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Abstract by local reflexivity, concept products, conjunctions of sim
ple roles, and limited range restrictions as in (Baaderz Lut

: e and Brandt 2008). These features in part are already antici-
Web Rule Language (SWRL) that admits reasoning in poly- r -
nomial time.ELP is based on the tractable description logic pated for the8.L™" based Ianggage prqflle of .OWL 2, but, t_o
&L, and encompasses an extended notion of the recently ~ the best of our knowledge, this work is the first to establish

We introduceELP as a decidable fragment of the Semantic

proposedDL rules for that logic. ThusELP extends&L** their joint tractability.
with a number of features introduced by the forthcoming The reasoning algorithms presented herein are based on a
OWL 2, such as disjoint roles, local reflexivity, certain gan po'ynomia' reduction oELP know'edge bases to a Specific

restrictions, and the universal role. We present a reagatin

kind of Datalog programs that can be evaluated in polyno-
gorithm based on a translation BE.P to Datalog, and this 9 prog poly

translation also enables the seamless integration of Bd.-sa mial time. Since the Datalog reduction as such is compara-

rules intoELP. While reasoning with DL-safe rules as such is t?vely simple, this outlines an _interesting new im_plementa
already highly intractable, wegshow that DL-safe rules Hase tion strategy for the6.L™" profile of OWL 2: Besides the
on the Description Logic Programming (DLP) fragment of possibility of reusing optimisation methods from deduetiv
OWL 2 can be admitted iELP without losing tractability. databases, the compilation®f"** to Datalog also provides
a practical approach for extendi&gC** with DL-safe rules
Introduction (Motik, Sattler, and Studer 2005_).. In these respects, the pr
sented approach bears similarities with the KAON2 trans-
The description logic (DL) family of knowledge representa-  formation of SH7Q knowledge bases into disjunctive Dat-
tion formalisms has been continuously developed for many alog programs (Hustadt, Motik, and Sattler 2005), though
years, leading to highly expressive (and complex), yetdeci  the actual algorithms of course are verffeiient due to the
able languages. The most prominent such language is cur- different DLs that are addressed. DL-safe rules add new ex-
rently SROZQ (Horrocks, Kutz, and Sattler 2006), which  pressivity but their entailments are specifically resésictor
is also the basis for the ongoing standardisation of the new preserving decidability — an extended example will illagr
Web Ontology Language OWL2n the other hand, there  the dfects.
has also been considerable inf[ere.st in more Ijght—weight la For this paper, we chose a presentatioEoP based on
guages that allow for polynomial time reasoning algorithms rules, a decidable subset of the Semantic Web Rule

DL-based formalisms that fall into that category &£&** Lan ;
X guage SWRL that has been recently proposed in two
(Baader, Brandt, and Lutz 2005), DL Lite (Calvanese et j,qenendent works (Krotzsch, Rudolph, and Hitzler 2008:

al. 2007), and DLP (Grosof et al. 2003). While DL Lite  Gasge, Sattler, and Haarslev 2008). As shown in (Krétzsch,
strives for sub-polynomial reasoning.L™ and DLP both Rudolph, and Hitzler 2008), it is possible to indirectly ex-

are P'CO”JE"ete fragments SROZQ. In spite of this sim- press such rules by means of the expressive features pro-
ilarity, &£ and DLP pursue dierent approaches towards | ijeq by SROIQ, and large parts ofLP can still be re-

tractability, and the combination of both is already highly garded as a subset SR07Q. The following examples il-

intractable (KrGtzsch, Rud_olpkhand Hitzler 2007a). lustrate the correspondence between DLs and DL rules, and
In this paper, we reconcil . andDLPina no_vel rule- give some intuition for the expressive feature€op:
based knowledge representation language. While ELP

can be viewed as an extension of both formalisms, how- Concept inclusions DL ThoxaxiomsC C D for subclass
ever, it limits the interactions between the expressive fea relationships correspond to rules of the fo@ifx) — D(x).
tures of either language and thus preserves polynomial time Role inclusions DL RboxaxiomsRo S C T express inclu-
reasoning complexityfELP also significantly extend§.£** sions with role chains that correspond to rules of the form

“Extended technical report with complete proofs ROGY) A S(y_’ Z_) — Tx2). )

1OWL 2 is the forthcoming W3C recommendation for updat- Local reflexivity The DL conceptR Self of all things that
ing OWL, and is based on the OWL 1.1 member submission. See have arRrelation to themselves is described by the expres-
http://www.w3.0rg/2007/0WL. sionR(x, X). For example, the axiord loves.Self C Narcist



corresponds tves(X, X) — Narcist(X).
Role disjointnessRoles inSROJ Q can be declared disjoint

cal axioms will be restricted to ensure, intuitively speweki
that relationships of these roles are not impliecchginsof

to state that elements related by one role must not be related Other role relationships. In exchange, simple roles might b

by the other. An according example ruleHasSon(x,y) A
HasHusband(x,y) — L(X) (L denoting the empty concept).

Concept products and the universal role Concept prod-
ucts have, e.g., been studied in (Rudolph, Krétzsch, and
Hitzler 2008). The statement that all elephants are bigger
than all mice corresponds to the axi@ephant x Mouse C
biggerThan and to the ruleElephant(x) A Mouse(y) —
biggerThan(x,y). The universal roléJ that relates all pairs

of individuals can be expressed by the rabeU (X, y) or as

the product of ther concept with itself.

Quialified role inclusions Rules can be used to restrict
role inclusions to certain classes, which is not directlg-po
sible in SROIQ. An example is the rulevoman(x) A
hasChild(x, y) — motherOf(X, y).

While this work is conceptually based on (Krétzsch,
Rudolph, and Hitzler 2008), it significantlyféérs from the
latter by following a completely new reasoning approach in-
stead of extending the known algorithm &r**. While our
use of Datalog may still appear similar in spirit, the model
constructions in the proofs expose additional technical-co
plications that arise due to the novel combination of cohcep
products, role conjunctions, and local reflexivity. Moregv
the proposed integration of DL-safe rules is not triviatgin

in the absence of inverse roles, it cannot be achieved by the

usual approach for “rolling-up” nested expressions, and te
mination of the modified transformation is less obvious.
The paper proceeds by first recalling some minimal pre-
liminaries regarding DLs, SWRL rules, and DL-safety.
Thereafter, we introdudeLP based on DL Rules for the DL
&L, and continue by giving an extended example of an

used in the premises of logical axioms as part of role con-
junctions and reflexivity statements where non-simplesole
might lead to undecidability. Fixing sets of simple and non-
simple role names simplifies our presentation — in practice
one could of course also check, for a given knowledge base,
whether each role name satisfies the requirements for be-
longing to eitheiNg or N.

Definition 1 The setC of concept expressionsf the DL
SHOQ is defined as follows:

e NcCC, TeC,LeC,
e if C,D € C,Re NR, S € N}, a € Nj, andn a non-negative

integer, thenr-C,C1 D, Cu D, {a}, YRC, AR.C, <n SC,
and>n S.C are also concept expressions.

The symbolsC, D will generally be used to denote concept
expressions.

The semantics of these concepts is recalled below (see
also Table 1). We prese®HOQ as a well-known DL that
contains all expressive means needed within this paper, but
we will not considetSHOQ as such. Additional features of
the yet more expressive DLISHOZQ andSROIQ can be
expressed by usin§HOQ concepts in rules.

Definition 2 Consider some DLL with concept expres-
sionsC, individual namesN,, and role nameslg, and let
V be a countable set of first-order variablegefmis an el-
ement ofV UN,. Given termg, u, aconcept atom (role atom)
is a formula of the fornC(t) (R(t, u)) with C € C (R € Ng).

A rule for £ is a formulaB — H, whereB andH are

ELP rule base. The next section then presents the Datalog conjunctions of (role and concept) atoms£&fTo simplify
reduction as the basis of our reasoning algorithms, before notation, we will often use finite se of atoms for repre-

we proceed to establish the overall reasoning complexity fo
ELP. We conclude the paper with a discussion of our results
and some further pointers to related work.

DLs, Rules, and DL-Safety

In this section, we introduce some basic notions of de-
scription logics (DL) (Baader et al. 2007). We will also

consider rules that are logically similar to the Semantic
Web Rule Language SWRL (Horrocks and Patel-Schneider

senting the conjunctiop, S.

Semantically, rules are interpreted as first-order formu-
lae, assuming that all variables are universally quantified
and using the standard first-order logic interpretation bf D
concepts (see Definition 3 below). In general, a DL knowl-
edge base may entail the existenceanbnymousiomain
elements that are not directly represented by some individ-
ual name, and it may even require models to be infinite. The
fact that rules generally apply to all domain elements can

2004). Such rules may include DL concept expressions, and therefore be problematic w.r.t. computability and complex

thus generalise the common DL axiom types of Abox, Thox,
and Rbox. We can therefore restrict our presentation t@yule
the general form of which we will later restrict to obtain
favourable computational properties.

The logics considered in this paper are based on three dis-

joint sets ofindividual names\,, concept nameslc, and
role names\g. Throughout this paper, we assume that these

basic alphabets are finite, and consider them to be part of

ity. It has thus been suggested to consider rules withinkvhic
variables may only represent a finite amounnafmedin-
dividuals, i.e. individuals of the interpretation domalrat
are represented by some individual name in RB. Hence, ef-
fectively, these so-calleBL-saferules (Motik, Sattler, and
Studer 2005) apply to named individuals, but not to further
anonymous individuals which have been inferred to exist.
Technically, this restriction can be achieved in various

the given knowledge base when speaking about the “size ways. The most common approach is to introduce a new

of a knowledge base.” We assuriig to be the union of
two disjoint sets ofsimple rolesNg and non-simple roles
Ng. Later on, the use of simple roles in conclusions of logi-

concept expressianu that is asserted to contain the named
individuals, and that is then used to restrict safe varigtie
that range. On the other hand, one can also dispense with



Name Syntax| Semantics

top T AT

bottom 1 0

negation -C AT\ CT

conjunction |CnD |Cf nD?

disjunction |CuD |CfuD?

nominal con/ {a} (a}

univ. rest.  |VYU.C |{xe AT |(xy) e U’ impliesy € C’}
exist.rest. |AU.C |{xe Al |yeAl:(xy)e U’ yeCl}
qualified <nNRC|{xe Al |#yeA|(x,y)eRyeCl} < n}
number rest.>nRC | {x e AT | #lye AT|(x,y)eRL ye CT} > n}

Table 1: Semantics of concept constructorSHOQ for an
interpretationZ with domainA?.

this additional syntax by building the safety restrictian d
rectly into the semantics of variables — this is the intuitio
behind the use cfafe variablesn the following definition.

Definition 3 An interpretation/ consists of a set’ called
domain(the elements of it being calléddividualg together
with a function- mapping

e individual names to elements af ,

e concept names to subsets/df, and
e role names to subsets af x A7,

The function? is inductively extended to role and concept
expressions as shown in Table 1. An elemént A! is a
named elemerit § = a’ for somea € N;.

