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Abstract. Developing and maintaining ontologies is an expensive and
error-prone task. After an error is detected, users may have to wait for
a long time before a corrected version of the ontology is available. In
the meantime, one might still want to derive meaningful knowledge from
the ontology, while avoiding the known errors. We study error-tolerant
reasoning tasks in the description logic EL. While these problems are in-
tractable, we propose methods for improving the reasoning times by pre-
compiling information about the known errors and using proof-theoretic
techniques for computing justifications. A prototypical implementation
shows that our approach is feasible for large ontologies used in practice.

1 Introduction

Description Logics (DLs) [3] are a family of knowledge representation formalisms
that have been successfully used to model many application domains, specifically
in the bio-medical areas. They are also the logical formalism underlying the stan-
dard ontology language for the semantic web OWL 2 [32]. As a consequence, more
and larger ontologies are being built using these formalisms. Ontology engineer-
ing is expensive and error-prone; the combination of knowledge from multiple
experts, and misunderstandings between them and the knowledge engineers may
lead to subtle errors that are hard to detect. For example, several iterations of
Snomed CT [14,31] classified amputation of finger as a subclass of amputation
of hand [7, 8].

Since domain knowledge is needed for correcting an unwanted consequence,
and its causes might not be obvious, it can take long before a corrected version
of an ontology is released. For example, new versions of Snomed are released
every six months; one should then expect to wait at least that amount of time
before an error is resolved. During that time, users should still be able to derive
meaningful consequences from the ontology, while avoiding the known errors.

A related problem is inconsistency-tolerant reasoning, based on consistent
query answering from databases [1, 9], where the goal is to obtain meaningful
consequences from an inconsistent ontology O. Inconsistency is clearly an un-
wanted consequence from an ontology, but it is not the only one; for instance,
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while Snomed is consistent, we would still like to avoid the erroneous subclass
relationship between amputation of finger and amputation of hand. We gener-
alize the idea of inconsistency-tolerant reasoning to error-tolerant reasoning in
which other unwanted consequences, beyond inconsistency, are considered.

We focus mainly on two kinds of error-tolerant semantics; namely brave and
cautious semantics. Intuitively, cautious semantics refer to consequences that
follow from all the possible repairs of O; this guarantees that, however the on-
tology is repaired, the consequence will still follow. For some consequences, one
might only be interested in guaranteeing that it follows from at least one repair;
this defines the brave semantics. As usual in inconsistency-tolerant reasoning, the
repairs are maximal subontologies of O that do not entail the unwanted conse-
quence. Notice that brave semantics are not closed under entailment; e.g., the
conjunction of two brave consequences is not necessarily a brave consequence it-
self. However, brave consequences are still useful, e.g. to guarantee that a wanted
consequence can still be derived from at least one repair (i.e., that it might still
hold after the ontology is repaired) among other cases. We also consider the
IAR semantics, proposed in [22] as a means to efficiently approximate cautious
reasoning; see also [11,30].

In this paper, we focus on subsumption between concepts w.r.t. a TBox
in EL, which is known to be polynomial [13]. As every EL TBox is consistent,
considering inconsistency-tolerant semantics makes no sense in this setting. On
the other hand, Snomed CT and other large-scale ontologies are written in
tractable extensions of this logic, and being able to handle errors written in them
is a relevant problem for knowledge representation and ontology development.

We show that error-tolerant reasoning in EL is hard. More precisely, brave
semantics is NP-complete, and cautious and IAR semantics are coNP-complete.
These results are similar to the complexity of inconsistency-tolerant semantics
in inexpressive logics [10,30]. We also show that hardness does not depend only
on the number of repairs: there exist errors with polynomially many repairs, for
which error-tolerant reasoning requires super-polynomial time (unless P = NP).

To improve the time needed for error-tolerant reasoning, we propose to pre-
compute the information on the causes of the error. We first annotate every ax-
iom with the repairs to which it belongs. We then use a proof-theoretic approach,
coupled with this annotated ontology, to derive error-tolerant consequences. We
demonstrate the practical applicability of our approach for brave and cautious
reasoning by applying a prototype-implementation on large ontologies used in
practice. An extended version of this paper containing all proofs and details can
be found in [25].

