded semantics show the overwhelming performance-wise dominance of aba-
graphoverflexABle. For instance, as presented in Table 17, Strategy 3 calculated answers for 6903
instances, timing out only for 97 of them (1.4% of all examined instances) while the entire calcula-
tion took little over 73 hours. On the other hand, one of the “fastest” flexABle setups (S1, BFS,
Start w/DABF + TA ) examined only 4035 instances, timing out for 635 of them (15%), requiring
over 4 times more time. This clearly indicates that the algorithm for grounded (and most probably
for preferred) semantics does not perform well and is not the optimal approach.

ABAGRAPH strategy
1 2 3 4 5

#timeout. 111 210 69 410 111
total time [h] 45.66 81.66 30.96 145.80 45.40
95% time [h] 26.33 62.33 11.63 126.47 26.06

min [s] 0.64 0.66 0.66 0.68 0.64
median [s] 9.48 44.58 11.13 41 10.74

mean [s] 30.04 44.71 26.54 44.51 29.12
max [s] 1057.04 1000.78 1114.45 727.40 1159.01

Table 17: Results for the grounded semantics using abagraph. As before, green and red cell backgrounds
indicate best and worst results obtained globally. Greyed-out cells represent setups which ex-
ceeded the total available running time

101



Appendix

grounded semantics preferred semantics

Str. Start w/ DABF+TA Start w/ DC+ TC Start w/ DABF+TA Start w/ DC+ TC
DFS BFS DFS BFS DFS BFS DFS BFS

S1

#solved 3400 3400 1568 1524 2892 2819 1241 1176
#timeout. 608 635 620 610 484 484 598 598

total time [h] 306.09 306.60 306.35 303.90 289.28 287.43 299.08 289.04
95% time [h] 11.41 9.92 125.33 140.89 13.86 15.01 120.07 131.70

min [s] 1.38 1.38 1.42 1.87 1.80 2.17 2.14 2.13
median [s] 71.64 61.78 190.96 200.13 98.98 106.71 252.85 242.05

mean [s] 109.49 100.50 228.81 237.52 159.25 161.01 289.32 274.60
max [s] 1130.66 1128.63 945.40 931.30 1061.00 1058.36 1062.28 1066.04

S1a

#solved 3374 3380 1540 1540 2451 2641 1134 1141
#timeout. 600 600 616 614 497 494 598 598

total time [h] 303.79 306.26 306.28 305.74 287.28 292.89 287.82 288.92
95% time [h] 11.44 11.65 135.93 136.05 17.92 16.53 144.48 143.25

min [s] 1.29 1.35 1.51 1.45 2.13 2.38 2.07 2.14
median [s] 71.16 73.32 189.36 191.91 111.58 111.23 245.96 249.32

mean [s] 110.72 113.15 235.94 236.22 178.60 174.76 280.88 282.64
max [s] 1001.16 1024.32 962.46 957.06 1165.33 1062.17 1012.63 1012.72

S1b

#solved 1480 1480 840 825 1498 1485 499 499
#timeout. 780 778 711 711 677 718 829 825

total time [h] 305.19 305.41 306.44 306.00 283.47 289.70 299.74 298.52
95% time [h] 100.17 101.03 306.44 306.00 24.08 22.95 291.08 291.19

min [s] 1.59 1.48 1.51 1.48 1.66 1.82 3.20 2.84
median [s] 47.45 47.85 65.36 62.66 62.17 59.94 79.29 78.97

mean [s] 109.85 111.96 297.51 300.91 138.85 122.00 168.83 169.63
max [s] 1073.25 1094.39 1195.69 1197.11 1168.80 1192.47 1131.09 1123.19

S2

#solved 3400 3400 1510 1462 2916 2916 1017 1026
#timeout. 612 626 602 611 501 492 625 625

total time [h] 303.94 307.14 305.64 306.21 295.69 294.22 287.49 288.97
95% time [h] 11.30 11.03 149.96 163.53 14.21 14.86 174.15 172.64

min [s] 1.34 1.42 1.40 1.73 1.90 2.07 2.67 2.81
median [s] 72.62 72.63 198.04 204.91 102.84 107.00 229.84 231.68

mean [s] 105.80 104.24 250.22 252.45 158.85 160.74 280.17 282.92
max [s] 939.37 930.81 1186.44 1197.39 941.85 950.88 1190.84 1179.55

S2a

#solved 3400 3400 1416 1418 2772 2888 1009 1099
#timeout. 609 609 620 620 484 484 625 625

total time [h] 303.43 304.10 303.54 304.99 288.32 296.31 289.41 298.89
95% time [h] 11.03 11.06 173.19 173.97 14.88 14.88 178.74 158.22

min [s] 1.25 1.28 1.82 1.66 1.95 2.15 2.76 2.08
median [s] 70.56 70.96 191.75 198.00 100.58 107.19 233.89 251.48

mean [s] 106.31 107.02 246.22 249.55 164.90 168.22 289.26 296.63
max [s] 981.16 985.17 1069.56 1098.82 1119.79 1133.39 1193.37 1185.43

S2b

#solved 1570 1570 619 618 1617 1595 462 460
#timeout. 805 822 815 811 750 729 811 799

total time [h] 303.33 306.96 305.39 304.61 294.95 288.18 292.58 288.13
95% time [h] 59.97 57.90 305.39 304.61 15.95 16.30 292.58 288.13

min [s] 1.63 1.39 1.55 1.73 2.15 1.60 2.87 2.31
median [s] 33.89 29.17 35.30 35.62 56.12 54.06 66.31 60.52

mean [s] 80.18 75.44 195.99 199.46 100.01 101.89 173.26 170.52
max [s] 1128.23 1141.28 1193.91 1194.95 1193.32 1189.46 1171.28 1181.22

SAG

#solved 2620 2600 1096 1083 1810 1823 695 691
#timeout. 550 548 640 649 543 547 678 680

total time [h] 306.16 305.72 306.01 305.37 289.14 296.17 288.38 287.79
95% time [h] 25.65 25.98 275.68 276.37 27.30 30.18 264.71 264.79

min [s] 1.43 1.44 1.48 1.51 1.84 1.90 2.66 2.63
median [s] 100.63 102.34 109.00 111.06 112.84 122.17 133.18 132.14

mean [s] 168.74 170.35 304.35 295.90 215.05 224.76 323.07 318.40
max [s] 1014.93 1035.74 1195.07 1199.30 1185.41 1191.99 1199.58 1151.79

Table 18: Results for the grounded and preferred semantics using flexABle.
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