Let Vs C V be a fixed set ofafe variablesA variable
assignment Zor an interpretatiory is a mapping from the
set of variable/ to AZ such thaiZ(x) is named whenever
x € V. Given a ternt e N; UV, we sett!? = Z(t) if te V,
andt’? := t! otherwise. Given a concept ato@(t) (role
atomR(t,u)), we write 7,Z E C(t) (Z,Z E R(t,u)) if we
find thatt’* € C ((t/4,u’%) € RY). We say thatf andZ
satisfythe atom in this case, and we will ondtwhenever
no variables occur.

An interpretation/ satisfiesa ruleB — H if, for all vari-
able assignmen&for 7, eitherZ andZ satisfy all atoms in
H, or 7 andZ fail to satisfy some atom im. In this case,
we write 7 = B — H and say thaf is amodelfor B — H.
An interpretation satisfies a set of rules (i.e. it imadelfor
this set) whenever it satisfies all elements of this set. A set
of rules issatisfiabldf it has a model, andnsatisfiableoth-
erwise. Two sets of rules asguivalentf they have exactly
the same models, and they aguisatisfiablef either both
are unsatisfiable or both are satisfiable.

Note that we have assumed earlier thatis always fi-
nite — typically it may comprise exactly the symbols that
are actually used in RB —, and hence there are only a fi-
nite number of assignments for safe variables. Also note tha
empty rule bodies are considered to be vacuously satisfied,
and expressions of the form H encode (sets of) facts. It
is well-known that the satisfiability of sets of rules for DLs
that supporf is undecidable, and we will introduce various
restrictions to recover decidability below. One simplei@pt
is to restrict to so-calleBatalogprograms:

Definition 4 A rule is aDatalog ruleif all concept atoms
contained in it are of the forr@(t) with C € N¢, T(t), and
1(t). A Datalog programis a set of Datalog rules.

We will later reduce sets of rules to Datalog so as to simu-
late inferences of more expressive rule languages witlgn th
simple formalism.

DL Rules and ELP

In this section, we define the rule-based knowledge repre-
sentation languagELP, and note that it subsumes several
other existing languages in terms of expressivity. It isyeas
to see that unrestricted (SWRL) rules encompass even the
very expressive DLSROZQ (Horrocks, Kutz, and Sattler
2006), since Thox and Rbox axioms can readily be rewritten
as rules. On the other hand, rules in their general form do
not impose any of the restrictions on, egimple rolesor
regularity of Rboxeghat are crucial to retain decidability in
SROIQ. Recent works therefore have propoHdrulesas
a decidable subset of SWRL that can be combined with var-
ious DLs without increasing the worst-case complexity of
typical reasoning problems (Krétzsch, Rudolph, and Hitzle
2008; Gasse, Sattler, and Haarslev 2008).

We first recall DL rules (with conjunctions of simple
roles) and apply them to the tractable BIL**. The result-
ing formalism is the core dfLP, and significantly extends
the expressivity oE8L*" rules as considered in (Krdtzsch,
Rudolph, and Hitzler 2008).

Definition 5 Consider a rul8 — H and termg,u € N; U
V. A direct connectiorfrom t to u is a non-empty set of
atoms of the fornR(t, u). If B contains a direct connection
betweert andu, thent is directly connectedo u. The termt

is connectedo u (in B) if the following inductive conditions
apply:

e tis directly connected tain B, or

e uis connected tdin B, or

e there is a variabla € V such that is connected tx and
X is connected tol.

An extended DL rulés a ruleB — H such that

o if variablesx # y in B are connected, then there is some
direct connectiors ¢ B such thatx andy are not con-
nected inB\ S.

A path from t to some variablex in B is a non-empty

sequenceR(Xg, X2), . . ., Rn(%n, Xns1) € B wherex; = t,

X2, ..., Xn €V, X1 = X, andx # X forl <i < n A

termt in B is initial if there is no path td. An extended

DL rule is aDL rule if the following hold, where we assume

X, y to range over variableg, andt, t' to range over terms

N, UV:

(1) for every variablex in B, there is a path from at most
one initial termt to x,

(2) if R(x,t) € H orC(x) € H, thenx s initial in B,

(3) wheneveR(x, x) € B, we find thatR € N}, is simple,

(4) wheneveR(t, x), R(t,x) € B, we find thatR, R" € N}
are simple,



(5) if R(t,y) € H with R € N}, simple, then all role atoms of
the formR/(t',y) € B are such that = tandR’ € N§.

The above ensures that bodies of extended DL rules essen-

tially correspond to sets of undirected trees, though reflex

ive “loops” R(t,t) are also possible. Note that connections

are essentially transitive but may not span over individual

names. The notion of a connection turns out to be most con-
venient to establish the later decomposition of rules to ac-
complish the main tractability result in Theorem 16.

Bodies of DL rules are sets of directed trees due to item
(1) in Definition 5. Two exceptions to that structure are ad-
mitted. Firstly, the definition of connections admits twe el
ements of a path to be connected by multiple roles, cor-
responding to conjunctions of such roles. Secondly, atoms
R(x, X) are not taken into account for defining paths, such
that local reflexivity conditions are admitted. Note thaniis
(3) and (4) restricts both cases to simple roles.

Item (2) above ensures that the first variable in the rule
head occurs in the rule body only as the root of some tree.
Without this restriction, DL rules would be able to express
inverse roles, even for DLs that deliberately exclude thés f
ture to retain tractability. Extended DL rules waive reguir
ments (1) and (2) to supply the expressivity of inverse roles
and indeed any extended DL rule that satisfies the additional
requirements (3) to (5) on simplicity can be rewritten as a
DL rule if inverse roles are available.

Item (5), finally, imposes the necessary restrictions on the
use of simple roles, and, as an alternative presentatian, on
could also havedefinedhe set of simple roles as the (unique)
largest set of roles for which this requirement holds in a
given rule base. In classical definitions of DLs, simple sole
R are usually only admitted in role inclusion axioms of the
formS C R. Our definition relaxes this requirement to allow
for further DL rules as long as these do not include certain
role chains. For example, rul€{x) A D(y) —» R(x,y) and
R (x,¥) A D(y) = R(x,y) are possible even Ris simple.

We now apply DL rules to the description logiaL™
(Baader, Brandt, and Lutz 2005), for which many typical in-
ference problems can be solved in polynomial time. We omit
concrete domains in our presentation as they can basiaally b
treated as shown in (Baader, Brandt, and Lutz 2005).

Definition 6 An EL** concept expression is$HOQ con-
cept expression that contains only the following concept
constructorsn, 3, T, L, as well as nominal concepta).

An EL ruleis a DL rule for6L™, and arEL** rule base

is a set of such rules.

An EL knowledge base is a set8f** concept inclu-
sionsC C D and role inclusion axiomR; o...ocR, C R. See
(Baader, Brandt, and Lutz 2005) for details. It is easy to see
that any&L** knowledge base can be written as an equiv-
alentEL** rule base. The above notion 8f£** rule bases
extends (Krdtzsch, Rudolph, and Hitzler 2008) in two ways.
Firstly, we now also allow conjunctions of simple roles, and
secondly we allow atoms of the forR(x, X) in rule bodies.
Both extensions are non-trivial and require additionalimec
anisms during reasoning.

As we will see later, reasoning witBL** rules is in-
deed possible in polynomial time. However, extendig *
rules with further forms of rules, even if restricting to Bat
log, readily leads to undecidability. This can be preveiited
only DL-safeDatalog rules are permitted: a Datalog rule is
DL-safe, if all of its variables are safe. Yet, this formatis
can still capture all Datalog programs, and thereforefiatis
bility checking remains ErTmve hard (Dantsin et al. 2001).

Our strategy for extendin§L** rules intoELP therefore
is to blend them with tractable fragments of DL-safe Data-
log. As we will see below, one particular such Datalog frag-
ment can again be characterised by the above notion of (ex-
tended) DL rule. Another option is to allow only DL-safe
Datalog rules of a particular form, namely those for which
the number of variables per rule is bounded by some fixed
finite numbem. Indeed, it is easy to see that any DL-safe
(Datalog) rule is equivalent to the set of rules obtained by
replacing all safe variables by individual names in all pos-
sible ways. Since the replacements for each variable are in-
dependent, this leads to up|tq|" different rules — which is
a polynomial bound if is a constant. Note, however, that
largen might render practical computation infeasible.

In addition to various forms of DL-safe rulesl, P also al-
lows for special rules of the formR(x, y) — C(y) expressing
range restrictionson the roleR. Such restrictions are nei-
ther DL-safe Datalog nor DL rules, and in general they do
indeed lead to undecidability &£**. However, it has re-
cently been observed that range restrictions can still be ad
mitted under certain conditions (Baader, Lutz, and Brandt
2008). Therefore, even though this special form of rules is
somewhat orthogonal to the other types of rules considered
herein, we will include range restrictions into our conside
ations to give credit to their practical relevance.

Definition 7 A rule B — H is abasicELP rule if:

e B— His an extended L rule, and

e the ruleB’ — H’ obtained fromB — H by replacing all
safe variables by some individual name is a DL rule.

An ELP rule baseRB is a set of basi&€LP rules together
with range restriction ruleof the formR(x,y) — C(y), that
satisfies the following condition:

¢ If RB contains rules of the for(x,y) — C(y) andB —
H with R(t, 2) € H, thenC(2) € B.

Whenever a set of range restriction rules satisfies the above
condition for some set dELP rules, we say that the range
restrictions aradmissibleor this rule set.

Arule B — H is anELP, rule for some natural number
n > 2 if it is either anELP rule, or a DL-safe Datalog rule
with at mostn variables.

We remark that the above condition on admissibility of
range restrictions is not quite the same as in (Baader, Lutz,
and Brandt 2008). Both versions ensure that, whenever an
axiom entails some role atoR(x, y), domain restrictions of
R have no &ect on the classification of. The interaction
of rules implying role atoms and range restrictions thus is



strongly limited. In the presence of DL rules, we can ac-
complish this by restricting the applicability of rules bg-a
ditional concept atom€(z) as in Definition 7. In (Baader,
Lutz, and Brandt 2008), in contrast, additional range re-
strictions are required, and these, if added to an existing

knowledge base, may also lead to new consequences. Any

set of axioms that meets the requirements of (Baader, Lutz,
and Brandt 2008) can clearly be extended to a semantically
equivalent set of admissiblELP axioms, so that the ap-
proach of Definition 7 does indeed subsume the cases de-
scribed in (Baader, Lutz, and Brandt 2008).