2 Preliminaries

We first briefly recall the DL EL. Given two disjoint and countably infinite sets
NC and NR of concept-, and role-names, respectively, concepts are constructed
by C ::= A | C u C | ∃r.C, where A ∈ NC and r ∈ NR. A TBox is a finite set of
general concept inclusions (GCIs) of the form C v D, where C,D are concepts.



Table 1. Syntax and semantics of EL.

Syntax Semantics

> ∆I

C uD CI ∩DI

∃r.C {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ rI ∧ y ∈ CI}

The TBox is in normal form if all its GCIs are of the form A v ∃r.B, ∃r.A v B,
or A1 u . . . uAn v B with n ≥ 1 and A,A1, . . . , An, B ∈ NC ∪ {>}.

The semantics of EL is defined through interpretations I = (∆I , ·I), where∆I

is a non-empty domain and ·I maps each A ∈ NC to a set AI ⊆ ∆I and every
r ∈ NR to a binary relation rI over ∆I . This mapping is extended to arbitrary
concepts as shown in Table 1. The interpretation I is a model of the TBox T if
CI ⊆ DI for every C v D ∈ T . The main reasoning problem is to decide sub-
sumption [2, 13]: C is subsumed by D w.r.t. T (denoted C vT D) if CI ⊆ DI

holds for every model I of T . HL is the sublogic of EL that does not allow
existential restrictions; it is a syntactic variant of Horn logic: every Horn clause
can be seen as an HL GCI. An HL TBox is a core TBox if all its axioms are of
the form A v B with A,B ∈ NC.

Error-tolerant reasoning refers to the task of deriving meaningful conse-
quences from a TBox that is known to contain errors. In the scope of this paper,
an erroneous consequence refers to an error in a subsumption relation. If the
TBox T entails an unwanted subsumption C vT D, then we are interested in
finding the ways in which this consequence can be avoided. To define error-
tolerant reasoning formally, we need the notion of a repair.

Definition 1 (repair). Let T be an EL TBox and C vT D. A repair of T w.r.t.
C v D is a maximal (w.r.t. set inclusion) subset R ⊆ T such that C 6vR D.
The set of all repairs of T w.r.t. C v D is denoted by RepT (C v D).

We will usually consider a fixed TBox T , and hence say that R is a repair w.r.t.
C v D, or even simply a repair, if the consequence is clear from the context.

Example 2. The repairs of T = {A v ∃r.X,∃r.X v B,A v Y , Y v B,A v B′}
w.r.t. the consequence A v B are the sets Ri := T \ Si, 1 ≤ i ≤ 4, where
S1 = {A v ∃r.X,A v Y }, S2 = {A v ∃r.X, Y v B}, S3 = {∃r.X v B,A v Y },
and S4 = {∃r.X v B, Y v B}.

The number of repairs w.r.t. a consequence may be exponential, even for core
TBoxes [28]. Each of these repairs is a potential way of avoiding the unwanted
consequence; however, it is impossible to know a priori which is the best one
to use for further reasoning tasks. One common approach is to be cautious and
consider only those consequences that follow from all repairs. Alternatively, one
can consider brave consequences: those that follow from at least one repair.

Definition 3 (cautious, brave). Let T be an EL TBox, C vT D, and C ′, D′

be two EL concepts. C ′ is bravely subsumed by D′ w.r.t. T and C v D if there



is a repair R ∈ RepT (C v D) such that C ′ vR D′; C ′ is cautiously subsumed
by D′ w.r.t. T and C v D if for every repair R ∈ RepT (C v D) it holds that
C ′ vR D′. If T or C v D are clear from the context, we usually omit them.

Example 4. Let T ,R1, . . .R4 be as in Example 2. A is bravely but not cautiously
subsumed by Y uB′ w.r.t. T and A v B since A vR2

Y uB′ but A 6vR1
Y uB′.

In the context of inconsistency-tolerant reasoning, other kinds of semantics which
have better computational properties have been proposed [11, 22, 30]. Among
these are the so-called IAR semantics, which consider the consequences that
follow from the intersection of all repairs. Formally, C ′ is IAR subsumed by D′

w.r.t. T and C v D if C ′ vQ D′, where Q :=
⋂
R∈RepT (CvD)R.

Example 5. Let T and R1, . . . ,R4 be as in Example 2. Then A is IAR subsumed
by B′ w.r.t. T and A v B as A v B′ ∈

⋂4
i=1Ri.

