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Abstract

We introduceELP as a decidable fragment of the Semantic
Web Rule Language (SWRL) that admits reasoning in poly-
nomial time.ELP is based on the tractable description logic
EL++, and encompasses an extended notion of the recently
proposedDL rules for that logic. ThusELP extendsEL++

with a number of features introduced by the forthcoming
OWL 2, such as disjoint roles, local reflexivity, certain range
restrictions, and the universal role. We present a reasoning al-
gorithm based on a translation ofELP to Datalog, and this
translation also enables the seamless integration of DL-safe
rules intoELP. While reasoning with DL-safe rules as such is
already highly intractable, we show that DL-safe rules based
on the Description Logic Programming (DLP) fragment of
OWL 2 can be admitted inELP without losing tractability.

Introduction
The description logic (DL) family of knowledge representa-
tion formalisms has been continuously developed for many
years, leading to highly expressive (and complex), yet decid-
able languages. The most prominent such language is cur-
rently SROIQ (Horrocks, Kutz, and Sattler 2006), which
is also the basis for the ongoing standardisation of the new
Web Ontology Language OWL 2.1 On the other hand, there
has also been considerable interest in more light-weight lan-
guages that allow for polynomial time reasoning algorithms.
DL-based formalisms that fall into that category areEL++

(Baader, Brandt, and Lutz 2005), DL Lite (Calvanese et
al. 2007), and DLP (Grosof et al. 2003). While DL Lite
strives for sub-polynomial reasoning,EL++ and DLP both
are P-complete fragments ofSROIQ. In spite of this sim-
ilarity, EL++ and DLP pursue different approaches towards
tractability, and the combination of both is already highly
intractable (Krötzsch, Rudolph, and Hitzler 2007a).

In this paper, we reconcileEL++ and DLP in a novel rule-
based knowledge representation languageELP. While ELP
can be viewed as an extension of both formalisms, how-
ever, it limits the interactions between the expressive fea-
tures of either language and thus preserves polynomial time
reasoning complexity.ELP also significantly extendsEL++

∗Extended technical report with complete proofs
1OWL 2 is the forthcoming W3C recommendation for updat-

ing OWL, and is based on the OWL 1.1 member submission. See
http://www.w3.org/2007/OWL.

by local reflexivity, concept products, conjunctions of sim-
ple roles, and limited range restrictions as in (Baader, Lutz,
and Brandt 2008). These features in part are already antici-
pated for theEL++ based language profile of OWL 2, but, to
the best of our knowledge, this work is the first to establish
their joint tractability.

The reasoning algorithms presented herein are based on a
polynomial reduction ofELP knowledge bases to a specific
kind of Datalog programs that can be evaluated in polyno-
mial time. Since the Datalog reduction as such is compara-
tively simple, this outlines an interesting new implementa-
tion strategy for theEL++ profile of OWL 2: Besides the
possibility of reusing optimisation methods from deductive
databases, the compilation ofEL++ to Datalog also provides
a practical approach for extendingEL++ with DL-safe rules
(Motik, Sattler, and Studer 2005). In these respects, the pre-
sented approach bears similarities with the KAON2 trans-
formation ofSHIQ knowledge bases into disjunctive Dat-
alog programs (Hustadt, Motik, and Sattler 2005), though
the actual algorithms of course are very different due to the
different DLs that are addressed. DL-safe rules add new ex-
pressivity but their entailments are specifically restricted for
preserving decidability – an extended example will illustrate
the effects.

For this paper, we chose a presentation ofELP based on
DL rules, a decidable subset of the Semantic Web Rule
Language SWRL that has been recently proposed in two
independent works (Krötzsch, Rudolph, and Hitzler 2008;
Gasse, Sattler, and Haarslev 2008). As shown in (Krötzsch,
Rudolph, and Hitzler 2008), it is possible to indirectly ex-
press such rules by means of the expressive features pro-
vided bySROIQ, and large parts ofELP can still be re-
garded as a subset ofSROIQ. The following examples il-
lustrate the correspondence between DLs and DL rules, and
give some intuition for the expressive features ofELP:

Concept inclusions DL TboxaxiomsC ⊑ D for subclass
relationships correspond to rules of the formC(x)→ D(x).

Role inclusions DL RboxaxiomsR◦ S ⊑ T express inclu-
sions with role chains that correspond to rules of the form
R(x, y) ∧ S(y, z)→ T(x, z).

Local reflexivity The DL concept∃R.Self of all things that
have anR relation to themselves is described by the expres-
sionR(x, x). For example, the axiom∃ loves.Self ⊑ Narcist
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corresponds toloves(x, x)→ Narcist(x).

Role disjointnessRoles inSROIQ can be declared disjoint
to state that elements related by one role must not be related
by the other. An according example rule isHasSon(x, y) ∧
HasHusband(x, y)→ ⊥(x) (⊥ denoting the empty concept).

Concept products and the universal role Concept prod-
ucts have, e.g., been studied in (Rudolph, Krötzsch, and
Hitzler 2008). The statement that all elephants are bigger
than all mice corresponds to the axiomElephant×Mouse ⊑
biggerThan and to the ruleElephant(x) ∧ Mouse(y) →
biggerThan(x, y). The universal roleU that relates all pairs
of individuals can be expressed by the rule→ U(x, y) or as
the product of the⊤ concept with itself.

Qualified role inclusions Rules can be used to restrict
role inclusions to certain classes, which is not directly pos-
sible in SROIQ. An example is the ruleWoman(x) ∧
hasChild(x, y)→ motherOf(x, y).

While this work is conceptually based on (Krötzsch,
Rudolph, and Hitzler 2008), it significantly differs from the
latter by following a completely new reasoning approach in-
stead of extending the known algorithm forEL++. While our
use of Datalog may still appear similar in spirit, the model
constructions in the proofs expose additional technical com-
plications that arise due to the novel combination of concept
products, role conjunctions, and local reflexivity. Moreover,
the proposed integration of DL-safe rules is not trivial since,
in the absence of inverse roles, it cannot be achieved by the
usual approach for “rolling-up” nested expressions, and ter-
mination of the modified transformation is less obvious.

The paper proceeds by first recalling some minimal pre-
liminaries regarding DLs, SWRL rules, and DL-safety.
Thereafter, we introduceELP based on DL Rules for the DL
EL++, and continue by giving an extended example of an
ELP rule base. The next section then presents the Datalog
reduction as the basis of our reasoning algorithms, before
we proceed to establish the overall reasoning complexity for
ELP. We conclude the paper with a discussion of our results
and some further pointers to related work.

DLs, Rules, and DL-Safety
In this section, we introduce some basic notions of de-
scription logics (DL) (Baader et al. 2007). We will also
consider rules that are logically similar to the Semantic
Web Rule Language SWRL (Horrocks and Patel-Schneider
2004). Such rules may include DL concept expressions, and
thus generalise the common DL axiom types of Abox, Tbox,
and Rbox. We can therefore restrict our presentation to rules,
the general form of which we will later restrict to obtain
favourable computational properties.

The logics considered in this paper are based on three dis-
joint sets ofindividual namesNI , concept namesNC, and
role namesNR. Throughout this paper, we assume that these
basic alphabets are finite, and consider them to be part of
the given knowledge base when speaking about the “size
of a knowledge base.” We assumeNR to be the union of
two disjoint sets ofsimple rolesNs

R and non-simple roles
Nn

R. Later on, the use of simple roles in conclusions of logi-

cal axioms will be restricted to ensure, intuitively speaking,
that relationships of these roles are not implied bychainsof
other role relationships. In exchange, simple roles might be
used in the premises of logical axioms as part of role con-
junctions and reflexivity statements where non-simple roles
might lead to undecidability. Fixing sets of simple and non-
simple role names simplifies our presentation – in practice
one could of course also check, for a given knowledge base,
whether each role name satisfies the requirements for be-
longing to eitherNn

R or Ns
R.

Definition 1 The setC of concept expressionsof the DL
SHOQ is defined as follows:

• NC ⊆ C, ⊤ ∈ C, ⊥ ∈ C,
• if C,D ∈ C, R ∈ NR, S ∈ Ns

R, a ∈ NI , andn a non-negative
integer, then¬C, C⊓D, C⊔ D, {a}, ∀R.C, ∃R.C, ≤n S.C,
and≥n S.C are also concept expressions.

The symbolsC, D will generally be used to denote concept
expressions.

The semantics of these concepts is recalled below (see
also Table 1). We presentSHOQ as a well-known DL that
contains all expressive means needed within this paper, but
we will not considerSHOQ as such. Additional features of
the yet more expressive DLsSHOIQ andSROIQ can be
expressed by usingSHOQ concepts in rules.

Definition 2 Consider some DLL with concept expres-
sionsC, individual namesNI , and role namesNR, and let
V be a countable set of first-order variables. Aterm is an el-
ement ofV∪NI . Given termst, u, aconcept atom (role atom)
is a formula of the formC(t) (R(t, u)) with C ∈ C (R∈ NR).

A rule for L is a formulaB → H, whereB and H are
conjunctions of (role and concept) atoms ofL. To simplify
notation, we will often use finite setsS of atoms for repre-
senting the conjunction

∧
S.

Semantically, rules are interpreted as first-order formu-
lae, assuming that all variables are universally quantified,
and using the standard first-order logic interpretation of DL
concepts (see Definition 3 below). In general, a DL knowl-
edge base may entail the existence ofanonymousdomain
elements that are not directly represented by some individ-
ual name, and it may even require models to be infinite. The
fact that rules generally apply to all domain elements can
therefore be problematic w.r.t. computability and complex-
ity. It has thus been suggested to consider rules within which
variables may only represent a finite amount ofnamedin-
dividuals, i.e. individuals of the interpretation domain that
are represented by some individual name in RB. Hence, ef-
fectively, these so-calledDL-saferules (Motik, Sattler, and
Studer 2005) apply to named individuals, but not to further
anonymous individuals which have been inferred to exist.

Technically, this restriction can be achieved in various
ways. The most common approach is to introduce a new
concept expressionHU that is asserted to contain the named
individuals, and that is then used to restrict safe variables to
that range. On the other hand, one can also dispense with
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Name Syntax Semantics
top ⊤ ∆

I

bottom ⊥ ∅

negation ¬C ∆
I \CI

conjunction C ⊓ D CI ∩ DI

disjunction C ⊔ D CI ∪ DI

nominal con. {a} {aI}
univ. rest. ∀U.C {x ∈ ∆I | 〈x, y〉 ∈ UI impliesy ∈ CI}
exist. rest. ∃U.C {x ∈ ∆I | y ∈ ∆I: 〈x, y〉 ∈ UI, y ∈ CI}
qualified ≤n R.C {x ∈ ∆I | #{y∈∆I |〈x, y〉 ∈RI, y∈CI} ≤ n}
number rest.≥n R.C {x ∈ ∆I | #{y∈∆I |〈x, y〉 ∈RI, y∈CI} ≥ n}

Table 1: Semantics of concept constructors inSHOQ for an
interpretationI with domain∆I.

this additional syntax by building the safety restriction di-
rectly into the semantics of variables – this is the intuition
behind the use ofsafe variablesin the following definition.

Definition 3 An interpretationI consists of a set∆I called
domain(the elements of it being calledindividuals) together
with a function·I mapping

• individual names to elements of∆I,
• concept names to subsets of∆I, and
• role names to subsets of∆I × ∆I.

The function·I is inductively extended to role and concept
expressions as shown in Table 1. An elementδ ∈ ∆I is a
named elementif δ = aI for somea ∈ NI .

Let Vs ⊆ V be a fixed set ofsafe variables. A variable
assignment Zfor an interpretationI is a mapping from the
set of variablesV to ∆I such thatZ(x) is named whenever
x ∈ Vs. Given a termt ∈ NI ∪ V, we settI,Z ≔ Z(t) if t ∈ V,
and tI,Z ≔ tI otherwise. Given a concept atomC(t) (role
atomR(t, u)), we writeI,Z |= C(t) (I,Z |= R(t, u)) if we
find thattI,Z ∈ CI (〈tI,Z, uI,Z〉 ∈ RI). We say thatI andZ
satisfythe atom in this case, and we will omitZ whenever
no variables occur.