Before providing an extended example in the next sec-
tion, we show howELP subsumes some other tractable lan-
guages. One interesting case is DLP, a formalism introduced
as the intersection of the DEHOZQ and Datalog (Grosof
et al. 2003). DLP can also be generalised using DL rules
(Krétzsch, Rudolph, and Hitzler 2008): BLP head con-
ceptis any SHOQ concept expression that includes only
concept names, nominal concepts;T, L, and expressions
of the form<1 R.C whereC is anEL*" concept expression.

A DLP rule B — H is an extended DL rule such that all
concept expressions Bare€ L™ concept expressions, and
all concept expressions 4 are DLP head concepts.

Even the combination of DLP an&.L contains the
DL Horn-¥£E and is thus EpTmve complete (Krotzsch,
Rudolph, and Hitzler 2007a). Yet, DLP a&8d_** inferences
can be recovered iBLP without losing tractability. In this
sense, the following simple theorem substantiates ouainit
claim thatELP can be regarded as an extension both of DLP
and&L*.

Theorem 8 Consider any ground atom of the formC(a)
or R(a, b). Given a DLP rule base RB and &x** descrip-
tion logic knowledge base KB, one can computé&ar rule
base RBin linear time, such that: If RB- « or KB  a then
also RB E «, and, if RB E @ then RBUKB k a.

Proof. We assume that KB consists of Tbox and Rbox ax-
ioms as defined in (Baader, Brandt, and Lutz 2005) (Abox
axioms can be internalised using nominal concepts as usual)
We assume without loss of generality that the heads of all
rules in RB are of the forn€(t), YR.C, and<1RA, where
C e Nc U{L}andAis anEL* concept. This can easily be
achieved by a simple transformation, similar to the one used
in Proposition 11 later on.

In the following, we use a new auxiliary role name. A
new rule bas&RB is obtained by first transforming rules of
RB as follows:

Foreach ruld — YRC(t) € RB, aruleBAR(t,y) — C(t)
is added tdRB wherey is a new variable.

For each ruleB — <1RA(t) € RB, aruleB A R(t,y1) A
A(y1) AR(t, y2) AA(Y2) = ~s(Y1,Y2) is added tdRB where
Y1, Y2 are new variables.

Each roleB — C(t) that is not of the above forms is added
to RB without modifications.

The following equality theory is added ®B for any role
nameR and concept name in RB:

- ~g(X, X) Rz X) A=s(xy) = RzY)
~s(X,Y) = ~s(Y, X) R(x,2 A=s(xy) = R(Y,2

C) A=s(Xy) = Cy) =s(xy)A=s(Y.2 = =s(X,2

Finally, all variables inRB are uniformly replaced by safe
variables. R

It is not hard to see that RB ariRB are equisatisfiable.
In particular, any DLP rule base that has a model, also has
a model the domain of which is the set of individual names
N;, and that maps any such name to itself. It is a standard
result of logic programming that Horn logic programs are
satisfiable ff they admit such a leasierbrand model As
the restriction to safe variables does nifeat these models,
it is obvious thaRRB has the same Herbrand models as RB,
which establishes the claim. Moreover, it is easy to see that
for anyC € Nc anda € N;, RB  C(a) iff RB  C(a). A
similar statement holds for role atorRéa, b).

Similarly, a rule bas&B is obtained by transforming the
axioms of KB:

For each Thox axionC C D € KB, a ruleC(x) — D(x)
is added taB.

For each Rbox axionR; o ... o R, C R € KB, a rule
Ri(X1, X2) A ... A Ry(%n, Xne1) — R(X1, Xns1) is added to
KB.

For each ruleB — VYRC(t) € RB, aruleB’” — C(t) is
added tKB

Itis clear that KB anB are semantically equivalent, and
thus KB andKB entail the same ground atoms.

Now RB' is defined to be the rule bas&B U KB. It is
easy to see that RRloes indeed satisfy all requirements of
Definition 7. By the above observations, any ground atom
entailed by either RB or KB is also entailed BB or KB,
respectively, and hence by RBConversely, we find that
RBUKB semantically entails RBand thus any consequence
of RB’ is also a consequence of RBKB. m|

Note that the resultingELP rule base entails all indi-
vidual consequences of RB and KB, and some but not all
consequences of their (unsafe) uni@hP thus provides a
means of combining.L** and DLP in a way that prevents
intractability, while still allowing for a controlled intac-
tion between both languages. We argue that this is a mean-
ingful way of combining both formalisms in practice since
only some DLP axioms must be restricted to safe variables.
Simple atomic concept and role inclusions, for example,
can always be considered &€** axioms, and all concept
subsumptions entailed from ti&L** part of a combined
knowledge base do alsdtact classification of instances in
the DLP part. DLP thus gains the terminological expressiv-
ity of 8L while still having available specific constructs
that may only &ect the instance level.

Example

We now provide an extended example to illustrate the ex-
pressivity ofELP. The rules in Table 2 express a simpli-
fied conceptualisation of some preferences regarding food
ordered in a restaurant: rule (1) states that all peoplestteat



(1) NutAllergic(X) A NutProduct(y) — dislikes(X, y)
(2 Vegetarian(X) A FishProduct(y) — dislikes(X, y)
) orderedDish(X, y) A dislikes(X, y) — Unhappy(X)

(4) dislikes(x, v) A Dish(y) A contains(y, V) — dislikes(X, Y)

(5) orderedDish(X, y) — Dish(y)
(6) ThaiCurry(X) — contains(X, peanutOil)

(7 ThaiCurry(X) — Jcontains.FishProduct(x)
(8) — NutProduct(peanutOil)

9) — NutAllergic(sebastian)

(20) — JorderedDish.ThaiCurry(sebastian)
(12) — Vegetarian(markus)

(12) — ForderedDish.ThaiCurry(markus)

Table 2: A simple example rule base about food preferences.
The variablev is assumed to be safe.

allergic to nuts dislike all nut products, which is a kind of
concept product. Rule (2) expresses the same for vegetarian
and fish products. Rule (3) is a role conjunction, stating tha
anyone who ordered a dish he does not like will be unhappy.
Rule (4) says that people generally dislike dishes that con-
tain something that they dislike. Rule (5) is a range restric
tion for the roleorderedDish. Rules (6) and (7) claim that
any Thai curry contains peanut oil and some fish product,
and the facts (8)—(12) assert various concept memberships.

We first verify that this is indeed a valillLP rule base
where all roles are simple. Indeed, the relaxed simplicity
constraints on DL rules as given in Definition 5 are not vio-
lated in any of the rules. All rules other than (4) and (5) are
readily recognised a&.L*" rules. By first considering the
paths in the respective rule bodies, we find that only rule (3)
actually has connected terms at all, connected only by a sin-
gle direct connectioforderedDish(X, ), dislikes(X, y)}. Both
roles occurring in that connection are indeed simple. Simi-
larly, the variablex is initial for these rules, and expressions
of the formR(z 2) do not occur.

It remains to check that also rules (4) and (5) are legal
statements. For rule (5), this requires us to check whether
this range restriction rule is admissible, which is easgein
no rule head contains atoms of the foomieredDish(t, y).

For rule (4), we first need to check that it qualifies as an ex-
tended DL rule fo€L**. This is easy to see since the direct
connections in (4) do indeed form an undirected tree. Next,
we assume thatwas replaced by some individual name, and
consider the paths in the rule. By Definition 5, paths cannot
end with individual names, and hence the modified rule con-
tains no paths, such that it satisfies all conditions o #1*

rule.

We can now investigate the semantics of the ex-
ample. An interesting inference that can be made is
Unhappy(sebastian). Indeed, combining (1), (8), and (9), we
find that Sebastian dislikes peanut oil. Rule (10) implied th
any interpretation must contain some domain element that is

(1) NutAllergic C IRyytaltergic-Self
NutProduct T ARyutproduct-Self
Ruutatiergic © U © Ryutproduct E dislikes
(2) Vegetarian C IR egetarian-Self
FishProduct C ARkishproduct-Self
Ryegetarian © U © Reishproduct E dislikes
3) J(orderedDish 1 dislikes). T C Unhappy
(4) Dish C dRpjish.Self
Forallv e N;:

ddislikes.{v} C Eleis"kes_v-SGlf
Jcontains.{v} T IRcontains_v-Self
Rdislikes_v o U o Rpjgh 0 Rcontains_v C dislikes

(5) T C VorderedDish.Dish

(6) ThaiCurry C dcontains.{peanutOil}

(7 ThaiCurry C dcontains.FishProduct

(8) peanutOil : NutProduct

(9) sebastian : NutAllergic

(10) sebastian : JorderedDish.ThaiCurry
(12) markus : Vegetarian

(12) markus : JorderedDish.ThaiCurry

Table 3: A DL knowledge base that expresses the semantics
of the ELP rule base in Table 2. The concept expressions
used are those @L*" extended with reflexivity 4R Self),

role conjunctions, and range restrictiobksdenotes the uni-
versal role, and all role names with subscripts are auxil-
iary roles introduced only for the translation. See (Hoksyc
Kutz, and Sattler 2006) for details on syntax and semantics
of DL expressions not explained in this paper.

individual denoted bgebastian, andy is mapped to the un-
named Thai curry. Hence we find that Sebastian dislikes his
curry, and thus by rule (3) he is unhappy.

It is instructive to point out the use of safe and unsafe
variables in that case. In contrast to plain Datalog, thevabo
example involves computations relating to some unnamed
individual — the Thai curry — to which rules are applied. On
the other hand, rule (4) could only be invoked since the in-
dividual represented byis named.

The impact of safety restrictions becomes clear by check-
ing the happiness of Markus. Using similar inferences as
above, we find that Markus ordered some (unnamed) Thai
curry (12) — note that this need not be the same that was or-
dered by Sebastian — and that this Thai curry contains some
fish product (7) that Markus dislikes (2). However, this fish
product is again unnamed, and hence we cannot apply rule
(3), and we cannot conclude that Markus dislikes the dish he
ordered. Thus, colloquially speaking, Markus is not uniyapp
since there is no information about some concrete (named)
fish product in his curry.

Using the correspondence between DL rules and descrip-
tion logics (Krétzsch, Rudolph, and Hitzler 2008), we can
also rewrite the rule base of Table 2 into an equisatisfi-

a Thai curry ordered by Sebastian, where we note that there able DL knowledge base. The result of this transformation

is no individual name that explicitly refers to that curry B
(5) this unnamed curry is a dish, and by (6) it contains peanut
oil. At this point we can apply rule (4), whekeis mapped
to the individual denoted byeanutQil, x is mapped to the

is shown in Table 3. It should be noted that the knowledge
base in the given form includes a role conjunction (3) that
involves a non-simple roledislikes) due to the use of aux-
iliary roles that represent concepts in role inclusion mso



The knowledge base therefore belongs to a DL that extends The interpretatiod may fail to be a model of RB RR if

SROIQ with arbitrary role conjunctions — known to be un-
decidable in general. Since, in addition, it is not trivial t
recover the intended rules from a DL knowledge base, rule-

some axioms of RR are not satisfied, i.e., if there is some
R(x,y) — C(y) € RR and some tuplés, &’y € R’ such that
& ¢ CL. However, we can repaif by simply removing all

based representations in this case would be more suitablesuch tuples from the extension Bf an interpretatio” is

from an implementation point of view.