A notion dual to repairs is that of MinAs, or justifications [7, 18]. A MinA for
C vT D is a minimal (w.r.t. set inclusion) subset M of T such that C vM D.
We denote as MinAT (C v D) the set of all MinAs for C vT D. There is a close
connection between repairs and MinAs for error-tolerant reasoning.

Theorem 6. Let T be an EL TBox, C,C ′, D,D′ concepts with C vT D. Then

1. C ′ is cautiously subsumed by D′ w.r.t. T and C v D iff for every repair
R ∈ RepT (C v D) there is an M′ ∈ MinAT (C ′ v D′) with M′ ⊆ R; and

2. C ′ is bravely subsumed by D′ w.r.t. T and C v D iff there is a repair
R ∈ RepT (C v D) and a MinA M′ ∈ MinAT (C ′ v D′) with M′ ⊆ R.

This theorem will be useful for developing a more efficient error-tolerant reason-
ing algorithm. Before describing this algorithm in detail, we study the complexity
of this kind of reasoning.

3 Complexity

We show that deciding cautious and IAR subsumptions is intractable already for
core TBoxes. Deciding brave subsumptions is intractable for EL, but tractable for
HL. We first prove the latter claim using directed hypergraphs, which generalize
graphs by connecting sets of nodes, rather than just nodes.

A directed hypergraph is a pair G = (V, E), where V is a non-empty set of
nodes, and E is a set of directed hyperedges e = (S, S′), with S, S′ ⊆ V. Given
S, T ⊆ V, a path from S to T in G is a set of hyperedges {(Si, Ti) ∈ E | 1 ≤ i ≤ n}
such that for every 1 ≤ i ≤ n, Si ⊆ S ∪

⋃n−1
j=1 Tj , and T ⊆

⋃n
i=1 Ti hold. The

reachability problem in hypergraphs consists in deciding the existence of a path
from S to T in G. This problem is decidable in polynomial time on |V| [16].

Recall that HL concepts are conjunctions of concept names; we can represent
C = A1 u · · · uAm as its set of conjuncts SC = {A1, . . . , Am}. Each GCI C v D
yields a directed hyperedge (SC , SD) and every HL-TBox T forms a directed
hypergraph GT . Then C vT D iff there is a path from SC to SD in GT .



Theorem 7. Brave subsumption in HL can be decided in polynomial time on
the size of the TBox.

Proof. Let T be an HL TBox, and C,C ′, D,D′ be HL concepts. C ′ is bravely
subsumed by D′ w.r.t. T and C v D iff there is a path from SC′ to SD′ in GT
that does not contain any path from SC to SD. If no such path exists, then
(i) every path from SC′ to SD′ passes through SD, and (ii) every path from SC′

to SD passes through SC . We need to verify whether any of these two statements
is violated. The existence of a path that does not pass through a given set is
decidable in polynomial time.

However, for EL this problem is NP-complete. To prove this we adapt an idea
from [27] for reducing the NP-hard more minimal valuations (mmv) problem [7,
15]: deciding, for a monotone Boolean formula ϕ and a set V of minimal valua-
tions satisfying ϕ, if there are other minimal valuations V /∈V satisfying ϕ.

Theorem 8. Brave subsumption in EL is NP-complete.

We now show that the cautious and IAR semantics are intractable already for
core TBoxes. This is a consequence of the intractability of the following problem.

Definition 9 (axiom relevance). The axiom relevance problem consists in
deciding, given a core TBox T , A v B ∈ T , and A0 vT B0, whether there is a
repair R of T w.r.t. A0 v B0 such that A v B /∈ R.

Lemma 10. Axiom relevance is NP-hard.

Proof. We reduce the NP-hard path-via-node problem [21]: given a directed
graph G = (V, E) and nodes s, t,m ∈ V, decide if there is a simple path from s
to t in G that goes through m. Given an instance of the path-via-node problem,
we introduce a concept name Av for every v ∈ (V \ {m}) ∪ {m1,m2}, and build
the core TBox

T := {Av v Aw | (v, w) ∈ E , v, w 6= m} ∪ {Av v Am1
| (v,m) ∈ E , v 6= m} ∪

{Am2
v Av | (m, v) ∈ E , v 6= m} ∪ {Am1

v Am2
}.

There is a simple path from s to t in G through m iff there is a repair R of T
w.r.t. As v At with Am1

v Am2
/∈ R.

Theorem 11. Cautious subsumption and IAR subsumption w.r.t. core, HL or
EL TBoxes are coNP-complete.