An interpretationI satisfiesa ruleB→ H if, for all vari-
able assignmentsZ for I, eitherI andZ satisfy all atoms in
H, or I andZ fail to satisfy some atom inB. In this case,
we writeI |= B→ H and say thatI is amodelfor B→ H.
An interpretation satisfies a set of rules (i.e. it is amodelfor
this set) whenever it satisfies all elements of this set. A set
of rules issatisfiableif it has a model, andunsatisfiableoth-
erwise. Two sets of rules areequivalentif they have exactly
the same models, and they areequisatisfiableif either both
are unsatisfiable or both are satisfiable.

Note that we have assumed earlier thatNI is always fi-
nite – typically it may comprise exactly the symbols that
are actually used in RB –, and hence there are only a fi-
nite number of assignments for safe variables. Also note that
empty rule bodies are considered to be vacuously satisfied,
and expressions of the form→ H encode (sets of) facts. It
is well-known that the satisfiability of sets of rules for DLs
that support∃ is undecidable, and we will introduce various
restrictions to recover decidability below. One simple option
is to restrict to so-calledDatalogprograms:

Definition 4 A rule is aDatalog rule if all concept atoms
contained in it are of the formC(t) with C ∈ NC, ⊤(t), and
⊥(t). A Datalog programis a set of Datalog rules.

We will later reduce sets of rules to Datalog so as to simu-
late inferences of more expressive rule languages within this
simple formalism.

DL Rules and ELP
In this section, we define the rule-based knowledge repre-
sentation languageELP, and note that it subsumes several
other existing languages in terms of expressivity. It is easy
to see that unrestricted (SWRL) rules encompass even the
very expressive DLSROIQ (Horrocks, Kutz, and Sattler
2006), since Tbox and Rbox axioms can readily be rewritten
as rules. On the other hand, rules in their general form do
not impose any of the restrictions on, e.g.,simple rolesor
regularity of Rboxesthat are crucial to retain decidability in
SROIQ. Recent works therefore have proposedDL rulesas
a decidable subset of SWRL that can be combined with var-
ious DLs without increasing the worst-case complexity of
typical reasoning problems (Krötzsch, Rudolph, and Hitzler
2008; Gasse, Sattler, and Haarslev 2008).

We first recall DL rules (with conjunctions of simple
roles) and apply them to the tractable DLEL++. The result-
ing formalism is the core ofELP, and significantly extends
the expressivity ofEL++ rules as considered in (Krötzsch,
Rudolph, and Hitzler 2008).

Definition 5 Consider a ruleB→ H and termst, u ∈ NI ∪

V. A direct connectionfrom t to u is a non-empty set of
atoms of the formR(t, u). If B contains a direct connection
betweent andu, thent is directly connectedto u. The termt
is connectedto u (in B) if the following inductive conditions
apply:

• t is directly connected tou in B, or
• u is connected tot in B, or
• there is a variablex ∈ V such thatt is connected tox and

x is connected tou.

An extended DL ruleis a ruleB→ H such that

• if variablesx , y in B are connected, then there is some
direct connectionS ⊆ B such thatx andy are not con-
nected inB \ S.

A path from t to some variablex in B is a non-empty
sequenceR1(x1, x2), . . . ,Rn(xn, xn+1) ∈ B where x1 = t,
x2, . . . , xn ∈ V, xn+1 = x, andxi , xi+1 for 1 ≤ i ≤ n. A
term t in B is initial if there is no path tot. An extended
DL rule is aDL rule if the following hold, where we assume
x, y to range over variablesV, andt, t′ to range over terms
NI ∪ V:

(1) for every variablex in B, there is a path from at most
one initial termt to x,

(2) if R(x, t) ∈ H or C(x) ∈ H, thenx is initial in B,
(3) wheneverR(x, x) ∈ B, we find thatR ∈ Ns

R is simple,
(4) wheneverR(t, x),R′(t, x) ∈ B, we find thatR,R′ ∈ Ns

R
are simple,
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(5) if R(t, y) ∈ H with R ∈ Ns
R simple, then all role atoms of

the formR′(t′, y) ∈ B are such thatt′ = t andR′ ∈ Ns
R.

The above ensures that bodies of extended DL rules essen-
tially correspond to sets of undirected trees, though reflex-
ive “loops” R(t, t) are also possible. Note that connections
are essentially transitive but may not span over individual
names. The notion of a connection turns out to be most con-
venient to establish the later decomposition of rules to ac-
complish the main tractability result in Theorem 16.

Bodies of DL rules are sets of directed trees due to item
(1) in Definition 5. Two exceptions to that structure are ad-
mitted. Firstly, the definition of connections admits two el-
ements of a path to be connected by multiple roles, cor-
responding to conjunctions of such roles. Secondly, atoms
R(x, x) are not taken into account for defining paths, such
that local reflexivity conditions are admitted. Note that items
(3) and (4) restricts both cases to simple roles.

Item (2) above ensures that the first variable in the rule
head occurs in the rule body only as the root of some tree.
Without this restriction, DL rules would be able to express
inverse roles, even for DLs that deliberately exclude this fea-
ture to retain tractability. Extended DL rules waive require-
ments (1) and (2) to supply the expressivity of inverse roles,
and indeed any extended DL rule that satisfies the additional
requirements (3) to (5) on simplicity can be rewritten as a
DL rule if inverse roles are available.

Item (5), finally, imposes the necessary restrictions on the
use of simple roles, and, as an alternative presentation, one
could also havedefinedthe set of simple roles as the (unique)
largest set of roles for which this requirement holds in a
given rule base. In classical definitions of DLs, simple roles
R are usually only admitted in role inclusion axioms of the
form S ⊑ R. Our definition relaxes this requirement to allow
for further DL rules as long as these do not include certain
role chains. For example, rulesC(x) ∧ D(y) → R(x, y) and
R′(x, y) ∧ D(y)→ R(x, y) are possible even ifR is simple.

We now apply DL rules to the description logicEL++

(Baader, Brandt, and Lutz 2005), for which many typical in-
ference problems can be solved in polynomial time. We omit
concrete domains in our presentation as they can basically be
treated as shown in (Baader, Brandt, and Lutz 2005).

Definition 6 An EL++ concept expression is aSHOQ con-
cept expression that contains only the following concept
constructors:⊓, ∃, ⊤, ⊥, as well as nominal concepts{a}.
An EL++ rule is a DL rule forEL++, and anEL++ rule base
is a set of such rules.

An EL++ knowledge base is a set ofEL++ concept inclu-
sionsC ⊑ D and role inclusion axiomsR1◦ . . .◦Rn ⊑ R. See
(Baader, Brandt, and Lutz 2005) for details. It is easy to see
that anyEL++ knowledge base can be written as an equiv-
alentEL++ rule base. The above notion ofEL++ rule bases
extends (Krötzsch, Rudolph, and Hitzler 2008) in two ways.
Firstly, we now also allow conjunctions of simple roles, and
secondly we allow atoms of the formR(x, x) in rule bodies.
Both extensions are non-trivial and require additional mech-
anisms during reasoning.

As we will see later, reasoning withEL++ rules is in-
deed possible in polynomial time. However, extendingEL++

rules with further forms of rules, even if restricting to Data-
log, readily leads to undecidability. This can be preventedif
only DL-safeDatalog rules are permitted: a Datalog rule is
DL-safe, if all of its variables are safe. Yet, this formalism
can still capture all Datalog programs, and therefore satisfia-
bility checking remains ET hard (Dantsin et al. 2001).

Our strategy for extendingEL++ rules intoELP therefore
is to blend them with tractable fragments of DL-safe Data-
log. As we will see below, one particular such Datalog frag-
ment can again be characterised by the above notion of (ex-
tended) DL rule. Another option is to allow only DL-safe
Datalog rules of a particular form, namely those for which
the number of variables per rule is bounded by some fixed
finite numbern. Indeed, it is easy to see that any DL-safe
(Datalog) rule is equivalent to the set of rules obtained by
replacing all safe variables by individual names in all pos-
sible ways. Since the replacements for each variable are in-
dependent, this leads to up to|NI |

n different rules – which is
a polynomial bound ifn is a constant. Note, however, that
largen might render practical computation infeasible.

In addition to various forms of DL-safe rules,ELP also al-
lows for special rules of the formR(x, y)→ C(y) expressing
range restrictionson the roleR. Such restrictions are nei-
ther DL-safe Datalog nor DL rules, and in general they do
indeed lead to undecidability ofEL++. However, it has re-
cently been observed that range restrictions can still be ad-
mitted under certain conditions (Baader, Lutz, and Brandt
2008). Therefore, even though this special form of rules is
somewhat orthogonal to the other types of rules considered
herein, we will include range restrictions into our consider-
ations to give credit to their practical relevance.

Definition 7 A rule B→ H is abasicELP rule if:

• B→ H is an extendedEL++ rule, and

• the ruleB′ → H′ obtained fromB→ H by replacing all
safe variables by some individual name is a DL rule.

An ELP rule baseRB is a set of basicELP rules together
with range restriction rulesof the formR(x, y)→ C(y), that
satisfies the following condition:

• If RB contains rules of the formR(x, y) → C(y) andB→
H with R(t, z) ∈ H, thenC(z) ∈ B.

Whenever a set of range restriction rules satisfies the above
condition for some set ofELP rules, we say that the range
restrictions areadmissiblefor this rule set.

A rule B → H is anELPn rule for some natural number
n > 2 if it is either anELP rule, or a DL-safe Datalog rule
with at mostn variables.

We remark that the above condition on admissibility of
range restrictions is not quite the same as in (Baader, Lutz,
and Brandt 2008). Both versions ensure that, whenever an
axiom entails some role atomR(x, y), domain restrictions of
R have no effect on the classification ofy. The interaction
of rules implying role atoms and range restrictions thus is
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strongly limited. In the presence of DL rules, we can ac-
complish this by restricting the applicability of rules by ad-
ditional concept atomsC(z) as in Definition 7. In (Baader,
Lutz, and Brandt 2008), in contrast, additional range re-
strictions are required, and these, if added to an existing
knowledge base, may also lead to new consequences. Any
set of axioms that meets the requirements of (Baader, Lutz,
and Brandt 2008) can clearly be extended to a semantically
equivalent set of admissibleELP axioms, so that the ap-
proach of Definition 7 does indeed subsume the cases de-
scribed in (Baader, Lutz, and Brandt 2008).

Before providing an extended example in the next sec-
tion, we show howELP subsumes some other tractable lan-
guages. One interesting case is DLP, a formalism introduced
as the intersection of the DLSHOIQ and Datalog (Grosof
et al. 2003). DLP can also be generalised using DL rules
(Krötzsch, Rudolph, and Hitzler 2008): ADLP head con-
cept is anySHOQ concept expression that includes only
concept names, nominal concepts,⊓, ⊤, ⊥, and expressions
of the form≤1R.C whereC is anEL++ concept expression.
A DLP rule B → H is an extended DL rule such that all
concept expressions inB areEL++ concept expressions, and
all concept expressions inH are DLP head concepts.

Even the combination of DLP andEL contains the
DL Horn-FLE and is thus ET complete (Krötzsch,
Rudolph, and Hitzler 2007a). Yet, DLP andEL++ inferences
can be recovered inELP without losing tractability. In this
sense, the following simple theorem substantiates our initial
claim thatELP can be regarded as an extension both of DLP
andEL++.

Theorem 8 Consider any ground atomα of the formC(a)
or R(a, b). Given a DLP rule base RB and anEL++ descrip-
tion logic knowledge base KB, one can compute anELP rule
base RB′ in linear time, such that: If RB|= α or KB |= α then
also RB′ |= α, and, if RB′ |= α then RB∪ KB |= α.