Note that besides (simple or non-simple) role conjunc-
tions, SROZQ supports all constructs needed to represent
ELP rule bases. However, quite some additional vocabulary
is needed for representing rules, and especially safe vari-
ables introduce a significant (though polynomial) expamsio
of the knowledge base. Using an additional con¢#iptfor
named individuals may provide a slightly simpler approach.
Yet, the DL representation of such complex roles is arguably
less readable than the origin@alP rule. From a user per-
spective, this motivates the use of rules as an auxiliary-mod
elling metaphor when dealing with DL knowledge bases.
Another useful addition in this respect might be the con-
cept product operator as suggested in (Rudolph, Krétzsch,
and Hitzler 2008), which could, e.g., be used to rewrite the
axioms in (4) to

Adislikes.{v} x (Dish r dcontains.{v}) C dislikes,

for all v e Ny, thus avoiding much of the additional vocabu-
lary. Similar expressions are possible to simplify the ango
of (1) and (2).

Polytime ELP Reasoning with Datalog

We now introduce a polytime algorithm for compilitid P

rule bases into equisatisfiable Datalog programs. A useful
feature of this transformation is that it does not only prese
satisfiability but also instance classification. Firstlyg ab-
serve that range restrictions&** rule bases can be elim-
inated:

Proposition 9 Consider ail&L** rule base RB and a set RR
of range restrictions that are admissible for RB. Then there
is a rule base RBthat is equisatisfiable to RB RR, and
which can be computed in polynomial time.

Proof. The proof extends the elimination strategy given in
(Baader, Lutz, and Brandt 2008)&** rules in a straight-
forward way. The main observation is that the formalisa-
tion of admissibility given above siiciently generalises the
conditions from (Baader, Lutz, and Brandt 2008) to encom-
pass also concept-product-like rules that entail roldicaia
without explicitly using roles in the antecedent.

To construct the rule base RBve define the concept ex-
pressiorRangeg to be the (DL) conjunction of all concepts
C that occur in an axiom of the foriR(x,y) — C(y) € RR.
Now RB' contains the following rules:

e for all R occurring in RR, and for ala € Ny, a rule
R(x, @) — Rangeg(a),

e forallrulesB — H, aruleB — H’, whereH’ is obtained
by (recursively) replacing all (sub)concepts of the form
AR.C occurring inH by conceptsIR.(C M Rangeg).

Any model of RBU RR is easily seen to be a model of
RB’. For the other direction, consider some maofielf RB’.

defined to be equal td regarding domain, interpretation of
individual names, and interpretation of concept names, but
with role names interpreted as follows:

R = {(5,6") e RE | & e C! forall R(x,y) — C(y) € RR).

We claim that7’ is a model of RBU RR. By construction,
I’ clearly satisfies all axioms of RR. Now consider some
rule B —» H € RB. Clearly, whenevef’,Z = B then also
I,Z E Band hencd,Z E H’, the rule head obtained from
H in RB’. We consider the atoms that may occuHn

e R(t,u). If uis a variable, admissibility of RR requirés
to containRanger which shows the claim. l& is an in-
dividual name, the rul&(x, a) — Rangeg(a) ensures en-
tailment byZ”.

o C(t). The diferences betweefi andZ can only dfect the
entailment ofC(t) if C contains some subconcefiR.D.
SinceH’ containsdR.(D n Rangeg) in that case, it is easy
to see that we do again find, Z = C(t) as required.

This shows thaf”’, Z = H and thus finishes the proof. O
Next, we expand nested concept expressions in rules:

Definition 10 An EL£** rule base RB is imormal formif

all concept atoms in rule bodies are either concept names,
T, or nominal concepts, all variables in a rule’s head also

occur in its body, and all rule heads contain only atoms of

one of the following forms:

A(t) JARB(t) R(t, u)
whereA e Nc U {{a} | a€ N;JU{L}, B € Nc, R e Ng, and
t,ue Ny UV.

Proposition 11 Every E£** rule base RB can be trans-
formed in polynomial time into an equisatisfialde&*™* rule
base RBin normal form.

Proof. The transformation algorithm iteratively transforms
RB. In each iteration, a rul8 — H that is not in normal
form yet is selected from RB, and one of the following is
done:

e if H contains an atom of the fornC(1 D)(t), then it is
replaced by the conjunctidd(t) A D(t),

if H contains an atom of the foraR.C(t) whereC ¢ Nc,
then this atom is replaced id by AR A(t) with A € N¢
new, and a new rul&(x) — C(x) is added,

if H contains an atom of the form(t), then this atom is
deleted fronH. If H is singleton and would thus be empty
after the deletion, then the whole rue— H is deleted
from RB,

if H contains a variabl& that is not contained iB, then
the atomT(x) is added tdB,



e if B contains an atom of the for@mR.C(t), it is replaced
by two new atom®(t, y) andC(y) wherey € V is new,

e if B contains an atom of the fornC(1 D)(t), it is replaced
by two new atom€(t) andD(t),

¢ if B contains an atom of the form(t), then the rule8 —
H is deleted from RB.

It is easy to see that the transformation yields an equisatis
fiable EL£** rule base in normal form, the size of which is
polynomial in the size of the original rule base. m]

The transformation a £** rules to Datalog is as follows:

Definition 12 Given anEL*" rule base RB in normal form,
the Datalog prograr®(RB) is defined as follows. The fol-
lowing new symbols are introduced:

e arole nameR, (theequality predicat}

e concept name§, for eacha € Ny,

e concept nameSelfg for each simple rol® € N3,
e individual nameslr ¢ for eachR € Ng andC € Nc.

In the following, we will always usé\;, Nc, Nr, N}, N to
refer to the original sets of symbols in RB, not including
the additional symbols added above. The progrdRB) is
obtained from RB as follows:

(a) For each individuah occurring in RB, the program
P(RB) contains rules» Cy(a) andC,(X) — R.(X, a).
(b) For each concept nan@zand role nam& occurring in
P(RB), the progran(RB) contains the rules
= Ru(x,X) R(zx) AR(xy) = R(zY)
R.(%,Y) = R(Y, X) R(X, 2 AR(XY) = R(Y,2
C(X) AR(XY) = C(Y) R(XY)ARY,2) — Ru(X 2

For all rulesB — H € RB, aruleB" - H’ € P(RB)
is created by replacing all occurrences R(x, x) by
Selfr(X), all occurrences ofa}(t) by Cy(t), and all oc-
currences ofIR.C(t) with C € N¢ by the conjunction
R(t, drc) A C(drc).

For all rulesB — H € RB andR(x,y) € H with Re N}
simple,P(RB) contains a rul®’ — Selfr(X) € P(RB),
whereB' is obtained fronB by replacing all occurrences
of y with x, all occurrences ofa}(t) by Cy(t), and (fi-
nally) all expressionS(x, x) with Selfs(X).

(e) For eaclR € N§ anda € Ny, the progranP(RB) con-
tains the ruleC,(X) A R(X, X) — Selfr(X).

(©

(d)

It is easy to see tha®(RB) is indeed a Datalog pro-
gram. One can also readily construct the Datalog transla-
tion for the rules of Table 2, though the treatment of safe
variables as in rule (4) will only be discussed further be-
low. Most rules are already in Datalog and can remain un-
changed by (c), with the exception of the existential en-
tailments in (7), (10), and (12). The rule (7) is rewritten
into a ruleThaiCurry(X) — contains(X, Ueontains FishProduct) A
FishProduct(dcontains Fishproduct)- FOr rule (10), we addition-
ally need to incorporate the range restriction (5) by us-
ing the reduction provided in Proposition 9. Thus we ob-
tain the rule— orderedDish(sebastian, orgeredpish, Thaicurry) A

ThaiCurry(dorderedpish, Thaicurry)- RUle (12) is treated similarly,
and further auxiliary rulesrderedDish(x, &) — Dish(a) are
added as in Proposition 9. In addition, (d) generates new
rules for (1) and (2) (we omit (4) here). Rule (1), e.g., leads
to a rule NutAllergic(X) A NutProduct(X) — Selfgsjikes(X),
which is clearly not relevant to reasoning in this case. Fi-
nally, the rules of (a), (b), and (e) are added to the program.

The correctness proof for this construction constitutes an
essential part of the technical contributions of this paged
we first provide some intuition on how the proof proceeds.
To show that RB an&(RB) are equisatisfiable, we construct
models ofP(RB) from models of RB, and vice versa. It is
well-known that, in the case &.£"*, models can be gen-
erated by introducing only a single element for each atomic
concept (Baader, Brandt, and Lutz 2005). Eof** rules,
however, the added features of role conjunction and local
reflexivity change the situation: considering only one ehar
acteristic element per atomic concept leads to undesired en
tailments in both cases. Our model constructions therefore
deviate from the classical£L** construction that worked
for the simpleEL rules in (Krdtzsch, Rudolph, and Hitzler
2008) with only minor modifications.

For instance, the rule bage}(x) — IRC(X),{a}(X) —
4S.C(x) does not entail any conjunction of the foR(a, X) A
S(a, X). Yet, every interpretation in which the extension of
C is a singleton set would necessarily entail this conjunc-
tion. This motivates the above usedyc in P(RB), which,
intuitively, represent elements €f that have been “gener-
ated” by a rule head of the formMR.C(x). Thus we admit
INR| distinct characteristic individuals for each concept, and
this sufices for the proper model construction in the pres-
ence of role conjunctions.

The second problematic feature are expressions of the
form R(x, X), which again preclude the consideration of only
one characteristic individual per concept. The use of cphce
atomsSelfz(X) enables the translation of models for RB to
models ofP(RB) (the soundness of the satisfiability check-
ing algorithm). The latter may indeed entail additionatesta
ments of typeR(x, X) without impairing the validity of the
Datalog rules that usgelfr(X).

In the other direction, models of RB are built from mod-
els of P(RB) by creating infinitely many “parallel copies”
of a basic model structure. These copies form an infinite se-
qguence of levels in the model, and simple roles relate only to
successors in higher levels. Exceptions to this consbomcti
principle, such as the concept product rules discussed ear-
lier, make the exact formalisation technically involvetheT
below proof for this case hinges upon the simplicity of roles
in conceptsSelfs, and it is not clear if a relaxation of this
requirement would be possible.

Lemma 13 For any&L** rule base RB in normal form, RB
is unsatisfiable iP(RB) is unsatisfiable.