Proof. If C is not cautiously subsumed by D, we can guess a set R and verify in
polynomial time thatR is a repair and C 6vR D. If C is not IAR subsumed by D,
we can guess a set Q ⊆ T , and for every GCI Ci v Di /∈ Q a set Ri such that
Ci v Di /∈ Ri. Verifying that each Ri is a repair and C 6vQ D is polynomial.
Thus both problems are in coNP. To show hardness, for a GCI C v D ∈ T ,
there is a repair R such that C v D /∈ R iff C 6vR D iff C is neither cautiously
nor IAR subsumed by D. By Lemma 10 both problems are coNP-hard.



Algorithm 1 Repairs entailing C ′ v D′

Input: Unwanted consequence C vT D, concepts C′, D′

Output: R ⊆ RepT (C v D): repairs entailing C′ v D′

R← RepT (C v D)
for each R ∈ RepT (C v D) do

if C′ 6vR D′ then
R← R \ {R}

return R

The hardness of error-tolerant reasoning is usually attributed to the fact that
there can exist exponentially many repairs for a given consequence. However,
this argument is incomplete. For instance, brave reasoning remains polynomial
in HL, although consequences may have exponentially many repairs already in
this logic. We show now that cautious and brave subsumption are also hard on
the number of repairs; i.e., they are not what we call repair-polynomial.

Definition 12 (repair-polynomial). An error-tolerant problem w.r.t. a TBox
T and a consequence C v D is repair-polynomial if it can be solved by an
algorithm that runs in polynomial time on the size of both T and RepT (C v D).

Theorem 13. Unless P = NP, cautious and brave subsumption of C ′ by D′

w.r.t. T and C v D in EL are not repair-polynomial.

The proof adapts the construction from Theorem 8 to reduce the problem of
enumerating maximal valuations that falsify a formula to deciding cautious sub-
sumption. The number of repairs obtained from the reduction is polynomial on
the number of maximal valuations that falsify the formula. Since this enumer-
ation cannot be solved in time polynomial on the number of maximal falsifiers,
cautious reasoning can also not be performed in time polynomial on the number
of repairs. An analogous argument is used for brave reasoning. All the details can
be found in [25]. Thus, error-tolerant reasoning is hard even if only polynomi-
ally many repairs exist; i.e., there are cases where |RepT (C v D)| is polynomial
on |T |, but brave and cautious reasoning require super-polynomial time. The cul-
prit for hardness is not the number of repairs per se, but rather the relationships
among these repairs.

We now propose a method for improving the reasoning times, by precomput-
ing the set of all repairs, and using this information effectively.

4 Precompiling Repairs

A näıve solution for deciding brave or cautious subsumptions would be to first
enumerate all repairs and then check which of them entail the relation (the set
R in Algorithm 1). C ′ is then bravely or cautiously subsumed by D′ iff R 6= ∅
or R = RepT (C v D), respectively. Each test C ′ vR D′ requires polynomial



time on |R| ≤ |T | [13], and exactly |RepT (C v D)| such tests are performed.
The for loop in the algorithm thus needs polynomial time on the sizes of T
and RepT (C v D). From Theorem 13 it follows that the first step, namely the
computation of all the repairs, must be expensive. In particular, these repairs
cannot be enumerated in output-polynomial time; i.e., in time polynomial on
the input and the output [17].

Corollary 14. The set of repairs for an EL TBox T w.r.t. C v D cannot be
enumerated in output polynomial time, unless P = NP.

For any given error, one would usually try to decide whether several brave or
cautious consequences hold. It thus makes sense to improve the execution time
of each of these individual reasoning tasks by avoiding a repetition of the first,
expensive, step.

The set of repairs can be computed in exponential time on the size of T ; this
bound cannot be improved in general since (i) there might exist exponentially
many such repairs, and (ii) they cannot be enumerated in output polynomial
time. However, this set only needs to be computed once, when the error is found,
and can then be used to improve the reasoning time for all subsequent subsump-
tion relations. Once RepT (C v D) is known, Algorithm 1 computes R, and hence
decides brave and cautious reasoning, in time polynomial on |T |·|RepT (C v D)|.
It is important to notice that this does not violate the result that cautious and
brave reasoning are not repair-polynomial. The main difference is that this vari-
ant of Algorithm 1 does not need to compute the repairs; they are already given.