Proof. We assume that KB consists of Tbox and Rbox ax-
ioms as defined in (Baader, Brandt, and Lutz 2005) (Abox
axioms can be internalised using nominal concepts as usual).
We assume without loss of generality that the heads of all
rules in RB are of the formC(t), ∀R.C, and≤1R.A, where
C ∈ NC ∪ {⊥} andA is anEL++ concept. This can easily be
achieved by a simple transformation, similar to the one used
in Proposition 11 later on.

In the following, we use a new auxiliary role name≈S. A
new rule baseR̂B is obtained by first transforming rules of
RB as follows:

• For each ruleB→ ∀R.C(t) ∈ RB, a ruleB∧R(t, y)→ C(t)
is added toR̂B wherey is a new variable.

• For each ruleB→ ≤1R.A(t) ∈ RB, a ruleB∧ R(t, y1) ∧
A(y1)∧R(t, y2)∧A(y2)→ ≈S(y1, y2) is added toR̂B where
y1, y2 are new variables.

• Each roleB→ C(t) that is not of the above forms is added
to R̂B without modifications.

The following equality theory is added tôRB for any role
nameRand concept nameC in RB:

→ ≈S(x, x) R(z, x) ∧ ≈S(x, y)→ R(z, y)
≈S(x, y)→ ≈S(y, x) R(x, z) ∧ ≈S(x, y)→ R(y, z)

C(x) ∧ ≈S(x, y)→ C(y) ≈S(x, y) ∧ ≈S(y, z)→ ≈S(x, z)

Finally, all variables inR̂B are uniformly replaced by safe
variables.

It is not hard to see that RB and̂RB are equisatisfiable.
In particular, any DLP rule base that has a model, also has
a model the domain of which is the set of individual names
NI , and that maps any such name to itself. It is a standard
result of logic programming that Horn logic programs are
satisfiable iff they admit such a leastHerbrand model. As
the restriction to safe variables does not affect these models,
it is obvious thatR̂B has the same Herbrand models as RB,
which establishes the claim. Moreover, it is easy to see that,
for anyC ∈ NC anda ∈ NI , R̂B |= C(a) iff RB |= C(a). A
similar statement holds for role atomsR(a, b).

Similarly, a rule baseK̂B is obtained by transforming the
axioms of KB:

• For each Tbox axiomC ⊑ D ∈ KB, a ruleC(x) → D(x)
is added toK̂B.

• For each Rbox axiomR1 ◦ . . . ◦ Rn ⊑ R ∈ KB, a rule
R1(x1, x2) ∧ . . . ∧ Rn(xn, xn+1) → R(x1, xn+1) is added to
K̂B.

• For each ruleB → ∀R.C(t) ∈ RB, a ruleB′ → C(t) is
added toK̂B

It is clear that KB andK̂B are semantically equivalent, and
thus KB andK̂B entail the same ground atoms.

Now RB′ is defined to be the rule basêRB ∪ K̂B. It is
easy to see that RB′ does indeed satisfy all requirements of
Definition 7. By the above observations, any ground atom
entailed by either RB or KB is also entailed bŷRB or K̂B,
respectively, and hence by RB′. Conversely, we find that
RB∪KB semantically entails RB′, and thus any consequence
of RB′ is also a consequence of RB∪ KB. �

Note that the resultingELP rule base entails all indi-
vidual consequences of RB and KB, and some but not all
consequences of their (unsafe) union.ELP thus provides a
means of combiningEL++ and DLP in a way that prevents
intractability, while still allowing for a controlled interac-
tion between both languages. We argue that this is a mean-
ingful way of combining both formalisms in practice since
only some DLP axioms must be restricted to safe variables.
Simple atomic concept and role inclusions, for example,
can always be considered asEL++ axioms, and all concept
subsumptions entailed from theEL++ part of a combined
knowledge base do also affect classification of instances in
the DLP part. DLP thus gains the terminological expressiv-
ity of EL++ while still having available specific constructs
that may only affect the instance level.

Example
We now provide an extended example to illustrate the ex-
pressivity ofELP. The rules in Table 2 express a simpli-
fied conceptualisation of some preferences regarding food
ordered in a restaurant: rule (1) states that all people thatare
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(1) NutAllergic(x) ∧ NutProduct(y)→ dislikes(x, y)
(2) Vegetarian(x) ∧ FishProduct(y)→ dislikes(x, y)
(3) orderedDish(x, y) ∧ dislikes(x, y)→ Unhappy(x)
(4) dislikes(x, v) ∧ Dish(y) ∧ contains(y, v)→ dislikes(x, y)
(5) orderedDish(x, y)→ Dish(y)
(6) ThaiCurry(x)→ contains(x, peanutOil)
(7) ThaiCurry(x)→ ∃contains.FishProduct(x)
(8) → NutProduct(peanutOil)
(9) → NutAllergic(sebastian)
(10) → ∃orderedDish.ThaiCurry(sebastian)
(11) → Vegetarian(markus)
(12) → ∃orderedDish.ThaiCurry(markus)

Table 2: A simple example rule base about food preferences.
The variablev is assumed to be safe.

allergic to nuts dislike all nut products, which is a kind of
concept product. Rule (2) expresses the same for vegetarians
and fish products. Rule (3) is a role conjunction, stating that
anyone who ordered a dish he does not like will be unhappy.
Rule (4) says that people generally dislike dishes that con-
tain something that they dislike. Rule (5) is a range restric-
tion for the roleorderedDish. Rules (6) and (7) claim that
any Thai curry contains peanut oil and some fish product,
and the facts (8)–(12) assert various concept memberships.

We first verify that this is indeed a validELP rule base
where all roles are simple. Indeed, the relaxed simplicity
constraints on DL rules as given in Definition 5 are not vio-
lated in any of the rules. All rules other than (4) and (5) are
readily recognised asEL++ rules. By first considering the
paths in the respective rule bodies, we find that only rule (3)
actually has connected terms at all, connected only by a sin-
gle direct connection{orderedDish(x, y), dislikes(x, y)}. Both
roles occurring in that connection are indeed simple. Simi-
larly, the variablex is initial for these rules, and expressions
of the formR(z, z) do not occur.

It remains to check that also rules (4) and (5) are legalELP
statements. For rule (5), this requires us to check whether
this range restriction rule is admissible, which is easy since
no rule head contains atoms of the formorderedDish(t, y).
For rule (4), we first need to check that it qualifies as an ex-
tended DL rule forEL++. This is easy to see since the direct
connections in (4) do indeed form an undirected tree. Next,
we assume thatvwas replaced by some individual name, and
consider the paths in the rule. By Definition 5, paths cannot
end with individual names, and hence the modified rule con-
tains no paths, such that it satisfies all conditions of anEL++

rule.

We can now investigate the semantics of the ex-
ample. An interesting inference that can be made is
Unhappy(sebastian). Indeed, combining (1), (8), and (9), we
find that Sebastian dislikes peanut oil. Rule (10) implies that
any interpretation must contain some domain element that is
a Thai curry ordered by Sebastian, where we note that there
is no individual name that explicitly refers to that curry. By
(5) this unnamed curry is a dish, and by (6) it contains peanut
oil. At this point we can apply rule (4), wherev is mapped
to the individual denoted bypeanutOil, x is mapped to the

(1) NutAllergic ⊑ ∃RNutAllergic.Self
NutProduct ⊑ ∃RNutProduct.Self

RNutAllergic ◦ U ◦ RNutProduct ⊑ dislikes
(2) Vegetarian ⊑ ∃RVegetarian.Self

FishProduct ⊑ ∃RFishProduct.Self
RVegetarian ◦U ◦ RFishProduct ⊑ dislikes

(3) ∃(orderedDish⊓ dislikes).⊤ ⊑ Unhappy
(4) Dish ⊑ ∃RDish.Self

For all v ∈ NI :
∃dislikes.{v} ⊑ ∃Rdislikes_v.Self
∃contains.{v} ⊑ ∃Rcontains_v.Self

Rdislikes_v ◦ U ◦ RDish ◦ Rcontains_v ⊑ dislikes
(5) ⊤ ⊑ ∀orderedDish.Dish
(6) ThaiCurry ⊑ ∃contains.{peanutOil}
(7) ThaiCurry ⊑ ∃contains.FishProduct
(8) peanutOil : NutProduct
(9) sebastian : NutAllergic
(10) sebastian : ∃orderedDish.ThaiCurry
(11) markus : Vegetarian
(12) markus : ∃orderedDish.ThaiCurry

Table 3: A DL knowledge base that expresses the semantics
of the ELP rule base in Table 2. The concept expressions
used are those ofEL++ extended with reflexivity (∃R.Self),
role conjunctions, and range restrictions.U denotes the uni-
versal role, and all role names with subscripts are auxil-
iary roles introduced only for the translation. See (Horrocks,
Kutz, and Sattler 2006) for details on syntax and semantics
of DL expressions not explained in this paper.

individual denoted bysebastian, andy is mapped to the un-
named Thai curry. Hence we find that Sebastian dislikes his
curry, and thus by rule (3) he is unhappy.

It is instructive to point out the use of safe and unsafe
variables in that case. In contrast to plain Datalog, the above
example involves computations relating to some unnamed
individual – the Thai curry – to which rules are applied. On
the other hand, rule (4) could only be invoked since the in-
dividual represented byv is named.

The impact of safety restrictions becomes clear by check-
ing the happiness of Markus. Using similar inferences as
above, we find that Markus ordered some (unnamed) Thai
curry (12) – note that this need not be the same that was or-
dered by Sebastian – and that this Thai curry contains some
fish product (7) that Markus dislikes (2). However, this fish
product is again unnamed, and hence we cannot apply rule
(3), and we cannot conclude that Markus dislikes the dish he
ordered. Thus, colloquially speaking, Markus is not unhappy
since there is no information about some concrete (named)
fish product in his curry.

Using the correspondence between DL rules and descrip-
tion logics (Krötzsch, Rudolph, and Hitzler 2008), we can
also rewrite the rule base of Table 2 into an equisatisfi-
able DL knowledge base. The result of this transformation
is shown in Table 3. It should be noted that the knowledge
base in the given form includes a role conjunction (3) that
involves a non-simple role (dislikes) due to the use of aux-
iliary roles that represent concepts in role inclusion axioms.
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The knowledge base therefore belongs to a DL that extends
SROIQ with arbitrary role conjunctions – known to be un-
decidable in general. Since, in addition, it is not trivial to
recover the intended rules from a DL knowledge base, rule-
based representations in this case would be more suitable
from an implementation point of view.

Note that besides (simple or non-simple) role conjunc-
tions,SROIQ supports all constructs needed to represent
ELP rule bases. However, quite some additional vocabulary
is needed for representing rules, and especially safe vari-
ables introduce a significant (though polynomial) expansion
of the knowledge base. Using an additional conceptHU for
named individuals may provide a slightly simpler approach.
Yet, the DL representation of such complex roles is arguably
less readable than the originalELP rule. From a user per-
spective, this motivates the use of rules as an auxiliary mod-
elling metaphor when dealing with DL knowledge bases.
Another useful addition in this respect might be the con-
cept product operator as suggested in (Rudolph, Krötzsch,
and Hitzler 2008), which could, e.g., be used to rewrite the
axioms in (4) to

∃dislikes.{v} × (Dish ⊓ ∃contains.{v}) ⊑ dislikes,

for all v ∈ NI , thus avoiding much of the additional vocabu-
lary. Similar expressions are possible to simplify the axioms
of (1) and (2).