Proof. We show the contrapositive: If RB is satisfiable, then
so isP(RB). Thus assume that RB has some matelVe
define an interpretatiafi of P(RB) with domainA7 = N, U
{drc | R € Nr,C € N¢,C? ¢ {a}f forall a € N;}. For any
individual named in P(RB), setd” as follows:



e If de A7, thend? = d.

e Otherwise, ifd = drc andC’ = 0, thend/ = a for some
arbitrarya € N;.

e Otherwise, ifd = drc andC? = {a}’ for somea € N,
thend” = afor some (arbitrary) such.

Moreover, we assign a concept expressi@f) to any ele-

ments € A7 as follows:

o if 6 = a€ N, thenk(s) = {a},

e if 6 = drc thenk(s) = C.

Now 7 interprets roles and concepts as follows (where we

assume that andR are symbols occurring in RB):

(A) 6 € CTiff k(6)* c C~.

(B) 6 € CJ iff x(5)F C {a}’.

(C) 6 e self] iff (¢",8") e R forall &' € «(5)".

(D) (6,a) € RY forae N, iff x(6)’ < IR(a}’.

(E) (5,dsc) € RI for Re Ng iff x(6)!  ARCY

(F) (6,dsc) € R for R € N§ and«(6)! ¢ 3S.CT iff
(¢,€y € R forall & € k(o)) ande’ € C with
(6',€¢ye S,

(G) (6,dsc) € RY for R € N§ and«(6) ¢ 3IS.C iff
(¢, €y e R for all ¢ € k(5)" ande’ € CZ.

(H) RY = ((6,6) | 6 € AT}

We claim thatJ is a model forP(RB). For the rules of
type (a), (b), and (e) in Definition 12 this is easy to see. Now
consider some rul® — H’ generated from a rul8 —

H € RB by item (c). Assume there is a variable assignment
Z’ for 9 such that7,Z’ £ B’. We show how to iteratively
construct a variable assignmehfor 7 such that/,Z  B:

As long asZ has not been defined for all variables occur-
ring in B, do the following:

e Select a variablex occurring inB such that there is no
atomR(y,x) € B with y # x a variable for whichZ is
not defined yet. Note that such aralways exists, since
B — His a DL rule, and thus has no proper cycles.

e Select a valu&(x) € x(Z'(x))? as follows:

(1) If Z/(X) = a€ N, then seZ(x) = a’.

(2) Otherwise, if there is somig(t, x) € B’ with R € Ng,
then letZ(x) be some elemert € «(Z'(x))? such that
2,8y e RL.

(3) Otherwise, we find thaZ’(x) = dsc, and all role
atoms inB’ that containx in the second position re-
fer to simple roles. If there is sonR(t, X) € B’ such
thatx(t7-%)? c 3S.C7, then letZ(x) be some element
6 € k(Z'(X))! such thatt!#4,5) € S”.

(4) Otherwise leZ(x) be some elemedte x(Z’(x))’.

Finally, for all variablesx not occurring inB, let Z(x) be
arbitrary.

We need to verify thaZ is indeed well-defined. For that
we must show that the choice &{x) in the second item
is always possible. To this end, note thkéZ’(x))? is non-
empty by definition ok. We check all cases separately:

(1) The given choice clearly is possible, a{x) e
K(Z'(9)".

(2) SinceR(t,x) € B’ with R non-simple, this atom is the
only role atom withx in its second component by defi-
nition of DL rules (hence the choice &{t, x) is canoni-
cal). FromJ,Z’ = B’ and (E) in the definition of/ we
conclude thak(t7-%')? ¢ AR«(Z’(x))?. By definition of
Z (for caset € V) andJ (for caset € N,), we find that
t/%4 e k(t7%), and thus there must be a possible choice
for Z(x).

(3) In this case, the choice &{(x) depends on the terin
in the first position of the selected atdRr{t, x). How-
ever, by the definition of DL rules, all atoms of the form
R (t', X) must have the same term in their first compo-
nent, and thus the choice bis again canonical. By as-
sumption, we find(t7-¢) ¢ 3S.C%, and we can apply
a similar argument as in case (2) to conclude that the
required choice oZ(x) is possible.

(4) Trivial.

We further claim thatf, Z = B, which is shown by con-
sidering all atoms that may occur B

e C(t) with C € N¢. By Definition 12,B’ also contain€(t)
and hencey,Z’ = C(t). If t € V then, by construction of
Z, we find thaZ(t) € «(Z’(t))?. Hence, by item (A) in the
definition of 7, Z(t) € C’. Otherwise, ift € N, then we
find thatx(t)! = {t}Y = {t’} c C! as required, where the
subset inclusion follows again from (A).

e {a}(t). This case is similar to the above item, with the only
difference thata} corresponds t&, in B, and that item
(B) is used.

e R(t,u). First assume that € V. If t = u, thenSelfr(u) €
B’ and we can use (C) to concludeZ E R(t, u). Other-
wise, ifu € V andt # u, we can distinguish the cases as
in the definition ofzZ:

(1) 7,Z = R(t, a) is a direct consequence of (D).

(2) The choice in case (2) of the definition @fdirectly
implies 7,Z E R(t,u), where it is important to note
that only one such (non-simple) role atom with second
argument can occur.

(3) Again we have argued above that all role atoms with
in their second position must then be simple and refer
to the samd in their first position.Z(u) was chosen
such thatt’?,Z(u)) € S’. Therefore,J,Z’ E R(t,u)
and (F) imply thatt?-?, Z(u)) € R’ as required.

(4) Case (G) in the definition Qf applies, and hence we
again conclude that’%, Z(u)) € RL.

Finally, if u € N;, then we can also apply the same rea-
soning as in case (1) above.

Thus find that7, Z E B, and, sincel is assumed to be a
model of RB, we conclude that, Z £ H. Moreover, for any
variablexin Bfor which there is no atorR(t, X) € B, and for
anys € k(Z'(x))?, we can construct such a variable assign-
mentZ which additionally satisfieZ(x) = §. This is easily
seen from the definition df, the second item of which does
not apply in that case.



We can now show thaff,Z’ £ H’ by considering the
different types of atoms that may occurHn Using the no-
tation of Definition 10, we have to consider three basic kinds
of atoms:A(t), AR B(t), andR(t, u). If t € V then, by the def-
inition of DL rules, we find that there is no atoR{u,t) € B
with u # t. Thus, for anys e «(t7-%)?, there is an assign-
mentZ such that’- = § andZ, Z = H. This also is trivially
true ift ¢ V, sincex(t”-?)’ contains only a single element
t/ in this case. Using this insight), we can consider the
various possible kinds of atoms i

e If A(t) € H with A € N¢ then alsoA(t) € H’. Then ()
shows that € A for all § € «(t7-¢)?, and we can con-
clude that7-? e A7 by case (A) in the definition Qf.

e If {a}(t) € H thenC,(t) € H’. We can apply the same rea-
soning as in the previous item, using (B) in the definition
of 7.

e If ARB(t) € H with B € NcU{T} thenR(t, dr ) AB(drs) €
H’. Firstly, this clearly entails thaB? # 0 and thus
drg € A7. By (A), we conclude thatlirg € B, which
establishes the second part of the above conjunction.
To show thaR(t, dr g) is also entailed, we again apphy)(
as in the previous item to conclude tkét’-%)’ c IR B’.
Thus we just need to observe that the conditions for
J.Z" = R(,drp) that are given in (E) and (F), respec-
tively, are satisfied.

e If AR B(t) € H with B = {a} thenR(t,a) € H’. Again, we
can apply f) to obtaink(t7-%)’ ¢ IR{a}’ which is all
that is required to derivg, Z’  R(t, a) from (D).

e If R(t,u) € H witht # uthenR(t,u) € H’. Using (})
and the fact thatr’ % € x(u7-%)’, we find that(t7-%)!
AR «(u7%). This establishes the required conditions for
(D) and (E), and thus settles all cases where eitheN;,
ue V with Z’(u) € Nj, orRe Np.

It remains to check the case whare= V with Z’'(u) =
dsc andR € N. By the restrictions on simple roles in DL
rules, we conclude that occurs in the second position
of role atoms inB’ only if the atom is of the forniR'(t, u)
with R simple. If there is such an atoRi(t, u) € B’ and if
k(t7#)! c AS.C?, then the value foZ(u) was chosen by
case (3) of the definition &. We can thus derive a similar
statement asf{, and conclude thaZ(u) might take any
valuee’ € «(Z'(u))! for which (t/4,¢'y € S’. Since we
derive(t’%, ¢’y € R in all these cases, we can invoke (F)
to conclude7, Z’ E R(t, u).

If there is no role atonR'(t,u) in B, or if x(t74)! ¢
3S.C? for all such atoms, thed(u) is chosen in case (4)
of the definition ofZ. A similar argument as before shows
that the conditions of case (G) are satisfied in this case,
and we obtain7, Z’ E R(t, u) as required.

e If R(t,t) € H thenSelfg(t) € H’. Applying () again, we
find that(s,5) € R’ for all § € «(t7-%)%. Using (C), we
can again derivgy, Z’ E Selfg(t).

This shows thatf,Z’ = H’ and concludes the proof for
rules of type (c).

Finally, for rules generated in item (d) of Definition 12,
note that one could similarly obtain these rules by item (c)
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by adding, for each rul8 — H € RB with R(x,y) € H and

R € N simple, a ruleB" — R(x, X), whereB’ is obtained
from B by replacing all occurrences givith x. Since adding
such rules clearly does noffect the semantics of RB, case
(d) is covered by case (c).

_ We conclude thaty is indeed a model for all rules in
P(RB) as required. m|

Lemma 14 For anySL"* rule base RB in normal form, RB
is unsatisfiable only iP(RB) is unsatisfiable.

Proof. The required constructions are very similar to the
ones used in Lemma 13, yet soméeliences must be taken
into account, and we therefore provide all arguments explic
itly instead of referring to that earlier proof.

We show the contrapositive: (RB) is satisfiable then so
is RB. Thus assume thgf is a model ofP(RB). We define
an interpretatiod” of RB the domaim\? of which is defined
by settingAI =N U{drcn | R€ NR,C € N¢,n > 0, cI ¢
{a}7 for all a € N;}. Note that this ensures, in particular, that
CJ # 0 for all elementgdrc,n. The individual names in RB
are interpreted in the obvious way by settiag = a. We
assign a concept expressigd) to every elemens € A” as
follows:

o if 6 = a€ N, thenk(6) = {a}.
o if § = drcnthenk(s) = C.

Note that by the conditions on elements/df, we find that
k(6)T # 0 for all 6 € AZ. We also assign a natural number
v(6) to each elementv(drcn) = n, andv(a) = O for all

a € N;. Now 7 interprets roles and concepts as follows:

(A) ¢ € CL for C e N¢ iff k(6)7 c CT
(B) 6 e {a}f iff k()Y cCY

(6, €) € R iff one of the following holds:
(C) 6 = dscn, € = dscmandk(s) C Self? .
(D) € =ae N, and«(6)? c AR {a}J
(E) €= ds,c,n, Re NnR, andK(6)~7 c3IrcI

(F) € = dscn R € N3, k(6)7 € ISCY, v(6) < n, and
(¢,€y € RI for all & € «(6)7 ande’ € CJ with
(6",€'ye ST,

(G) (¢",¢) e RT forall & € k(6)7 ande € k(e)7.