Clearly, Algorithm 1 does more than merely deciding cautious and brave
consequences. Indeed, it computes the set of all repairs that entail C ′ v D′. This
information can be used to decide more complex reasoning tasks. For instance,
one may be interested in knowing whether the consequence follows from most,
or at least k repairs, to mention just two possible inferences. IAR semantics can
also be decided in polynomial time on T and RepT (C v D): simply compute
Q =

⋂
R∈RepT (CvD)R, and test whether C ′ vQ D′ holds. The first step needs

polynomial time on RepT (C v D) while the second is polynomial on Q ⊆ T .
As we have seen, precompiling the set of repairs already yields an improve-

ment on the time required for deciding error-tolerant subsumption relations.
However, there are some obvious drawbacks to this idea. In particular, storing
and maintaining a possibly exponential set of TBoxes can be a challenge for
the knowledge engineer. Moreover, this method does not scale well for handling
multiple errors that are found at different time points. When a new error is de-
tected, the repairs of all the TBoxes need to be computed, potentially causing
the introduction of redundant TBoxes that must later be removed. We improve
on this solution by structuring all the repairs into a single labelled TBox.

Let RepT (C v D) = {R1, . . . ,Rn}. We label every GCI E v F ∈ T with
lab(E v F ) = {i | E v F ∈ Ri}. Conversely, for every subset I ⊆ {1, . . . , n} we
define the TBox TI = {E v F ∈ T | lab(E v F ) = I}. A set I is a component if
TI 6= ∅. Every axiom belongs to exactly one component and hence the number of
components is bounded by |T |. One can represent these components using only
polynomial space and all repairs can be read from them via a directed acyclic



Algorithm 2 Decide cautious and brave subsumption

Input: Labelled TBox T , concepts C′, D′

procedure is-brave(T , C′, D′)
for each M∈ MinAT (C′ v D′) do

if lab(M) 6= ∅ then
return true

return false
procedure is-cautious(T , C′, D′)

ν ← ∅
for each M∈ MinAT (C′ v D′) do

ν ← ν ∪ lab(M)
if ν = {1, . . . , n} then

return true
return false

graph expressing dependencies between components. For simplicity we keep the
representation as subsets of {1, . . . , n}.

The labelled TBox has full information on the repairs, and on their rela-
tionship with each other. For S ⊆ T , lab(S) :=

⋂
EvF∈S lab(E v F ) yields all

repairs containing S. If M is a MinA for C ′ v D′, lab(M) is a set of repairs
entailing this subsumption. Moreover, ν(C ′ v D′) :=

⋃
M∈MinAT (C′vD′) lab(M)

is the set of all repairs entailing C ′ v D′. Thus, C ′ is bravely subsumed by D′ iff
ν(C ′ v D′) 6= ∅ and is cautiously subsumed iff ν(C ′ v D′) = {1, . . . , n} (recall
Theorem 6).

The set ν(C ′ v D′) corresponds to the so-called boundary for the subsump-
tion C ′ v D′ w.r.t. the labelled TBox T [4]. Several methods for computing the
boundary exist. Since we are only interested in deciding whether this boundary
is empty or equal to {1, . . . , n}, we can optimize the algorithm to stop once this
decision is made. This optimized method is described in Algorithm 2. The algo-
rithm first computes all MinAs for C ′ vT D′, and their labels iteratively. If one
of this labels is not empty, then the subsumption is a brave consequence; the
procedure is-brave then returns true. Alternatively, is-cautious accumulates
the union of all these labels in a set ν until this set contains all repairs, at which
point it returns true.

The main difference between Algorithm 1 and Algorithm 2 is that the former
iterates over the set of repairs of the unwanted consequences, while the latter
iterates over MinAT (C ′ v D′). Typically, consequences have a small number
of MinAs, which only contain a few axioms, while repairs are usually large and
numerous. Thus, although Algorithm 2 has the overhead of computing the MinAs
for the wanted consequence, it then requires less and cheaper iterations. As
confirmed by our experimental results, this approach does show an advantage in
practice.

Using the labelled TBox, it is also possible to decide IAR semantics through
one subsumption test, and hence in polynomial time on the size of T , regardless
of the number of repairs.