Polytime ELP Reasoning with Datalog
We now introduce a polytime algorithm for compilingELP
rule bases into equisatisfiable Datalog programs. A useful
feature of this transformation is that it does not only preserve
satisfiability but also instance classification. Firstly, we ob-
serve that range restrictions inEL++ rule bases can be elim-
inated:

Proposition 9 Consider anEL++ rule base RB and a set RR
of range restrictions that are admissible for RB. Then there
is a rule base RB′ that is equisatisfiable to RB∪ RR, and
which can be computed in polynomial time.

Proof. The proof extends the elimination strategy given in
(Baader, Lutz, and Brandt 2008) toEL++ rules in a straight-
forward way. The main observation is that the formalisa-
tion of admissibility given above sufficiently generalises the
conditions from (Baader, Lutz, and Brandt 2008) to encom-
pass also concept-product-like rules that entail role relations
without explicitly using roles in the antecedent.

To construct the rule base RB′, we define the concept ex-
pressionRangeR to be the (DL) conjunction of all concepts
C that occur in an axiom of the formR(x, y) → C(y) ∈ RR.
Now RB′ contains the following rules:

• for all R occurring in RR, and for alla ∈ NI , a rule
R(x, a)→ RangeR(a),

• for all rulesB→ H, a ruleB→ H′, whereH′ is obtained
by (recursively) replacing all (sub)concepts of the form
∃R.C occurring inH by concepts∃R.(C⊓ RangeR).

Any model of RB∪ RR is easily seen to be a model of
RB′. For the other direction, consider some modelI of RB′.

The interpretationI may fail to be a model of RB∪ RR if
some axioms of RR are not satisfied, i.e., if there is some
R(x, y) → C(y) ∈ RR and some tuple〈δ, δ′〉 ∈ RI such that
δ′ < CI. However, we can repairI by simply removing all
such tuples from the extension ofR: an interpretationI′ is
defined to be equal toI regarding domain, interpretation of
individual names, and interpretation of concept names, but
with role names interpreted as follows:

RI
′

≔ {〈δ, δ′〉 ∈ RI | δ′ ∈ CI for all R(x, y)→ C(y) ∈ RR}.

We claim thatI′ is a model of RB∪ RR. By construction,
I′ clearly satisfies all axioms of RR. Now consider some
rule B → H ∈ RB. Clearly, wheneverI′,Z |= B then also
I,Z |= B and henceI,Z |= H′, the rule head obtained from
H in RB′. We consider the atoms that may occur inH:

• R(t, u). If u is a variable, admissibility of RR requiresB
to containRangeR which shows the claim. Ifu is an in-
dividual name, the ruleR(x, a) → RangeR(a) ensures en-
tailment byI′.

• C(t). The differences betweenI′ andI can only affect the
entailment ofC(t) if C contains some subconcept∃R.D.
SinceH′ contains∃R.(D⊓RangeR) in that case, it is easy
to see that we do again findI′,Z |= C(t) as required.

This shows thatI′,Z |= H and thus finishes the proof. �

Next, we expand nested concept expressions in rules:

Definition 10 An EL++ rule base RB is innormal formif
all concept atoms in rule bodies are either concept names,
⊤, or nominal concepts, all variables in a rule’s head also
occur in its body, and all rule heads contain only atoms of
one of the following forms:

A(t) ∃R.B(t) R(t, u)
whereA ∈ NC ∪ {{a} | a ∈ NI } ∪ {⊥}, B ∈ NC, R ∈ NR, and
t, u ∈ NI ∪ V.

Proposition 11 Every EL++ rule base RB can be trans-
formed in polynomial time into an equisatisfiableEL++ rule
base RB′ in normal form.

Proof. The transformation algorithm iteratively transforms
RB. In each iteration, a ruleB → H that is not in normal
form yet is selected from RB, and one of the following is
done:

• if H contains an atom of the form (C ⊓ D)(t), then it is
replaced by the conjunctionC(t) ∧ D(t),

• if H contains an atom of the form∃R.C(t) whereC < NC,
then this atom is replaced inH by ∃R.A(t) with A ∈ NC
new, and a new ruleA(x)→ C(x) is added,

• if H contains an atom of the form⊤(t), then this atom is
deleted fromH. If H is singleton and would thus be empty
after the deletion, then the whole ruleB → H is deleted
from RB,

• if H contains a variablex that is not contained inB, then
the atom⊤(x) is added toB,
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• if B contains an atom of the form∃R.C(t), it is replaced
by two new atomsR(t, y) andC(y) wherey ∈ V is new,

• if B contains an atom of the form (C⊓D)(t), it is replaced
by two new atomsC(t) andD(t),

• if B contains an atom of the form⊥(t), then the ruleB→
H is deleted from RB.

It is easy to see that the transformation yields an equisatis-
fiableEL++ rule base in normal form, the size of which is
polynomial in the size of the original rule base. �

The transformation ofEL++ rules to Datalog is as follows:

Definition 12 Given anEL++ rule base RB in normal form,
the Datalog program̄P(RB) is defined as follows. The fol-
lowing new symbols are introduced:

• a role nameR≈ (theequality predicate),
• concept namesCa for eacha ∈ NI ,
• concept namesSelfR for each simple roleR ∈ Ns

R,
• individual namesdR,C for eachR ∈ NR andC ∈ NC.

In the following, we will always useNI , NC, NR, Nn
R, Ns

R to
refer to the original sets of symbols in RB, not including
the additional symbols added above. The programP̄(RB) is
obtained from RB as follows:

(a) For each individuala occurring in RB, the program
P̄(RB) contains rules→ Ca(a) andCa(x)→ R≈(x, a).

(b) For each concept nameC and role nameR occurring in
P̄(RB), the program̄P(RB) contains the rules

→ R≈(x, x) R(z, x) ∧ R≈(x, y)→ R(z, y)
R≈(x, y)→ R≈(y, x) R(x, z) ∧ R≈(x, y)→ R(y, z)
C(x) ∧R≈(x, y)→ C(y) R≈(x, y) ∧ R≈(y, z)→ R≈(x, z)

(c) For all rulesB → H ∈ RB, a ruleB′ → H′ ∈ P̄(RB)
is created by replacing all occurrences ofR(x, x) by
SelfR(x), all occurrences of{a}(t) by Ca(t), and all oc-
currences of∃R.C(t) with C ∈ NC by the conjunction
R(t, dR,C) ∧C(dR,C).

(d) For all rulesB→ H ∈ RB andR(x, y) ∈ H with R ∈ Ns
R

simple,P̄(RB) contains a ruleB′ → SelfR(x) ∈ P̄(RB),
whereB′ is obtained fromBby replacing all occurrences
of y with x, all occurrences of{a}(t) by Ca(t), and (fi-
nally) all expressionsS(x, x) with SelfS(x).

(e) For eachR ∈ Ns
R anda ∈ NI , the programP̄(RB) con-

tains the ruleCa(x) ∧R(x, x)→ SelfR(x).

It is easy to see that̄P(RB) is indeed a Datalog pro-
gram. One can also readily construct the Datalog transla-
tion for the rules of Table 2, though the treatment of safe
variables as in rule (4) will only be discussed further be-
low. Most rules are already in Datalog and can remain un-
changed by (c), with the exception of the existential en-
tailments in (7), (10), and (12). The rule (7) is rewritten
into a ruleThaiCurry(x) → contains(x, dcontains,FishProduct) ∧
FishProduct(dcontains,FishProduct). For rule (10), we addition-
ally need to incorporate the range restriction (5) by us-
ing the reduction provided in Proposition 9. Thus we ob-
tain the rule→ orderedDish(sebastian, dorderedDish,ThaiCurry) ∧

ThaiCurry(dorderedDish,ThaiCurry). Rule (12) is treated similarly,
and further auxiliary rulesorderedDish(x, a) → Dish(a) are
added as in Proposition 9. In addition, (d) generates new
rules for (1) and (2) (we omit (4) here). Rule (1), e.g., leads
to a rule NutAllergic(x) ∧ NutProduct(x) → Selfdislikes(x),
which is clearly not relevant to reasoning in this case. Fi-
nally, the rules of (a), (b), and (e) are added to the program.

The correctness proof for this construction constitutes an
essential part of the technical contributions of this paper, and
we first provide some intuition on how the proof proceeds.
To show that RB and̄P(RB) are equisatisfiable, we construct
models ofP̄(RB) from models of RB, and vice versa. It is
well-known that, in the case ofEL++, models can be gen-
erated by introducing only a single element for each atomic
concept (Baader, Brandt, and Lutz 2005). ForEL++ rules,
however, the added features of role conjunction and local
reflexivity change the situation: considering only one char-
acteristic element per atomic concept leads to undesired en-
tailments in both cases. Our model constructions therefore
deviate from the classicalEL++ construction that worked
for the simpleEL rules in (Krötzsch, Rudolph, and Hitzler
2008) with only minor modifications.

For instance, the rule base{a}(x) → ∃R.C(x), {a}(x) →
∃S.C(x) does not entail any conjunction of the formR(a, x)∧
S(a, x). Yet, every interpretation in which the extension of
C is a singleton set would necessarily entail this conjunc-
tion. This motivates the above use ofdR,C in P̄(RB), which,
intuitively, represent elements ofC that have been “gener-
ated” by a rule head of the form∃R.C(x). Thus we admit
|NR| distinct characteristic individuals for each concept, and
this suffices for the proper model construction in the pres-
ence of role conjunctions.

The second problematic feature are expressions of the
form R(x, x), which again preclude the consideration of only
one characteristic individual per concept. The use of concept
atomsSelfR(x) enables the translation of models for RB to
models ofP̄(RB) (the soundness of the satisfiability check-
ing algorithm). The latter may indeed entail additional state-
ments of typeR(x, x) without impairing the validity of the
Datalog rules that useSelfR(x).

In the other direction, models of RB are built from mod-
els of P̄(RB) by creating infinitely many “parallel copies”
of a basic model structure. These copies form an infinite se-
quence of levels in the model, and simple roles relate only to
successors in higher levels. Exceptions to this construction
principle, such as the concept product rules discussed ear-
lier, make the exact formalisation technically involved. The
below proof for this case hinges upon the simplicity of roles
in conceptsSelfS, and it is not clear if a relaxation of this
requirement would be possible.

Lemma 13 For anyEL++ rule base RB in normal form, RB
is unsatisfiable if̄P(RB) is unsatisfiable.

Proof. We show the contrapositive: If RB is satisfiable, then
so is P̄(RB). Thus assume that RB has some modelI. We
define an interpretationJ of P̄(RB) with domain∆J = NI ∪

{dR,C | R ∈ NR,C ∈ NC,CI * {a}I for all a ∈ NI }. For any
individual named in P̄(RB), setdJ as follows:
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• If d ∈ ∆J , thendJ = d.

• Otherwise, ifd = dR,C andCI = ∅, thendJ = a for some
arbitrarya ∈ NI .

• Otherwise, ifd = dR,C andCI = {a}I for somea ∈ NI ,
thendJ = a for some (arbitrary) sucha.

Moreover, we assign a concept expressionκ(δ) to any ele-
mentδ ∈ ∆J as follows:

• if δ = a ∈ NI thenκ(δ) = {a},

• if δ = dR,C thenκ(δ) = C.

Now J interprets roles and concepts as follows (where we
assume thatC andR are symbols occurring in RB):

(A) δ ∈ CJ iff κ(δ)I ⊆ CI.

(B) δ ∈ CJa iff κ(δ)I ⊆ {a}I.

(C) δ ∈ SelfJR iff 〈δ′, δ′〉 ∈ RI for all δ′ ∈ κ(δ)I.

(D) 〈δ, a〉 ∈ RJ for a ∈ NI iff κ(δ)I ⊆ ∃R.{a}I.

(E) 〈δ, dS,C〉 ∈ RJ for R ∈ Nn
R iff κ(δ)I ⊆ ∃R.CI

(F) 〈δ, dS,C〉 ∈ RJ for R ∈ Ns
R and κ(δ)I ⊆ ∃S.CI iff

〈δ′, ǫ′〉 ∈ RI for all δ′ ∈ κ(δ)I and ǫ′ ∈ CI with
〈δ′, ǫ′〉 ∈ SI.