Note how we use the additional numerical index (F)
to ensure that anonymous elements do never relate to them-
selves unless explicitly needed. In contrast to Lemma 13,
case (B) now implies that = a’. Thus, cases (A) and (B)
have some dependency: whene@ér = 0 andC! c {a}’
we also must have tha! € C’, or otherwisel is not
well-defined. Fortunately, this condition is indeed sagisfi
sinceJ satisfies the rule€,(x) — xR.a of (a), we find that
(6,a”y e R for all 6 € CY. But then, using the rules of
(b), we can concluda”’ € C as required.

We claim that? is a model of RB. Thus consider any rule
B — HinRBandletB” — H’ € P(RB) be the rule obtained
from B — H by item (c) of Definition 12. Assume that there



is a variable assignmedtsuch that7, Z £ B. We show how
to iteratively construct a variable assignmetitsuch that
J,Z E B

As long asZ’ has not been defined for all variables occur-
ring in B, do the following:

e Select a variablex occurring inB’ such that there is no
atomR(y, X) € B’ wherey is a variable for whichZ’ is
not defined yet. Note that such aralways exists, since
B’ — H’ is a DL rule, and thus has no proper cycles.

e Select avalu@’(x) € «(Z(x))7 as follows:

(1) If Z(X) = a€ N, then seZ’(x) = a’.

(2) Otherwise, if there is somig(t, x) € B’ with R € Ng,
then letZ’(x) be some elemerdt € x(Z(xX))” such that
#IZ 85y e RI,

(3) Otherwise, we find thaZ(x) = dscn, and all role
atoms inB’ that containx in the second position refer
to simple roles. If there is som&(t, X) € B’ such that
v(th?) < v(Z(x)) and(t!4)7 c 3S.CT, then letZ’(x)
be some elemedte x(Z(x))? such thatt”Z,6) € S7.

(4) Otherwise, if there is sonfe(t, X) € B’ such that!Z if
of the formds cm and«(t’%)7 C self, then letZ’(x)
be some elemen -~

(5) Otherwise leZ’(x) be some elememdte x(Z(x))” .

Finally, for all variablesx not occurring inB, let Z’(x) be
arbitrary.

We need to verify thaZ’ is indeed well-defined. For that
we must show that the choice #f(x) in the second item is
always possible. To this end, note th&Z(x))? is non-empty
by definition ofk andA’. We check all cases separately:

(1) The given choice clearly is possible, ad(x) €
K(Z(x))7.

(2) SinceR(t,x) € B’ with R non-simple, this atom is the
only role atom withx in its second component by defi-
nition of DL rules (hence the choice &t, x) is canon-
ical). From7,Z = B’ and (E) in the definition of we
conclude thak(t’)7 ¢ AR«(Z(x))7. By definition of
Z’ (for caset € V) and 7 (for caset € N), we find that
7% e k(t!?), and thus there must be a possible choice
for Z'(X).

(3) In this case, the choice @ (x) depends on the terin
in the first position of the selected atdrft, x). How-
ever, by the definition of DL rules, all atoms of the form
R (t’, X) must have the same term in their first compo-
nent, and thus the choice bis again canonical. By as-
sumption, we find(t/4)7 ¢ 3S.C7, and we can apply
a similar argument as in case (2) to conclude that the
required choice of’(x) is possible.

(4) Trivial.

(5) Trivial.
We further claim thayy, Z’ £ B’, which is shown by con-

sidering all atoms that may occur Bi:

e C(t) with C € N¢ occurring in RB. By Definition 12B
also contain€(t) and hencd,Z E C(t). If t € V then, by
construction oiZ’, we find thatZ’(t) € «(Z(t))”. Hence,
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by item (A) in the definition off, Z’(t) € C7. Otherwise,
if t € N, then we find thak(t)? = {t}7 = {t7} c CT as
required, where the subset inclusion follows again from
(A).

e C,(t). This case is similar to the above item, with the only
difference thaC, corresponds t¢a} in B, and that item
(B) is used.

e Selfx(t). By construction ofB’, we find thatt € V and
R(t,t) € B. If Z’(t) ¢ N;, we can use (C) to conclude
J,Z E Selfx(t). Otherwise, case (D) applies and we can
conclude thatt7,t7) € RJ. Now sinceJ satisfies the
rules generated in item (e), we can conclude $hat’ E
Selfr(t) as required.

e R(t, u) with Roccurring in RB. Ifu € V we find thatt # u,
and we can distinguish the cases as in the definitidti :of

(1) 9.,Z E R(t,a)is a direct consequence of (D).

(2) The choice in case (2) of the definition Bf directly
implies 7,Z2" E R(t,u), where it is important to note
that only one such (non-simple) role atom with second
argumenu can occur.

(3) Again we have argued above that all role atoms with
in their second position must then be simple and refer
to the samd in their first position.Z’(u) was chosen
such thatt?%, Z’(u)) € S7. Therefore,l, Z = R(t, u)
and (F) imply thatt’-%', Z’(u)) € R7 as required.

(4) Using a similar argumentation as in the previous item,
we conclude thatt?-?, Z’(u)) € R7 by item (C).

(5) Giventhatthe conditions of (1)—(4) did nothald Z
R(t, u) can only follow from case (G) in the definition of
é}a\pplies. Hence we again conclude thdt? , Z’(u)) €

Finally, if u € N;, then we can also apply the same rea-
soning as in case (1) above.

Thus find thaty, Z’ = B’, and, since is assumed to be
a model of RB, we conclude thgt, Z’ E H’. Moreover, for
any variablex in B’ for which there is no atorR(t, x) € B,
and for anys € x(Z(x))”, we can construct such a variable
assignmeng’ which additionally satisfieg’(x) = ¢. This
is easily seen from the definition &f, the second item of
which does not apply in that case.

Note that the rules obtained in item (d) can all be gener-
ated by (d) when adding a suitable rule to RB, where this
rule clearly does not change the semantics of RB, and hence
our argument extends to all rules of (d) as well.

We can now show thaf, Z = H by considering the dif-
ferent types of atoms that may occur k. Atoms in H’
can have two basic form€(t) andR(t,u). If t € V then,
by the definition of DL rules, we find that there is no atom
R(U,t) € Bwith U’ # t. Thus, for any € «(t/%)7, there is
an assignmer’ such that’-* = § and 7,2’ = H’. This
also is trivially true ift ¢ V, sincex(t**)7 contains only a
single element” in this case. Using this insight), we can
consider the various possible kinds of atom#ifand thus
H’):

e If C(t) € H with C € N¢ then alsoC(t) € H’. Then ()
shows that € C7 for all § € x(t/¥)7, and we can con-

clude that?# € C by case (A) in the definition of .



o If {a}(t) € H thenCy(t) € H’. We can apply the same rea-
soning as in the previous item, using (B) in the definition
of 7.

o If R(t,u) € H with t # uthenR(t,u) € H’. Using (})
and the fact that”-% e x(u’%)7, we find that(t’%)7
IR«(u?%)7. This establishes the required conditions for
(D) and (E), and thus settles all cases where eitleN;,

u eV with Z(u) € Ny, of R e N.

It remains to check the case whares V with Z(u) =
dscn andR € N3. By the restrictions on simple roles in
DL rules, we conclude thatoccurs in the second position
of role atoms inB’ only if the atom is of the forniR (t, u)
with R’ simple. We first assume that there is one or more
such atonR (t, u) € B’ and distinguish various cases:

— v(t%) > n. Since we havd,Z = R/(t,u), one of the
cases (C) — (G) must apply t@’Z,Z(u)) andR’, for
all such atom®(t, u). Cases (D), (E), and (F) are pre-
cluded by our assumptions.

Now if t/*? is not of the formdscm, then case (C)
is also precluded. From case (G) we conclude that
(6,€¢) e RI for all ¢ € k(t!4)7 ande’ e «x(Z(u)).
Using an argument similar ta'), we find that a vari-
able assignmer®’ with 7,2’ E B’ — H’ can be con-
structed such thaf’(u) = ¢ for any e € «(Z(u))7,
since case (5) of the construction &f applies. Thus
(6,€) € R for all 6 € k(t!**)7 ande € «x(Z(u))7, and
we can apply (G) to concludg, Z = R(t, u).
Alternatively, t-? is of the formdscm. If x(t/4)7 ¢
Selfg then case (G) applies as above. Otherwise, =

R (t, u) might be concluded by case (C), afqu) was
defined by case (4). Now by the rules (d) RfRB),
we find that there must exist a rule based®r-> H
that has the fornB” — Selfg(t), where we note that
the assumptions otf-? imply thatt is a variable. By
the construction in (d), it is easy to see tHatZ" E
B” — Selfz(t) and hence we can conclude thaf e
Self*g. Applying (7), we finally find that the conditions
of (C) are indeed satisfied, and thatZ = R(t,u) can
be concluded.

— y(tH%) < n. If «(t5%)T ¢ 3S.CT, then the value for
Z’(u) was chosen by case (3) of the definition&f
We can thus again derive a similar statement-sand
conclude tha#’ (u) might take any value’ € «x(Z(u))”
for which (t7Z, ¢’y € S7. Since we derivét? <, ¢') e
R7 in all these cases, we can invoke (F) to conclude
I,Z ER(,u).

If x(t/%)7 ¢ 3S.C7 for all such atoms, thed’(u) is
chosen in case (4) or (5) of the definition &f. Case

o If R(t,t) € H thenSelfg(t) € H’. Applying (}) again, we
find that(t/?)J c Selfg and we can apply (C) to derive
I,Z ER({,1).

This shows that’,Z = H in all cases, and thus concludes
the proof. m]

Summing up the result of Lemma 13 and Lemma 14, we
obtain the following next theorem:

Theorem 15 Given anEL** rule base RB in normal form,
RB is unsatisfiablefi P(RB) is unsatisfiable.

Next, we want to show tha&LP is indeed tractable. The
above results o&L** rules already provide a way of de-
ciding satisfiability ofELP by first grounding safe variables,
and then proceeding with the elimination of range restric-
tions and transformation to Datalog. When grounding safe
variables into individual names, however, we must first en-
sure that this grounding does not incur an exponential blow-
up of the rule base. Moreover, we also need to show that the
resulting Datalog program can be evaluated in polynomial
time.

The proof thus proceeds by decomposiigp rules into
rules containing a limited finite number of (safe or unsafe)
variables. The grounding of safe variables then can only pro
duce a polynomially bounded number of new rules. After
translating fromEL** rules to Datalog, the number of vari-
ables per rule is still bounded. Since Datalog contains no
existential quantifiers, Datalog programs are equivalent t
their grounding, i.e. we can again replace variables with in
dividual names in all possible ways. Note that this time, the
relevant individual names for grounding also include new
symbols of the forndg . Evaluating the resulting variable-
free Datalog program is P-complete.