Table 2. Metrics of the ontologies used in the experiments

Ontology #axioms #conc. names #role names

GALEN-OWL 45 499 23 136 404
NCI 159 805 104 087 92
SNOMED 369 194 310 013 58

Theorem 15. Let n = |RepT (C v D)|. Then C ′ is IAR-subsumed by D′ iff
C ′ vTJ D′, where J = {1, . . . , n}.

This shows that precompiling all repairs into a labelled ontology can help reduc-
ing the overall complexity and execution time of reasoning. Next, we exploit the
fact that the number of MinAs for consequences in ontologies used in practice
is relatively small and compute them using a saturation-based approach.

5 Implementation and Experiments

We ran two separate series of experiments. The goal of the first series was to in-
vestigate the feasibility of error-tolerant reasoning in practice. We implemented
a prototype tool in Java that checks whether a concept subsumption C v D is
brave or cautious w.r.t. a given TBox T and a consequence C ′ v D′. The tool
uses Theorem 6 and the duality between MinAs and repairs, i.e. the repairs for
C ′ v D′ w.r.t T can be obtained from the MinAs for C ′ v D′ w.r.t T by con-
secutively removing the minimal hitting sets [29] of the MinAs from T . The tool
first computes all the MinAs for both inclusions C v D and C ′ v D′ w.r.t. T ,
and then verifies whether some inclusions between the MinAs for C v D and
C ′ v D′ hold to check for brave or cautious subsumptions. Note that the inclu-
sion conditions only depend on the MinAs for the wanted consequence C v D
and the erroneous subsumption C ′ v D′ and not on the repairs of C ′ v D′.
Consequently, the repairs for C ′ v D′ do not have to be explicitly computed
in our tool. For the computation of the MinAs we used a saturation-based ap-
proach based on a consequence-based calculus [19]. More details regarding the
computation of MinAs can be found in [24].

We selected three ontologies that are expressed mainly in EL and are typically
considered to pose different challenges to DL reasoners. These are the January
2009 international release of Snomed CT, version 13.11d of the NCI thesaurus,1

and the GALEN-OWL ontology.2 All non-EL axiom (including axioms involving
roles only, e.g. role inclusion axioms) were first removed from the ontologies. The
number of axioms, concept names, and role names in the resulting ontologies is
shown in Table 2.

For every ontology T we selected a number of inclusion chains of the form
A1 vT A2 vT A3 vT A4, which were then grouped into

– Type I inclusions, where A2 vT A4 was set as the unwanted consequence,
and

1 http://evs.nci.nih.gov/ftp1/NCI_Thesaurus
2 http://owl.cs.manchester.ac.uk/research/co-ode/



Table 3. Experimental results obtained for checking brave and cautious subsumption

ontology type #succ. comp. #brave #cautious avg. #MinAs max #MinAs avg. time (s)

GALEN I 498 / 500 495 39 1.707 | 1.663 4 | 4 335.680
II 500 / 500 268 48 2.068 | 1.388 6 | 2 331.823

NCI I 26 / 26 26 2 1.269 | 1.154 2 | 3 13.465
II 36 / 36 16 8 3.111 | 1.111 7 | 3 15.338

SNOMED I 302 / 500 296 17 1.652 | 1.656 42 | 12 161.471
II 314 / 500 154 34 3.908 | 1.879 54 | 54 150.566

– Type II inclusions, where A2 vT A3 was the unwanted consequence.

For the NCI and Snomed CT ontologies we chose inclusions A2 v A4 (for
Type I) and A2 v A3 (for Type II) that were not entailed by the consecutive
version of the considered ontology, i.e. those that can be considered to be “mis-
takes” fixed in the consecutive release (the July 2009 international release of
Snomed CT and version 13.12e of the NCI Thesaurus). 500 inclusions of each
type were found for Snomed CT, but only 26 Type-I inclusions and 36 Type-II
inclusions were detected in the case of NCI. For the GALEN-OWL ontology 500
inclusions chains of each type were chosen at random. For every Type-I chain,
we then used our tool to check whether the inclusion A1 v A3 is a brave or
cautious consequence w.r.t. A2 v A4. Similarly, for every Type-II inclusion we
checked whether A1 v A4 is a brave or cautious consequence w.r.t. A2 v A3.