(G) 〈δ, dS,C〉 ∈ RJ for R ∈ Ns
R and κ(δ)I * ∃S.CI iff

〈δ′, ǫ′〉 ∈ RI for all δ′ ∈ κ(δ)I andǫ′ ∈ CI.

(H) RJ≈ = {〈δ, δ〉 | δ ∈ ∆J }

We claim thatJ is a model forP̄(RB). For the rules of
type (a), (b), and (e) in Definition 12 this is easy to see. Now
consider some ruleB′ → H′ generated from a ruleB →
H ∈ RB by item (c). Assume there is a variable assignment
Z′ for J such thatJ ,Z′ |= B′. We show how to iteratively
construct a variable assignmentZ for I such thatI,Z |= B:

As long asZ has not been defined for all variables occur-
ring in B, do the following:

• Select a variablex occurring inB such that there is no
atomR(y, x) ∈ B with y , x a variable for whichZ is
not defined yet. Note that such anx always exists, since
B→ H is a DL rule, and thus has no proper cycles.

• Select a valueZ(x) ∈ κ(Z′(x))I as follows:

(1) If Z′(x) = a ∈ NI then setZ(x) = aI.
(2) Otherwise, if there is someR(t, x) ∈ B′ with R ∈ Nn

R,
then letZ(x) be some elementδ ∈ κ(Z′(x))I such that
〈tI,Z, δ〉 ∈ RI.

(3) Otherwise, we find thatZ′(x) = dS,C, and all role
atoms inB′ that containx in the second position re-
fer to simple roles. If there is someR(t, x) ∈ B′ such
thatκ(tJ ,Z

′

)I ⊆ ∃S.CI, then letZ(x) be some element
δ ∈ κ(Z′(x))I such that〈tI,Z, δ〉 ∈ SI.

(4) Otherwise letZ(x) be some elementδ ∈ κ(Z′(x))I.

Finally, for all variablesx not occurring inB, let Z(x) be
arbitrary.

We need to verify thatZ is indeed well-defined. For that
we must show that the choice ofZ(x) in the second item
is always possible. To this end, note thatκ(Z′(x))I is non-
empty by definition ofκ. We check all cases separately:

(1) The given choice clearly is possible, andZ(x) ∈
κ(Z′(x))I.

(2) SinceR(t, x) ∈ B′ with R non-simple, this atom is the
only role atom withx in its second component by defi-
nition of DL rules (hence the choice ofR(t, x) is canoni-
cal). FromJ ,Z′ |= B′ and (E) in the definition ofJ we
conclude thatκ(tJ ,Z

′

)I ⊆ ∃R.κ(Z′(x))I. By definition of
Z (for caset ∈ V) andJ (for caset ∈ NI ), we find that
tI,Z ∈ κ(tJ ,Z

′

), and thus there must be a possible choice
for Z(x).

(3) In this case, the choice ofZ(x) depends on the termt
in the first position of the selected atomR(t, x). How-
ever, by the definition of DL rules, all atoms of the form
R′(t′, x) must have the same term in their first compo-
nent, and thus the choice oft is again canonical. By as-
sumption, we findκ(tJ ,Z

′

)I ⊆ ∃S.CI, and we can apply
a similar argument as in case (2) to conclude that the
required choice ofZ(x) is possible.

(4) Trivial.

We further claim thatI,Z |= B, which is shown by con-
sidering all atoms that may occur inB:

• C(t) with C ∈ NC. By Definition 12,B′ also containsC(t)
and henceJ ,Z′ |= C(t). If t ∈ V then, by construction of
Z, we find thatZ(t) ∈ κ(Z′(t))I. Hence, by item (A) in the
definition ofJ, Z(t) ∈ CI. Otherwise, ift ∈ NI then we
find thatκ(t)I = {t}I = {tI} ⊆ CI as required, where the
subset inclusion follows again from (A).

• {a}(t). This case is similar to the above item, with the only
difference that{a} corresponds toCa in B′, and that item
(B) is used.

• R(t, u). First assume thatu ∈ V. If t = u, thenSelfR(u) ∈
B′ and we can use (C) to concludeI,Z |= R(t, u). Other-
wise, if u ∈ V andt , u, we can distinguish the cases as
in the definition ofZ:

(1) I,Z |= R(t, a) is a direct consequence of (D).
(2) The choice in case (2) of the definition ofZ directly

implies I,Z |= R(t, u), where it is important to note
that only one such (non-simple) role atom with second
argumentu can occur.

(3) Again we have argued above that all role atoms withu
in their second position must then be simple and refer
to the samet in their first position.Z(u) was chosen
such that〈tI,Z,Z(u)〉 ∈ SI. Therefore,J ,Z′ |= R(t, u)
and (F) imply that〈tI,Z,Z(u)〉 ∈ RI as required.

(4) Case (G) in the definition ofJ applies, and hence we
again conclude that〈tI,Z,Z(u)〉 ∈ RI.

Finally, if u ∈ NI , then we can also apply the same rea-
soning as in case (1) above.

Thus find thatI,Z |= B, and, sinceI is assumed to be a
model of RB, we conclude thatI,Z |= H. Moreover, for any
variablex in B for which there is no atomR(t, x) ∈ B, and for
anyδ ∈ κ(Z′(x))I, we can construct such a variable assign-
mentZ which additionally satisfiesZ(x) = δ. This is easily
seen from the definition ofZ, the second item of which does
not apply in that case.
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We can now show thatJ ,Z′ |= H′ by considering the
different types of atoms that may occur inH. Using the no-
tation of Definition 10, we have to consider three basic kinds
of atoms:A(t), ∃R.B(t), andR(t, u). If t ∈ V then, by the def-
inition of DL rules, we find that there is no atomR(u, t) ∈ B
with u , t. Thus, for anyδ ∈ κ(tJ ,Z

′

)I, there is an assign-
mentZ such thattI,Z = δ andI,Z |= H. This also is trivially
true if t < V, sinceκ(tJ ,Z

′

)I contains only a single element
tI in this case. Using this insight (†), we can consider the
various possible kinds of atoms inH:

• If A(t) ∈ H with A ∈ NC then alsoA(t) ∈ H′. Then (†)
shows thatδ ∈ AI for all δ ∈ κ(tJ ,Z

′

)I, and we can con-
clude thattJ ,Z

′

∈ AJ by case (A) in the definition ofJ.

• If {a}(t) ∈ H thenCa(t) ∈ H′. We can apply the same rea-
soning as in the previous item, using (B) in the definition
of J.

• If ∃R.B(t) ∈ H with B ∈ NC∪{⊤} thenR(t, dR,B)∧B(dR,B) ∈
H′. Firstly, this clearly entails thatBI , ∅ and thus
dR,B ∈ ∆

J . By (A), we conclude thatdR,B ∈ BJ , which
establishes the second part of the above conjunction.
To show thatR(t, dR,B) is also entailed, we again apply (†)
as in the previous item to conclude thatκ(tJ ,Z

′

)I ⊆ ∃R.BI.
Thus we just need to observe that the conditions for
J ,Z′ |= R(t, dR,B) that are given in (E) and (F), respec-
tively, are satisfied.

• If ∃R.B(t) ∈ H with B = {a} thenR(t, a) ∈ H′. Again, we
can apply (†) to obtainκ(tJ ,Z

′

)I ⊆ ∃R.{a}I which is all
that is required to deriveJ ,Z′ |= R(t, a) from (D).

• If R(t, u) ∈ H with t , u thenR(t, u) ∈ H′. Using (†)
and the fact thatuI,Z ∈ κ(uJ ,Z

′

)I, we find thatκ(tJ ,Z
′

)I ⊆
∃R.κ(uJ ,Z

′

)I. This establishes the required conditions for
(D) and (E), and thus settles all cases where eitheru ∈ NI ,
u ∈ V with Z′(u) ∈ NI , or R∈ Nn

R.
It remains to check the case whereu ∈ V with Z′(u) =
dS,C andR ∈ Ns

R. By the restrictions on simple roles in DL
rules, we conclude thatu occurs in the second position
of role atoms inB′ only if the atom is of the formR′(t, u)
with R′ simple. If there is such an atomR′(t, u) ∈ B′ and if
κ(tJ ,Z

′

)I ⊆ ∃S.CI, then the value forZ(u) was chosen by
case (3) of the definition ofZ. We can thus derive a similar
statement as (†), and conclude thatZ(u) might take any
valueǫ′ ∈ κ(Z′(u))I for which 〈tI,Z, ǫ′〉 ∈ SI. Since we
derive〈tI,Z, ǫ′〉 ∈ RI in all these cases, we can invoke (F)
to concludeJ ,Z′ |= R(t, u).
If there is no role atomR′(t, u) in B′, or if κ(tJ ,Z

′

)I *
∃S.CI for all such atoms, thenZ(u) is chosen in case (4)
of the definition ofZ. A similar argument as before shows
that the conditions of case (G) are satisfied in this case,
and we obtainJ ,Z′ |= R(t, u) as required.

• If R(t, t) ∈ H thenSelfR(t) ∈ H′. Applying (†) again, we
find that〈δ, δ〉 ∈ RI for all δ ∈ κ(tJ ,Z

′

)I. Using (C), we
can again deriveJ ,Z′ |= SelfR(t).

This shows thatJ ,Z′ |= H′ and concludes the proof for
rules of type (c).

Finally, for rules generated in item (d) of Definition 12,
note that one could similarly obtain these rules by item (c)

by adding, for each ruleB→ H ∈ RB with R(x, y) ∈ H and
R ∈ Ns

R simple, a ruleB′ → R(x, x), whereB′ is obtained
from Bby replacing all occurrences ofywith x. Since adding
such rules clearly does not affect the semantics of RB, case
(d) is covered by case (c).

We conclude thatJ is indeed a model for all rules in
P̄(RB) as required. �

Lemma 14 For anyEL++ rule base RB in normal form, RB
is unsatisfiable only if̄P(RB) is unsatisfiable.

Proof. The required constructions are very similar to the
ones used in Lemma 13, yet some differences must be taken
into account, and we therefore provide all arguments explic-
itly instead of referring to that earlier proof.

We show the contrapositive: If̄P(RB) is satisfiable then so
is RB. Thus assume thatJ is a model ofP̄(RB). We define
an interpretationI of RB the domain∆I of which is defined
by setting∆I = NI ∪ {dR,C,n | R ∈ NR,C ∈ NC, n ≥ 0,CJ *
{a}J for all a ∈ NI }. Note that this ensures, in particular, that
CJ , ∅ for all elementsdR,C,n. The individual names in RB
are interpreted in the obvious way by settingaI = a. We
assign a concept expressionκ(δ) to every elementδ ∈ ∆I as
follows:

• if δ = a ∈ NI thenκ(δ) = {a}.

• if δ = dR,C,n thenκ(δ) = C.

Note that by the conditions on elements of∆I, we find that
κ(δ)J , ∅ for all δ ∈ ∆I. We also assign a natural number
ν(δ) to each element:ν(dR,C,n) = n, andν(a) = 0 for all
a ∈ NI . NowI interprets roles and concepts as follows:

(A) δ ∈ CI for C ∈ NC iff κ(δ)J ⊆ CJ

(B) δ ∈ {a}I iff κ(δ)J ⊆ CJa

〈δ, ǫ〉 ∈ RI iff one of the following holds:

(C) δ = dS,C,n, ǫ = dS,C,m andκ(δ) ⊆ SelfJR .

(D) ǫ = a ∈ NI andκ(δ)J ⊆ ∃R.{a}J

(E) ǫ = dS,C,n, R∈ Nn
R, andκ(δ)J ⊆ ∃R.CJ

(F) ǫ = dS,C,n, R ∈ Ns
R, κ(δ)J ⊆ ∃S.CJ , ν(δ) < n, and

〈δ′, ǫ′〉 ∈ RJ for all δ′ ∈ κ(δ)J and ǫ′ ∈ CJ with
〈δ′, ǫ′〉 ∈ SJ .