The decomposition GELP rules into rules with a bounded
number of variables exploits the forest shape of rule bodies
by iteratively reducing branches of trees. This is not gaesi
for generah-variable Datalog rules i&LP,,, which thus in-
crease the number of rules exponentiallpityet, admitting
rules of some smatt might well be feasible in practice, and
we therefore include them into the following theorem.

Theorem 16 Satisfiability of anyELP,, rule base RB can be
decided in time polynomial in the size of RB and exponential
inn.

More precisely, RB can be transformed into an equi-
satisfiable Datalog program(RB) which contains at most
max(3 n) variables per rule, and this transformation is pos-

(4) can be treated as above, and a similar argument also sible in polynomial time in the size of RB. Moreover, for any

shows that the conditions of case (G) are satisfied in
case (5). Thus we obtaif Z = R(t, u) as required.

Finally, if there is no role atonR (t, u) in B, then again
case (G) can be invoked to derive the desired result.

e If AR.B(t) € H thenH’ contains an according conjunction

C € N¢, Re Ng, anda, b € Ny, we find that
e RBE C(a) iff P(RB) E C(a)

e RBE {a}(b) iff P(RB) | Ca(b)

e RBE R(a,b)iff P(RB) E R(a, b)

of role and concept atoms, and we can apply the same Proof. Grounding all safe variables of a rule base in all pos-
arguments as above to see that similar statements hold for sible ways is a feasible reasoning method, but may lead to

I, from which the required result can be concluded.
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exponential increases in the size of the knowledge base. Thi



can be prevented, however, by ensuring that any rule con-
tains only a limited number of variables. A similar method
can be used to ensure that the Datalog progpéinas ob-
tained in Definition 12 can be evaluated in polynomial time.
We therefore proceed by providing a satisfiability preserv-
ing polytime reduction oELP rule bases int&LP rule bases
that contain only a bounded number of variables per rule. We
consider only basi€LP rules for the reduction, since range
restrictions do not require any transformation. One should
however, observe that the transformation does not lead to a
violation on the admissibility restrictions for range st
tions.

Let RB° ¢ RB denote the set dELP rules in RB (i.e.
excluding only additional DL-safe rules ofvariables that
might be available ifELP,). We first transform th&LP rule
base into a normal form by applying the algorithm from
Proposition 11. It is easy to see that this transformation ca
also be applied t&LP rules by treating safe variables like
individual names. Hence, this transformation preserves sa
isfiability, and yields a rule base RBhe size of which is
polynomial in the size of RB The new rule base RBis
then of a normal form similar to the one of Definition 10 but
with additional safe components per rule.

Next, we reduce conjunctions in rule heads in the stan-
dard way: any rule of the forrB — H; A H; is replaced
by two rulesB — H; andB — H, until all conjunctions
in rule heads are eliminated. Again, the resulting rule base
RB; is clearly equisatisfiable to RBand can be obtained in
polynomial time.

As the next step, we transform the extended DL rules of
RB; into extended DL rules with at most 3 variables per rule.
Besides the notions defined in Definition 5, we use a number
of auxiliary notions in describing the transformation. et
following, we assume that all direct connections (cf. Defi-
nition 5) between termsandu in some seB aremaximal
i.e. contain all role atoms of the fori®(t, u) € B. Consider
some ruleB — H:

¢ A connected componeot Bis a non-empty subs&c B
such that, for all terms # u occurring inS, we find that
t andu are connected i8. A maximal connected compo-
nent(MCC) is a connected component that has no super-
sets that are connected components.

A variable x is initial for H if H is of the formC(x) or
R(x, t).

A variablexisfinal for Hif H is of the formR(t, X). If H is
not of this form butB — H contains some variable, then
some arbitrary but fixed variable B — H is selected to
be final forH.

Given a subsef of B, we say thatS is reducibleif it
contains variables that are neither initial nor finaHn

Let S be an MCC ofB, and consider a direct connection
T from a termt to a termu in S. Let St be the set of
all atoms inS that contain some term connected ta in
S\ T. Similarly, letSt, be the set of all atoms i§ that
contain some term’ connectedtain S\ T.

Intuitively, the setsSt; and St consist of all atoms to
the “left” or to the “right” of the connectio that can be
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reached front andu, respectively, without using the atoms
of T.

We can now proceed to reduce the forest structure of rule
bodies.

In each iteration step of the reduction, select some rule
B — H in RB, that contains more than three variables and
some reducible MCG of B, and do one of the following:

(1) If S contains no variable that is final fét, then select
an initial element as follows: if S contains a variabl&
that is initial forH thent = x; otherwise set = a for
an arbitrary individual namea € N;. The ruleB — H
is replaced by two new rule®(\ S) U {C(t)} —» H and
S — C(t), whereC is a new concept name.

For all other cases, assume that the varigbie S is
final for H.

(2) Thereis a direct connectidhfromy to some variable
such thaBr , is reducible but contains no variable initial
for H. Then ruleB — H is replaced by three new rules
BU{CWI\(STuUT) - H, Tu{D(u)} — C(y), and

St.u — D(u), whereC, D are new concept names.

There is a direct connectidnfrom some variablétoy
such that; is reducible, and contains a variab¢hat
is initial for H. Then ruleB — H is replaced by three
new rulesBU{R(X, W}\ (StUT) - H, {R(Xt)}uT —
R(x,y), andSt; — R(xt), whereR R are new non-
simple role names.

(4) There is a direct connectidnfrom some variablétoy
such thatSt; is reducible but contains no variable that
is initial for H. Then ruleB — H is replaced by three
new rulesBU {R(a,y)} \ (St: U T) - H, {R(a,t)} U
T - R(ay), andSt; —» R(at), wherea € N, is an
arbitrary individual name, anid, R are new non-simple
role names.

There is a direct connectiohfrom y to some variable
u such thatSt, is reducible, and contains a variabte
that is initial forH, and some further variablebesides
x andu. We distinguish various cases:

(a) There is a direct connection from some tdrea y
tou. ThenruleB — H is replaced by two new rules
B U {R(x, )} \ Sty — H andSr, — R(x, u), where
Ris a new non-simple role name.

(b) The above is not the case, and there is some direct
connectionT” from u to some variabler such that
St/ is reducible but does not contaxn Then rule
B — H is replaced by two new ruleB U {C(u)} \
(StwUT) > HandSr  UT — C(u), whereC
is a new concept name.

(c) None of the above is the case, ani$ involved in
a direct connectiol’ besidesT, which connectsi
to some variabler such thatSy/ , containsx. Let
S, denote the se&8, := S\ (Sty U St/v). The rule
B — H is replaced by two new ruleBuU {R(y, u’)} \
Sy — HandS, — R(y, u), whereRis a new non-
simple role name.

®3)

(5)

This iteration is repeated until no further transformatien
applicable. It is easy to see that the translation preserves



conditions on simplicity of roles, since all newly introdaet

ducible componentiB. Since rule (1) is not applicable, we

roles are non-simple, and since they do never occur in a body can assume th& contains a final variablg

position where simplicity is required.
In all considerations below, we will use the notation of

SinceS is reducible, some atom & contains a variable
that is neither final nor initial foH. Since cases (3) and

the above cases when considering some transformation step,(4) are not applicable, we conclude that there is no direct
and refer to the generated rules in each step by the order of connectioriT from some variablé¢ to y such thaiSt; is re-

their appearance in the transformation steps (e.g. by gayin
“first rule of (2)" or “rule 3 of (4)").

Claim 1 All rules created in the above transformation are
valid ELP rules.

Most cases directly follow from the fact that subsets of
rule bodies ofELP rules satisfy most of the requirements
of Definition 5 and Definition 7. An additional check is re-
quired to verify that, for some new rule he@gx) or R(x, t)
with x unsafe x is indeed initial in the body. This is readily
verified for the rules in (1), and for the first two rules gener-
ated in (2), given that one minds the direction of the atoms in
T. For the rule 3 of (2), problems might occur onlyifs an
unsafe variable. But in this case it is clearly initialSa ,: if
it would have a direct connection from some elentesther
thany, then botht andy would either be initial or have a path
from some initial element. But the initial elements fand
y cannot be the same without violating the condition for an
extended DL rule, and henecewould have paths from two
distinct initial element, which in turn contradicts the eon
ditions on DL rules. This shows that rule 3 of (2) is also a
valid ELP rule. Cases (3), (4), and all cases of (5) are again
immediate.

Further care must be taken when introducing auxiliary
roles, since the first condition of DL rules (paths from urgqu
initial elements) might be violated whenever an auxiliary
role creates additional paths to some variable. New role
atoms are introduced in (3) and (4), but in each case only
to either replace an existing direct connection to the tdeia
y (first rules), or as part of a “chain” of role atoms (rules

ducible. But sinceS is a connected component, all terms
of S are connected tg, and hence there must be a direct
connectioril fromy to some variable such thaSt, is re-
ducible. Since (2) does not applly,must be such thebr
contains the initial variable. Since only one suci can
exist (due to the tree shape asserted for extended DL rules),
and sinceB — H contains more than three variables by as-
sumption, some additional variaktebesidesx andu must
exist inSr, and thus the preconditions of case (5) hold.

It remains to show that one of the three sub-cases of (5)
must apply. Assuming that (a) and (b) do not hold, we con-
clude that there is no direct connection from any té¢rey
tou, and that there is no direct connectibhfrom u to some
termu’ such thatSy.  is reducible and does not contain
Yet we know thatu is directly connected with some term
other thart, sinceSt, contains a variable besideqi.e. is
reducible). Therefore there is some connecfi¢ifrom u to
some termu’ such thatSy., containsx, and (c) is indeed
applicable.

Claim 3 The transformation terminates after a finite num-
ber of steps that is polynomially bounded in the size 0fRB
For any sef of atoms, let/(S) be the number of (safe or
unsafe) variable names #i Given a ruleB —» H € RB;, a
numbery(B — H), called thereduction numbeof B — H,
is then defined by setting B — H) := max(Q v(BUH)-3).
Moreover,y(RB,) is defined as the sum ¢{B — H) for all
B — H € RB,. Clearly,y(RBy) is polynomially bounded by
the size of RB.
We claim that the above transformation terminates after

2). Similar observations can be made in case (5)(c). For case gt mosty(RB,) steps. Clearly, no transformation can be ap-

(5)(a), note that the precondition implies thatlready is the
target of direct connections from two distinct tergnandt.
Thus,u cannot be an unsafe variable, and the reduction is
permissible, even though it clearly leads to multiple direc
connections leading toin rule 1.

Claim 2 After the above translation, all rules in RBave
at most three variables in the body.