(G) 〈δ′, ǫ′〉 ∈ RJ for all δ′ ∈ κ(δ)J andǫ′ ∈ κ(ǫ)J .

Note how we use the additional numerical indexn in (F)
to ensure that anonymous elements do never relate to them-
selves unless explicitly needed. In contrast to Lemma 13,
case (B) now implies thatδ = aI. Thus, cases (A) and (B)
have some dependency: wheneverCI , ∅ andCI ⊆ {a}I

we also must have thataI ∈ CI, or otherwiseI is not
well-defined. Fortunately, this condition is indeed satisfied:
sinceJ satisfies the rulesCa(x)→ xR≈a of (a), we find that
〈δ, aJ〉 ∈ R≈J for all δ ∈ CJ . But then, using the rules of
(b), we can concludeaJ ∈ CI as required.

We claim thatI is a model of RB. Thus consider any rule
B→ H in RB and letB′ → H′ ∈ P̄(RB) be the rule obtained
from B→ H by item (c) of Definition 12. Assume that there
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is a variable assignmentZ such thatI,Z |= B. We show how
to iteratively construct a variable assignmentZ′ such that
J ,Z′ |= B′:

As long asZ′ has not been defined for all variables occur-
ring in B′, do the following:

• Select a variablex occurring inB′ such that there is no
atomR(y, x) ∈ B′ wherey is a variable for whichZ′ is
not defined yet. Note that such anx always exists, since
B′ → H′ is a DL rule, and thus has no proper cycles.

• Select a valueZ′(x) ∈ κ(Z(x))J as follows:

(1) If Z(x) = a ∈ NI then setZ′(x) = aI.
(2) Otherwise, if there is someR(t, x) ∈ B′ with R ∈ Nn

R,
then letZ′(x) be some elementδ ∈ κ(Z(x))J such that
〈tJ ,Z

′

, δ〉 ∈ RJ .
(3) Otherwise, we find thatZ(x) = dS,C,n, and all role

atoms inB′ that containx in the second position refer
to simple roles. If there is someR(t, x) ∈ B′ such that
ν(tI,Z) < ν(Z(x)) andκ(tI,Z)J ⊆ ∃S.CJ , then letZ′(x)
be some elementδ ∈ κ(Z(x))J such that〈tJ ,Z

′

, δ〉 ∈ SJ .
(4) Otherwise, if there is someR(t, x) ∈ B′ such thattI,Z if

of the formdS,C,m andκ(tI,Z)J ⊆ SelfJR , then letZ′(x)
be some elementtJ ,Z

′

.
(5) Otherwise letZ′(x) be some elementδ ∈ κ(Z(x))J .

Finally, for all variablesx not occurring inB, let Z′(x) be
arbitrary.

We need to verify thatZ′ is indeed well-defined. For that
we must show that the choice ofZ′(x) in the second item is
always possible. To this end, note thatκ(Z(x))J is non-empty
by definition ofκ and∆I. We check all cases separately:

(1) The given choice clearly is possible, andZ′(x) ∈
κ(Z(x))J .

(2) SinceR(t, x) ∈ B′ with R non-simple, this atom is the
only role atom withx in its second component by defi-
nition of DL rules (hence the choice ofR(t, x) is canon-
ical). FromI,Z |= B′ and (E) in the definition ofI we
conclude thatκ(tI,Z)J ⊆ ∃R.κ(Z(x))J . By definition of
Z′ (for caset ∈ V) andI (for caset ∈ NI ), we find that
tJ ,Z

′

∈ κ(tI,Z), and thus there must be a possible choice
for Z′(x).

(3) In this case, the choice ofZ′(x) depends on the termt
in the first position of the selected atomR(t, x). How-
ever, by the definition of DL rules, all atoms of the form
R′(t′, x) must have the same term in their first compo-
nent, and thus the choice oft is again canonical. By as-
sumption, we findκ(tI,Z)J ⊆ ∃S.CJ , and we can apply
a similar argument as in case (2) to conclude that the
required choice ofZ′(x) is possible.

(4) Trivial.

(5) Trivial.

We further claim thatJ ,Z′ |= B′, which is shown by con-
sidering all atoms that may occur inB′:

• C(t) with C ∈ NC occurring in RB. By Definition 12,B
also containsC(t) and henceI,Z |= C(t). If t ∈ V then, by
construction ofZ′, we find thatZ′(t) ∈ κ(Z(t))J . Hence,

by item (A) in the definition ofI, Z′(t) ∈ CJ . Otherwise,
if t ∈ NI then we find thatκ(t)J = {t}J = {tJ } ⊆ CJ as
required, where the subset inclusion follows again from
(A).

• Ca(t). This case is similar to the above item, with the only
difference thatCa corresponds to{a} in B, and that item
(B) is used.

• SelfR(t). By construction ofB′, we find thatt ∈ V and
R(t, t) ∈ B. If Z′(t) < NI , we can use (C) to conclude
J ,Z′ |= SelfR(t). Otherwise, case (D) applies and we can
conclude that〈tJ , tJ〉 ∈ RJ . Now sinceJ satisfies the
rules generated in item (e), we can conclude thatJ ,Z′ |=
SelfR(t) as required.

• R(t, u) with Roccurring in RB. Ifu ∈ V we find thatt , u,
and we can distinguish the cases as in the definition ofZ′:

(1) J ,Z′ |= R(t, a) is a direct consequence of (D).
(2) The choice in case (2) of the definition ofZ′ directly

impliesJ ,Z′ |= R(t, u), where it is important to note
that only one such (non-simple) role atom with second
argumentu can occur.

(3) Again we have argued above that all role atoms withu
in their second position must then be simple and refer
to the samet in their first position.Z′(u) was chosen
such that〈tJ ,Z

′

,Z′(u)〉 ∈ SJ . Therefore,I,Z |= R(t, u)
and (F) imply that〈tJ ,Z

′

,Z′(u)〉 ∈ RJ as required.
(4) Using a similar argumentation as in the previous item,

we conclude that〈tJ ,Z
′

,Z′(u)〉 ∈ RJ by item (C).
(5) Given that the conditions of (1)–(4) did not hold,I,Z |=

R(t, u) can only follow from case (G) in the definition of
I applies. Hence we again conclude that〈tJ ,Z

′

,Z′(u)〉 ∈
RJ .

Finally, if u ∈ NI , then we can also apply the same rea-
soning as in case (1) above.
Thus find thatJ ,Z′ |= B′, and, sinceJ is assumed to be

a model of RB, we conclude thatJ ,Z′ |= H′. Moreover, for
any variablex in B′ for which there is no atomR(t, x) ∈ B′,
and for anyδ ∈ κ(Z(x))J , we can construct such a variable
assignmentZ′ which additionally satisfiesZ′(x) = δ. This
is easily seen from the definition ofZ′, the second item of
which does not apply in that case.

Note that the rules obtained in item (d) can all be gener-
ated by (d) when adding a suitable rule to RB, where this
rule clearly does not change the semantics of RB, and hence
our argument extends to all rules of (d) as well.

We can now show thatI,Z |= H by considering the dif-
ferent types of atoms that may occur inH′. Atoms in H′

can have two basic forms:C(t) andR(t, u). If t ∈ V then,
by the definition of DL rules, we find that there is no atom
R′(u′, t) ∈ B with u′ , t. Thus, for anyδ ∈ κ(tI,Z)J , there is
an assignmentZ′ such thattJ ,Z

′

= δ andJ ,Z′ |= H′. This
also is trivially true ift < V, sinceκ(tI,Z)J contains only a
single elementtJ in this case. Using this insight (†), we can
consider the various possible kinds of atoms inH (and thus
H′):
• If C(t) ∈ H with C ∈ NC then alsoC(t) ∈ H′. Then (†)

shows thatδ ∈ CJ for all δ ∈ κ(tI,Z)J , and we can con-
clude thattI,Z ∈ CI by case (A) in the definition ofI.
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• If {a}(t) ∈ H thenCa(t) ∈ H′. We can apply the same rea-
soning as in the previous item, using (B) in the definition
of J.

• If R(t, u) ∈ H with t , u thenR(t, u) ∈ H′. Using (†)
and the fact thatuJ ,Z

′

∈ κ(uI,Z)J , we find thatκ(tI,Z)J ⊆
∃R.κ(uI,Z)J . This establishes the required conditions for
(D) and (E), and thus settles all cases where eitheru ∈ NI ,
u ∈ V with Z(u) ∈ NI , of R ∈ Nn

R.
It remains to check the case whereu ∈ V with Z(u) =
dS,C,n andR ∈ Ns

R. By the restrictions on simple roles in
DL rules, we conclude thatu occurs in the second position
of role atoms inB′ only if the atom is of the formR′(t, u)
with R′ simple. We first assume that there is one or more
such atomR′(t, u) ∈ B′ and distinguish various cases:

– ν(tI,Z) ≥ n. Since we haveI,Z |= R′(t, u), one of the
cases (C) – (G) must apply to〈tI,Z,Z(u)〉 andR′, for
all such atomsR′(t, u). Cases (D), (E), and (F) are pre-
cluded by our assumptions.
Now if tI,Z is not of the formdS,C,m, then case (C)
is also precluded. From case (G) we conclude that
〈δ′, ǫ′〉 ∈ R′J for all δ′ ∈ κ(tI,Z)J andǫ′ ∈ κ(Z(u))J .
Using an argument similar to (†), we find that a vari-
able assignmentZ′ with J ,Z′ |= B′ → H′ can be con-
structed such thatZ′(u) = ǫ′ for any ǫ′ ∈ κ(Z(u))J ,
since case (5) of the construction ofZ′ applies. Thus
〈δ, ǫ〉 ∈ RJ for all δ ∈ κ(tI,Z)J andǫ ∈ κ(Z(u))J , and
we can apply (G) to concludeI,Z |= R(t, u).
Alternatively, tI,Z is of the formdS,C,m. If κ(tI,Z)J *
SelfJR then case (G) applies as above. Otherwise,I,Z |=
R′(t, u) might be concluded by case (C), andZ′(u) was
defined by case (4). Now by the rules (d) ofP̄(RB),
we find that there must exist a rule based onB → H
that has the formB′′ → SelfR(t), where we note that
the assumptions ontI,Z imply that t is a variable. By
the construction in (d), it is easy to see thatJ ,Z′ |=
B′′ → SelfR(t) and hence we can conclude thattJ ,Z

′

∈

SelfJR . Applying (†), we finally find that the conditions
of (C) are indeed satisfied, and thatI,Z |= R(t, u) can
be concluded.

– ν(tI,Z) < n. If κ(tI,Z)J ⊆ ∃S.CJ , then the value for
Z′(u) was chosen by case (3) of the definition ofZ′.
We can thus again derive a similar statement as (†), and
conclude thatZ′(u) might take any valueǫ′ ∈ κ(Z(u))J

for which 〈tJ ,Z
′

, ǫ′〉 ∈ SJ . Since we derive〈tJ ,Z
′

, ǫ′〉 ∈
RJ in all these cases, we can invoke (F) to conclude
I,Z |= R(t, u).
If κ(tI,Z)J * ∃S.CJ for all such atoms, thenZ′(u) is
chosen in case (4) or (5) of the definition ofZ′. Case
(4) can be treated as above, and a similar argument also
shows that the conditions of case (G) are satisfied in
case (5). Thus we obtainI,Z |= R(t, u) as required.

Finally, if there is no role atomR′(t, u) in B′, then again
case (G) can be invoked to derive the desired result.

• If ∃R.B(t) ∈ H thenH′ contains an according conjunction
of role and concept atoms, and we can apply the same
arguments as above to see that similar statements hold for
I, from which the required result can be concluded.

• If R(t, t) ∈ H thenSelfR(t) ∈ H′. Applying (†) again, we
find thatκ(tI,Z)J ⊆ SelfJR and we can apply (C) to derive
I,Z |= R(t, t).

This shows thatI,Z |= H in all cases, and thus concludes
the proof. �

Summing up the result of Lemma 13 and Lemma 14, we
obtain the following next theorem:

Theorem 15 Given anEL++ rule base RB in normal form,
RB is unsatisfiable iff P̄(RB) is unsatisfiable.

Next, we want to show thatELP is indeed tractable. The
above results onEL++ rules already provide a way of de-
ciding satisfiability ofELP by first grounding safe variables,
and then proceeding with the elimination of range restric-
tions and transformation to Datalog. When grounding safe
variables into individual names, however, we must first en-
sure that this grounding does not incur an exponential blow-
up of the rule base. Moreover, we also need to show that the
resulting Datalog program can be evaluated in polynomial
time.

The proof thus proceeds by decomposingELP rules into
rules containing a limited finite number of (safe or unsafe)
variables. The grounding of safe variables then can only pro-
duce a polynomially bounded number of new rules. After
translating fromEL++ rules to Datalog, the number of vari-
ables per rule is still bounded. Since Datalog contains no
existential quantifiers, Datalog programs are equivalent to
their grounding, i.e. we can again replace variables with in-
dividual names in all possible ways. Note that this time, the
relevant individual names for grounding also include new
symbols of the formdR,C. Evaluating the resulting variable-
free Datalog program is P-complete.

The decomposition ofELP rules into rules with a bounded
number of variables exploits the forest shape of rule bodies
by iteratively reducing branches of trees. This is not possible
for generaln-variable Datalog rules inELPn, which thus in-
crease the number of rules exponentially inn. Yet, admitting
rules of some smalln might well be feasible in practice, and
we therefore include them into the following theorem.

Theorem 16 Satisfiability of anyELPn rule base RB can be
decided in time polynomial in the size of RB and exponential
in n.

More precisely, RB can be transformed into an equi-
satisfiable Datalog programP(RB) which contains at most
max(3, n) variables per rule, and this transformation is pos-
sible in polynomial time in the size of RB. Moreover, for any
C ∈ NC, R ∈ NR, anda, b ∈ NI , we find that

• RB |= C(a) iff P(RB) |= C(a)
• RB |= {a}(b) iff P(RB) |= Ca(b)
• RB |= R(a, b) iff P(RB) |= R(a, b)

Proof. Grounding all safe variables of a rule base in all pos-
sible ways is a feasible reasoning method, but may lead to
exponential increases in the size of the knowledge base. This
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can be prevented, however, by ensuring that any rule con-
tains only a limited number of variables. A similar method
can be used to ensure that the Datalog programP̄(·) as ob-
tained in Definition 12 can be evaluated in polynomial time.
We therefore proceed by providing a satisfiability preserv-
ing polytime reduction ofELP rule bases intoELP rule bases
that contain only a bounded number of variables per rule. We
consider only basicELP rules for the reduction, since range
restrictions do not require any transformation. One should,
however, observe that the transformation does not lead to a
violation on the admissibility restrictions for range restric-
tions.

Let RB′ ⊆ RB denote the set ofELP rules in RB (i.e.
excluding only additional DL-safe rules ofn variables that
might be available inELPn). We first transform theELP rule
base into a normal form by applying the algorithm from
Proposition 11. It is easy to see that this transformation can
also be applied toELP rules by treating safe variables like
individual names. Hence, this transformation preserves sat-
isfiability, and yields a rule base RB1 the size of which is
polynomial in the size of RB′. The new rule base RB1 is
then of a normal form similar to the one of Definition 10 but
with additional safe components per rule.

Next, we reduce conjunctions in rule heads in the stan-
dard way: any rule of the formB → H1 ∧ H2 is replaced
by two rulesB → H1 and B → H2 until all conjunctions
in rule heads are eliminated. Again, the resulting rule base
RB2 is clearly equisatisfiable to RB1 and can be obtained in
polynomial time.

As the next step, we transform the extended DL rules of
RB2 into extended DL rules with at most 3 variables per rule.
Besides the notions defined in Definition 5, we use a number
of auxiliary notions in describing the transformation. In the
following, we assume that all direct connections (cf. Defi-
nition 5) between termst andu in some setB aremaximal,
i.e. contain all role atoms of the formR(t, u) ∈ B. Consider
some ruleB→ H:

• A connected componentof B is a non-empty subsetS ⊆ B
such that, for all termst , u occurring inS, we find that
t andu are connected inS. A maximal connected compo-
nent(MCC) is a connected component that has no super-
sets that are connected components.

• A variable x is initial for H if H is of the formC(x) or
R(x, t).

• A variablex is final for H if H is of the formR(t, x). If H is
not of this form butB→ H contains some variable, then
some arbitrary but fixed variable inB→ H is selected to
be final forH.

• Given a subsetS of B, we say thatS is reducible if it
contains variables that are neither initial nor final inH.

• Let S be an MCC ofB, and consider a direct connection
T from a termt to a termu in S. Let ST,t be the set of
all atoms inS that contain some termt′ connected tot in
S \ T. Similarly, letST,u be the set of all atoms inS that
contain some termu′ connected tou in S \ T.

Intuitively, the setsST,t and ST,u consist of all atoms to
the “left” or to the “right” of the connectionT that can be

reached fromt andu, respectively, without using the atoms
of T.

We can now proceed to reduce the forest structure of rule
bodies.

In each iteration step of the reduction, select some rule
B → H in RB2 that contains more than three variables and
some reducible MCCS of B, and do one of the following:

(1) If S contains no variable that is final forH, then select
an initial elementt as follows: ifS contains a variablex
that is initial for H thent = x; otherwise sett = a for
an arbitrary individual namea ∈ NI . The ruleB → H
is replaced by two new rules (B \ S) ∪ {C(t)} → H and
S→ C(t), whereC is a new concept name.

For all other cases, assume that the variabley in S is
final for H.

(2) There is a direct connectionT from y to some variableu
such thatST,u is reducible but contains no variable initial
for H. Then ruleB→ H is replaced by three new rules
B∪ {C(y)} \ (ST,u ∪ T) → H, T ∪ {D(u)} → C(y), and
ST,u→ D(u), whereC,D are new concept names.

(3) There is a direct connectionT from some variablet to y
such thatST,t is reducible, and contains a variablex that
is initial for H. Then ruleB → H is replaced by three
new rulesB∪{R(x, y)} \ (ST,t∪T)→ H, {R′(x, t)}∪T →
R(x, y), andST,t → R′(x, t), whereR,R′ are new non-
simple role names.

(4) There is a direct connectionT from some variablet to y
such thatST,t is reducible but contains no variable that
is initial for H. Then ruleB → H is replaced by three
new rulesB ∪ {R(a, y)} \ (ST,t ∪ T) → H, {R′(a, t)} ∪
T → R(a, y), andST,t → R′(a, t), wherea ∈ NI is an
arbitrary individual name, andR,R′ are new non-simple
role names.

(5) There is a direct connectionT from y to some variable
u such thatST,u is reducible, and contains a variablex
that is initial forH, and some further variablez besides
x andu. We distinguish various cases:

(a) There is a direct connection from some termt , y
to u. Then ruleB→ H is replaced by two new rules
B∪ {R(x, u)} \ ST,u→ H andST,u→ R(x, u), where
R is a new non-simple role name.

(b) The above is not the case, and there is some direct
connectionT′ from u to some variableu′ such that
ST′ ,u′ is reducible but does not containx. Then rule
B → H is replaced by two new rulesB ∪ {C(u)} \
(ST′,u′ ∪ T′)→ H andST′,u′ ∪ T′ → C(u), whereC
is a new concept name.

(c) None of the above is the case, andu is involved in
a direct connectionT′ besidesT, which connectsu
to some variableu′ such thatST′ ,u′ containsx. Let
Su denote the setSu ≔ S \ (ST,y ∪ ST′,u′ ). The rule
B→ H is replaced by two new rulesB∪ {R(y, u′)} \
Su → H andSu → R(y, u′), whereR is a new non-
simple role name.

This iteration is repeated until no further transformationis
applicable. It is easy to see that the translation preserves
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conditions on simplicity of roles, since all newly introduced
roles are non-simple, and since they do never occur in a body
position where simplicity is required.

In all considerations below, we will use the notation of
the above cases when considering some transformation step,
and refer to the generated rules in each step by the order of
their appearance in the transformation steps (e.g. by saying
“first rule of (2)” or “rule 3 of (4)”).

Claim 1 All rules created in the above transformation are
valid ELP rules.

Most cases directly follow from the fact that subsets of
rule bodies ofELP rules satisfy most of the requirements
of Definition 5 and Definition 7. An additional check is re-
quired to verify that, for some new rule headC(x) or R(x, t)
with x unsafe,x is indeed initial in the body. This is readily
verified for the rules in (1), and for the first two rules gener-
ated in (2), given that one minds the direction of the atoms in
T. For the rule 3 of (2), problems might occur only ifu is an
unsafe variable. But in this case it is clearly initial inST,u: if
it would have a direct connection from some elementt other
thany, then botht andy would either be initial or have a path
from some initial element. But the initial elements fort and
y cannot be the same without violating the condition for an
extended DL rule, and henceu would have paths from two
distinct initial element, which in turn contradicts the con-
ditions on DL rules. This shows that rule 3 of (2) is also a
valid ELP rule. Cases (3), (4), and all cases of (5) are again
immediate.

Further care must be taken when introducing auxiliary
roles, since the first condition of DL rules (paths from unique
initial elements) might be violated whenever an auxiliary
role creates additional paths to some variable. New role
atoms are introduced in (3) and (4), but in each case only
to either replace an existing direct connection to the variable
y (first rules), or as part of a “chain” of role atoms (rules
2). Similar observations can be made in case (5)(c). For case
(5)(a), note that the precondition implies thatu already is the
target of direct connections from two distinct termsy andt.
Thus,u cannot be an unsafe variable, and the reduction is
permissible, even though it clearly leads to multiple direct
connections leading tou in rule 1.

Claim 2 After the above translation, all rules in RB2 have
at most three variables in the body.

First note that when looking for reducible sets of the form
ST,u for some direct connectionT and termu, it is in order to
restrict to the case whereu is a variable. This is so, sinceS
is assumed to be an MCC, and hence any variable inST,u is
connected to the variables inS\ST,u as well, but connections
are not transitive over individual names. Hence the variable
must also be part of some setST,z with zbeing a variable.

For a contradiction, suppose that there is some ruleB→
H with at least four variables inB. By assumption, none of
the cases of the translation is applicable to that rule. How-
ever, there must be some reducible MCCS in B. Otherwise,
B would contain no variables besides the initial and final
one, contradicting our assumption. Thus letS be some re-

ducible component inB. Since rule (1) is not applicable, we
can assume thatS contains a final variabley.

SinceS is reducible, some atom ofS contains a variable
that is neither final nor initial forH. Since cases (3) and
(4) are not applicable, we conclude that there is no direct
connectionT from some variablet to y such thatST,t is re-
ducible. But sinceS is a connected component, all terms
of S are connected toy, and hence there must be a direct
connectionT from y to some variableu such thatST,u is re-
ducible. Since (2) does not apply,T must be such thatST,u
contains the initial variablex. Since only one suchT can
exist (due to the tree shape asserted for extended DL rules),
and sinceB→ H contains more than three variables by as-
sumption, some additional variablez besidesx andu must
exist inST,u, and thus the preconditions of case (5) hold.

It remains to show that one of the three sub-cases of (5)
must apply. Assuming that (a) and (b) do not hold, we con-
clude that there is no direct connection from any termt′ , y
to u, and that there is no direct connectionT′ from u to some
termu′ such thatST′ ,u′ is reducible and does not containx.
Yet we know thatu is directly connected with some term
other thant, sinceST,u contains a variable besidesx (i.e. is
reducible). Therefore there is some connectionT′ from u to
some termu′ such thatST′ ,u′ containsx, and (c) is indeed
applicable.