First note that when looking for reducible sets of the form
St for some direct connectioh and termu, itis in order to
restrict to the case whetreis a variable. This is so, sinc®
is assumed to be an MCC, and hence any variab& inis
connected to the variables®\ St as well, but connections
are not transitive over individual names. Hence the vagiabl
must also be part of some st , with zbeing a variable.

For a contradiction, suppose that there is some Bule
H with at least four variables iB. By assumption, none of
the cases of the translation is applicable to that rule. How-
ever, there must be some reducible MS@ B. Otherwise,

B would contain no variables besides the initial and final
one, contradicting our assumption. Thus $&be some re-
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plied if y(RBy) = 0. It remains to show that, whenever RB

is obtained from RB by any of the transformation steps, we
find thaty(RB) > ¥(RB5). This is achieved by considering

all transformations individually. The technicalfiiculty in

this part arises from the individual max¢€omputations in-
volved iny: even if a rule gets smaller, this might not equally
reduce its reduction number, since there are no negative re-
duction numbers. In other words, each rule may contain up
to three variables that do not count. We will sometimes as-
sume that those three have been selected for some rule and
speak of “non-counting variables” and “counting varialiles

For case (1), note th& contains some variable that is
neither final nor initial forH, and thatB — H has at least
4 variables. We may thus assume tBatontains a counting
variable. Therefore rule 1 has at least one counting vaxiabl
less thanB — H. If ¥(S) < 3, then rule 2 has reduction
number 0 and the claim follows. I(S) > 3 then we may
assume tha$ contains at most two non-counting variables
of B, sinceB — H also contains some variabjdinal for H
that is not contained i%. Hence rule 1 has at leagfS) -
2 counting variables less. Rule 2 in turn has on(g) — 3



counting variables, so that the claim follows again.

For case (2), we obtain three new rules. Rule 2 clearly has
at most two distinct terms and hence no counting variables.
We usen to denotev(Sr ), the number of variables iy ,.
SinceSt, is reduciblen > 1. Again, since there are 4 or
more variables ilB — H, we can assume th&r, con-
tains at least one variable that is countingBin~ H. The
reduction number of rule 1 therefore is strictly smallemtha
v(B — H), and this sffices wheneven < 3 (since the re-
duction number of rule 3 is 0 in that case). Now assume that
n > 3. Sincey can be assumed to be non-countig, con-
tains at most 2 non-counting variables&fand hence rule
1 has at leash — 2 counting variables less. Rule 3, in turn,
has onlyn — 3 non-counting variables, which again proves
the overall reduction.

Cases (3) and (4) can be shown by a similar argumen-
tation. Again, rule 2 does not add to the overall reduction

For the other direction, consider some interpretation
such that/ = RBj. We claim that7  RB,. Thus assume
that 7,Z = B for some variable assignme#dt Then also
I,Z E By asB, € B, and hencel,Z £ C(t). But then
I,7Z = By and thusl, Z E H as required.

The cases (2)—(5) can be treated in a similar fashion,
where again it is essential that each case completely elim-
inates certain terms from the transformed rule, so that the
required merging of variable assignme@tsandZ” is in-
deed possible.

Thus, the transformed rule base RB polynomial in the
size of RB and contains at most three variables per rule. We
can now compute the grounding of all safe variables in,RB
i.e. the set of rules obtained by replacing safe variables in
each rule of RB with individual names in all possible ways.
The obtained rule base is called RBnd its size clearly is
polynomially bounded byRB,|3. Moreover, RB is clearly

number in either case, and the sum of rules 1 and 3 is found equivalent to RB and, by Definition 7, contains ong.L**
to decrease by a case distinction as above. Cases (5)(a) andules and range restrictions. We can now apply the elimi-

(5)(b) are also similar, though there are only two rules in
this case. Note that for (a) the additional variabie St is
strictly required to obtain a reduction. For case (5)(®,
sult follows sinceau is assumed to be a variable, so that again

nation of range restrictions of Proposition 9, and then use
the normalisation from Proposition 11 to again obtain a set
RB, of normalisedS L™ rules. Again, RB is equivalent to
RBgs, and the transformations are easily seen to preserve the

the reduction number of the transformed rule 1 decreases bound on the number of variables per rule, especially since

(while the other rule has at most three variables).

Claim 4 The above translation preserves satisfiability of
RB;.

This can be shown by a simple induction, given that all
possible transformation steps preserve satisfiabilitys &

rule bodies had already been normalised when computing
RB;.

Now, finally, the Datalog program(RB,) is constructed.
By inspecting the cases of Definition 12, we find théRB,)
still contains at most 3 (unsafe) variables per rule. Since
P(RB,) and the initial set of basiELP rules RB are equi-
satisfiable, we can show thefRB,) E C(a) iff RB’ E C(a)

generally rather easy to see, but we show one case formally for all C € Nc anda € N,;. The claim clearly holds if RB

forillustration. Thus consider transformation step (1hene
B — H is the considered rule, a8y, - H andB, — C(t)
denote the generated rules. Clearly, addgzg— C(t) to
RB; preserves satisfiability sinc@ is new. Thus it remains
to show equisatisfiability of RB:= RB, U {B, — C(t)} and
RBj := RB, U {B, — C(t), By —» H}\ {B — H}.

Thus consider some interpretatidrsuch that/ = RB),.
Then there is some interpretatidri with 7* = RB, and
Cl' =6 e A" | I',Z = B, for some variable assignment
Z with t£'%2 = §). A suitableZ” can be obtained frond by
minimising the extent of while preserving all other aspects
of the interpretation, which can be done sitis new. Note
that” = B, — C(t) by definition. We claim thaf” = RB.
Thus assume that’, Z B, for some variable assignment
Z. ThenI’,Z E C(t) and thust!# € C¥'. By the assump-
tions onC’’, we find that there is some variable assignment
Z’ such thatl”,Z’ E B, wheret!Z = tI*Z". Now observe
that, by constructionB, and B; contain no common vari-
ables, other than possibty(if t is a variable). Thus there is
some variable assignmezt such thaZ” (x) = Z(x) for any
variablex in B; andzZ”(x) = Z’(X) for any variablex in B,.
Butthenf’,Z” £ By U B,. As defined in (1),B;UB;) 2 B
and thus/’,Z” £ B, and we can conclud€,Z” = H since
I’ E B — H. By definition,Z andZ” agree on all terms in
H and thus we obtaif’, Z E H as required. Sincg was ar-
bitrary, this shows thaf = B; — H, and hencd” = RB;.
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is unsatisfiable. Otherwise, consider RB RB’ U {C(a) —
1(a)}, and again apply the above construction to obtain an
according Datalog prograrR(RBj). Clearly, RB’ is un-
satisfiable ff RB’ | C(a). But the former is equivalent to
P(RB,) being unsatisfiable. SindgRB,) is satisfiable, and
since clearlyp(RBy) = P(RB4) U {C(a) — L(a)} (assuming
thatC anda occur in RB, and were thus already considered
for the rules (a), (b), and (e) #(RB,)), this is in turn equiv-
alent toP(RB}) [= C(a) as claimed. In a similar fashion, one
can show the correspondence for entailments of the form
{a}(b) (Ca(b)) andR(a, b), similar to the statement claimed
for the theorem. _

The last result enables us to safely comt#iRB,) with
any additional DL-safe rule witm variables that may be
presentirELP,. For that purpose, one merely needs to intro-
duce a conceptU and add facts> HU(a) for all a € N,. For
eachn-variable Datalog rul8 — H, a ruleB’ — H’ then
is created by replacing any atom of the fofaj(t) by Ca(t),
and by adding a body atoriU(x) for any variablex occur-
ring in B — H. The resulting set of transformed Datalog
rules is denotetlP, and we defin®(RB) := P(RB4) U LP.

It is easy to see tha&t(RB) is equisatisfiable to RB, since
RB’ andP(RB,) contain the corresponding ground facts, and
since the rules oL.P are applicable only to such ground
facts, where the above constructionld? establishes the
required syntactic transformations and explicit safetg-co



ditions. Similarly, we also find tha®(RB) entails the same
ground facts as RB, as required in the theorem. Sh{Bd)

is a Datalog program with at most max($ variables per
rule, it can naively be evaluated by computing its grounding
which is again bounded in size Big(RB)™>E", Together
with the polynomial size restrictions established FgRB),

this shows the claimed worst-case complexity of reasoning.
m]

We remark that one could also have deferred the ground-
ing of safe variables iELP rules in the above proof by using
the auxiliary predicatelu for such variables as well, instead
of replacing them by individual names before further trans-
lation. This would be appropriate in practice, but it would
complicate the above proof since this form of replacement
would not lead to a&.L** rule base to which Definition 12
could readily be applied.

Discussion and Future Work

We have introduceHLP as a rule-based tractable knowledge
representation language that generalises the knownitacta
description logics€L™* and DLP, where polynomial time
reasoning was established using a novel reduction to Dat-
alog.ELP in particular extends the DEL** with local re-
flexivity, concept products, conjunctions of simple rokasgl
limited range restrictions (Baader, Lutz, and Brandt 2008)
The notion of simple roles has been slightly extended as
compared to the definition commonly used in DL, such that,
e.g., the universal role can also be defined to be simple. A
natural question is whether further extension&io® might
be admissible. Regarding the simplicity restriction orerol
conjunctions, it is well-known that conjunctions of arhity
roles inEL™ lead to undecidability. Querying for such con-
junctions remains intractable (Krétzsch, Rudolph, and Hit
zler 2007b) even when adopting regularity restrictions-sim
ilar to the ones iNSROZQ. The complexity of using this

feature in rules remains open, as does the question whether

or not arbitrary roles could be used in reflexivity condigon
of the formR(x, X). The presented proofs, however, strongly
depend on these restrictions.

The use of Datalog as an approach to solving DL rea-
soning tasks has been suggested in various works. KAON2
(Hustadt, Motik, and Sattler 2005) provides an exponen-
tial reduction ofSHZQ into disjunctive Datalog programs.
The outcome of this reduction resembles our case since it
admits for the easy extension with DL-safe rules and safe
conjunctive queries. The model-theoretic relationships b
tween knowledge base and Datalog program, however, are
somewhat weaker than in our case. In particular, our ap-
proach admits queries for non-simple roles. Various other
approaches used reductions to Datalog in order to estab-
lish mechanisms for conjunctive query answering (Pérez-
Urbina, Motik, and Horrocks 2008b; 2008a; Rosati 2007).
These works dfer from the presented approach in that they
focus on general conjunctive query answering & and
EL, which is known to be more complex than satisfiability
checking (Krétzsch, Rudolph, and Hitzler 2007b). Another
related approach is (Kazakov 2005), where resolution<base
reasoning methods féL have been investigated (where we
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note that resolution is also the standard approach for eval-
uating Datalog). The methodology used there, however, is
technically rather dferent from our presented approach.
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