Claim 3 The transformation terminates after a finite num-
ber of steps that is polynomially bounded in the size of RB2.

For any setS of atoms, letν(S) be the number of (safe or
unsafe) variable names inS. Given a ruleB→ H ∈ RB2, a
numberγ(B→ H), called thereduction numberof B→ H,
is then defined by settingγ(B→ H) ≔ max(0, ν(B∪H)−3).
Moreover,γ(RB2) is defined as the sum ofγ(B→ H) for all
B→ H ∈ RB2. Clearly,γ(RB2) is polynomially bounded by
the size of RB2.

We claim that the above transformation terminates after
at mostγ(RB2) steps. Clearly, no transformation can be ap-
plied if γ(RB2) = 0. It remains to show that, whenever RB′2
is obtained from RB2 by any of the transformation steps, we
find thatγ(RB2) > γ(RB′2). This is achieved by considering
all transformations individually. The technical difficulty in
this part arises from the individual max(·) computations in-
volved inγ: even if a rule gets smaller, this might not equally
reduce its reduction number, since there are no negative re-
duction numbers. In other words, each rule may contain up
to three variables that do not count. We will sometimes as-
sume that those three have been selected for some rule and
speak of “non-counting variables” and “counting variables.”

For case (1), note thatS contains some variable that is
neither final nor initial forH, and thatB → H has at least
4 variables. We may thus assume thatS contains a counting
variable. Therefore rule 1 has at least one counting variable
less thanB → H. If ν(S) ≤ 3, then rule 2 has reduction
number 0 and the claim follows. Ifν(S) > 3 then we may
assume thatS contains at most two non-counting variables
of B, sinceB→ H also contains some variabley final for H
that is not contained inS. Hence rule 1 has at leastν(S) −
2 counting variables less. Rule 2 in turn has onlyν(S) − 3
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counting variables, so that the claim follows again.

For case (2), we obtain three new rules. Rule 2 clearly has
at most two distinct terms and hence no counting variables.
We usen to denoteν(ST,u), the number of variables inST,u.
SinceST,u is reducible,n ≥ 1. Again, since there are 4 or
more variables inB → H, we can assume thatST,u con-
tains at least one variable that is counting inB → H. The
reduction number of rule 1 therefore is strictly smaller than
γ(B → H), and this suffices whenevern ≤ 3 (since the re-
duction number of rule 3 is 0 in that case). Now assume that
n > 3. Sincey can be assumed to be non-counting,ST,u con-
tains at most 2 non-counting variables ofB, and hence rule
1 has at leastn − 2 counting variables less. Rule 3, in turn,
has onlyn − 3 non-counting variables, which again proves
the overall reduction.

Cases (3) and (4) can be shown by a similar argumen-
tation. Again, rule 2 does not add to the overall reduction
number in either case, and the sum of rules 1 and 3 is found
to decrease by a case distinction as above. Cases (5)(a) and
(5)(b) are also similar, though there are only two rules in
this case. Note that for (a) the additional variablez in ST,u is
strictly required to obtain a reduction. For case (5)(c), the re-
sult follows sinceu is assumed to be a variable, so that again
the reduction number of the transformed rule 1 decreases
(while the other rule has at most three variables).

Claim 4 The above translation preserves satisfiability of
RB2.

This can be shown by a simple induction, given that all
possible transformation steps preserve satisfiability. This is
generally rather easy to see, but we show one case formally
for illustration. Thus consider transformation step (1), where
B→ H is the considered rule, andB1 → H andB2 → C(t)
denote the generated rules. Clearly, addingB2 → C(t) to
RB2 preserves satisfiability sinceC is new. Thus it remains
to show equisatisfiability of RB′2 ≔ RB2 ∪ {B2 → C(t)} and
RB′′2 ≔ RB2 ∪ {B2→ C(t), B1→ H} \ {B→ H}.

Thus consider some interpretationI such thatI |= RB′2.
Then there is some interpretationI′ with I′ |= RB′2 and
CI

′

= {δ ∈ ∆I
′

| I′,Z |= B2 for some variable assignment
Z with tI

′ ,Z
= δ}. A suitableI′ can be obtained fromI by

minimising the extent ofC while preserving all other aspects
of the interpretation, which can be done sinceC is new. Note
thatI′ |= B2→ C(t) by definition. We claim thatI′ |= RB′′2 .
Thus assume thatI′,Z |= B1 for some variable assignment
Z. ThenI′,Z |= C(t) and thustI

′ ,Z ∈ CI
′

. By the assump-
tions onCI

′

, we find that there is some variable assignment
Z′ such thatI′,Z′ |= B2 wheretI

′ ,Z
= tI

′,Z′ . Now observe
that, by construction,B2 and B1 contain no common vari-
ables, other than possiblyt (if t is a variable). Thus there is
some variable assignmentZ′′ such thatZ′′(x) = Z(x) for any
variablex in B1 andZ′′(x) = Z′(x) for any variablex in B2.
But thenI′,Z′′ |= B1 ∪ B2. As defined in (1), (B1 ∪ B2) ⊇ B
and thusI′,Z′′ |= B, and we can concludeI′,Z′′ |= H since
I′ |= B→ H. By definition,Z andZ′′ agree on all terms in
H and thus we obtainI′,Z |= H as required. SinceZ was ar-
bitrary, this shows thatI |= B1→ H, and henceI′ |= RB′′2 .

For the other direction, consider some interpretationI
such thatI |= RB′′2 . We claim thatI |= RB′2. Thus assume
thatI,Z |= B for some variable assignmentZ. Then also
I,Z |= B2 as B2 ⊆ B, and henceI,Z |= C(t). But then
I,Z |= B1 and thusI,Z |= H as required.

The cases (2)–(5) can be treated in a similar fashion,
where again it is essential that each case completely elim-
inates certain terms from the transformed rule, so that the
required merging of variable assignmentsZ′ andZ′′ is in-
deed possible.

Thus, the transformed rule base RB2 is polynomial in the
size of RB and contains at most three variables per rule. We
can now compute the grounding of all safe variables in RB2,
i.e. the set of rules obtained by replacing safe variables in
each rule of RB2 with individual names in all possible ways.
The obtained rule base is called RB3 and its size clearly is
polynomially bounded by|RB2|

3. Moreover, RB3 is clearly
equivalent to RB2 and, by Definition 7, contains onlyEL++

rules and range restrictions. We can now apply the elimi-
nation of range restrictions of Proposition 9, and then use
the normalisation from Proposition 11 to again obtain a set
RB4 of normalisedEL++ rules. Again, RB4 is equivalent to
RB3, and the transformations are easily seen to preserve the
bound on the number of variables per rule, especially since
rule bodies had already been normalised when computing
RB1.

Now, finally, the Datalog program̄P(RB4) is constructed.
By inspecting the cases of Definition 12, we find thatP̄(RB4)
still contains at most 3 (unsafe) variables per rule. Since
P̄(RB4) and the initial set of basicELP rules RB′ are equi-
satisfiable, we can show thatP̄(RB4) |= C(a) iff RB′ |= C(a)
for all C ∈ NC anda ∈ NI . The claim clearly holds if RB′

is unsatisfiable. Otherwise, consider RB′′ = RB′ ∪ {C(a)→
⊥(a)}, and again apply the above construction to obtain an
according Datalog program̄P(RB′′4 ). Clearly, RB′′ is un-
satisfiable iff RB′ |= C(a). But the former is equivalent to
P̄(RB4) being unsatisfiable. SincēP(RB4) is satisfiable, and
since clearlȳP(RB′′4 ) = P̄(RB4) ∪ {C(a)→ ⊥(a)} (assuming
thatC anda occur in RB′, and were thus already considered
for the rules (a), (b), and (e) of̄P(RB4)), this is in turn equiv-
alent toP̄(RB′′4 ) |= C(a) as claimed. In a similar fashion, one
can show the correspondence for entailments of the form
{a}(b) (Ca(b)) andR(a, b), similar to the statement claimed
for the theorem.

The last result enables us to safely combineP̄(RB4) with
any additional DL-safe rule withn variables that may be
present inELPn. For that purpose, one merely needs to intro-
duce a conceptHU and add facts→ HU(a) for all a ∈ NI . For
eachn-variable Datalog ruleB → H, a ruleB′ → H′ then
is created by replacing any atom of the form{a}(t) by Ca(t),
and by adding a body atomHU(x) for any variablex occur-
ring in B → H. The resulting set of transformed Datalog
rules is denotedLP, and we defineP(RB)≔ P̄(RB4) ∪ LP.

It is easy to see thatP(RB) is equisatisfiable to RB, since
RB′ andP̄(RB4) contain the corresponding ground facts, and
since the rules ofLP are applicable only to such ground
facts, where the above construction ofLP establishes the
required syntactic transformations and explicit safety con-
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ditions. Similarly, we also find thatP(RB) entails the same
ground facts as RB, as required in the theorem. SinceP̄(RB)
is a Datalog program with at most max(3, n) variables per
rule, it can naively be evaluated by computing its grounding,
which is again bounded in size by|P̄(RB)|max(3,n). Together
with the polynomial size restrictions established forP̄(RB),
this shows the claimed worst-case complexity of reasoning.
�

We remark that one could also have deferred the ground-
ing of safe variables inELP rules in the above proof by using
the auxiliary predicateHU for such variables as well, instead
of replacing them by individual names before further trans-
lation. This would be appropriate in practice, but it would
complicate the above proof since this form of replacement
would not lead to anEL++ rule base to which Definition 12
could readily be applied.

Discussion and Future Work
We have introducedELP as a rule-based tractable knowledge
representation language that generalises the known tractable
description logicsEL++ and DLP, where polynomial time
reasoning was established using a novel reduction to Dat-
alog.ELP in particular extends the DLEL++ with local re-
flexivity, concept products, conjunctions of simple roles,and
limited range restrictions (Baader, Lutz, and Brandt 2008).

The notion of simple roles has been slightly extended as
compared to the definition commonly used in DL, such that,
e.g., the universal role can also be defined to be simple. A
natural question is whether further extensions ofELP might
be admissible. Regarding the simplicity restriction on role
conjunctions, it is well-known that conjunctions of arbitrary
roles inEL++ lead to undecidability. Querying for such con-
junctions remains intractable (Krötzsch, Rudolph, and Hit-
zler 2007b) even when adopting regularity restrictions sim-
ilar to the ones inSROIQ. The complexity of using this
feature in rules remains open, as does the question whether
or not arbitrary roles could be used in reflexivity conditions
of the formR(x, x). The presented proofs, however, strongly
depend on these restrictions.

The use of Datalog as an approach to solving DL rea-
soning tasks has been suggested in various works. KAON2
(Hustadt, Motik, and Sattler 2005) provides an exponen-
tial reduction ofSHIQ into disjunctive Datalog programs.
The outcome of this reduction resembles our case since it
admits for the easy extension with DL-safe rules and safe
conjunctive queries. The model-theoretic relationships be-
tween knowledge base and Datalog program, however, are
somewhat weaker than in our case. In particular, our ap-
proach admits queries for non-simple roles. Various other
approaches used reductions to Datalog in order to estab-
lish mechanisms for conjunctive query answering (Pérez-
Urbina, Motik, and Horrocks 2008b; 2008a; Rosati 2007).
These works differ from the presented approach in that they
focus on general conjunctive query answering forEL and
EL++, which is known to be more complex than satisfiability
checking (Krötzsch, Rudolph, and Hitzler 2007b). Another
related approach is (Kazakov 2005), where resolution-based
reasoning methods forEL have been investigated (where we

note that resolution is also the standard approach for eval-
uating Datalog). The methodology used there, however, is
technically rather different from our presented approach.
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