All experiments were conducted on a PC with an Intel Xeon E5-2640 CPU
running at 2.50GHz. An execution timeout of 30 CPU minutes was imposed
on each problem in this experiment series. The results obtained are shown in
Table 3. The first two columns indicate the ontology that was used and the
inclusion type. The next three columns show the number of successful computa-
tions within the time limit, and the number of brave and cautious subsumptions,
respectively. The average and the maximal number of MinAs over the considered
set of inclusions are shown in the next two columns. The left-hand side of each
of these columns refers to the MinAs obtained for the consequence for which its
brave or cautious entailment status should be checked, and the right-hand side
refers to the unwanted consequence. The last column shows the average CPU
time needed for the computations over each considered set of inclusions. All time
values shown indicate total computation times.

The number of successful computations was the lowest for the experiments
involving Snomed, whereas no timeouts were incurred for NCI. Moreover, the
highest average number of MinAs was found for Type-II inclusions for Snomed
with a maximal number of 54. GALEN-OWL required the longest computation
times, which could be a consequence of the fact that the (full) GALEN ontology
is generally seen as being difficult to classify by DL reasoners. The shortest
computation times were reported for experiments involving NCI. It is important
to notice, however, that the standard deviations of the computation times for
GALEN and Snomed were quite high. This indicates a large variation between
problem instances; for example, some instances relating to GALEN required less
than 9 seconds, and over one third of the experiments finished in sixty seconds or
less. All the successful computations required at most 11 GiB of main memory.



In a second series of experiments we evaluated the advantages of performing
precompilation when deciding several brave and cautious entailments w.r.t. an
unwanted consequence. We therefore implemented a slightly improved version of
Algorithm 1 which iterates over all the repairs for the unwanted consequence and
determines whether a consequence that should be checked is brave or cautious
by using the conditions from Definition 3. The implemented algorithm stops as
quickly as possible, e.g. when a non-entailing repair has been found, we conclude
immediately that the consequence is not cautious. The computation of the re-
pairs is implemented by making use of the duality between MinAs and repairs
(via the minimal hitting sets of the MinAs) as described above. The minimal
hitting sets were computed using the Boolean algebraic algorithm from [23]. In
the following we refer to this improved algorithm as the näıve approach. We used
the reasoner ELK [20] to check whether a given inclusion follows from a repair.
In particular, the incremental classification feature offered by ELK allowed us to
further reduce reasoning times. When switching from a repair R to the next R′,
the knowledge about removed (R \R′) and added axioms (R′ \ R) was utilised
by ELK to (potentially) avoid a complete reclassification.

Algorithm 2 was implemented in a straightforward way. The computation of
the repairs for the unwanted consequence was implemented analogously to the
näıve algorithm. Note that unlike with the näıve algorithm, all the MinAs for
the wanted consequences had to be computed.

For comparing the performance of the näıve approach (Algorithm 1) against
Algorithm 2 in practice, we selected 226 inclusions between concept names from
Snomed having more than 10 MinAs, with a maximum number of 223. For each
inclusion A v B we randomly chose five inclusions A′i v B′i entailed by Snomed,
and tested whether A′i v B′i is a brave or cautious subsumption w.r.t. A v B
for every i ∈ {1, . . . , 5} using the näıve approach and Algorithm 2. In this series
of experiments we allowed each problem instance to run for at most 3600 CPU
seconds, and 3 GiB of heap memory (with 16 GiB of main memory in total)
were allocated to the Java VM. Each problem instance was run three times, and
the best result was recorded.

The results obtained are depicted in Figure 1. The problem instances A v B
are sorted ascendingly along the x-axis according to the number of repairs for
A v B. The required computation times for each problem instance (computing
all repairs for the unwanted consequence and checking whether the five sub-
sumptions are brave or cautious entailments w.r.t. the unwanted consequence)
are shown along the y-axis on the left-hand side of the graph. If no corresponding
y-value is shown for a given problem instance, the computation either timed out
or ran out of memory in all three calls. The number of repairs for the unwanted
consequences appears on the right-hand side.

One can see that a relatively small number of repairs can lead to several thou-
sands (up to over 14 millions) of repairs. Also, if the number of repairs remains
small, i.e. below 400, the näıve approach performs fairly well, even outperform-
ing the precompilation approach on a few problem instances. For larger number
of repairs, however, none of the computations for the näıve approach succeeded.
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Fig. 2. Comparative performance according to the number of repairs.

The time required to perform reasoning with ELK outweighs the computation
times of all the MinAs for the precompilation approach. In total 118 instances
could be solved by at least one run of the precompilation approach, whereas only
42 computations finished when the näıve approach was used. Figure 2 shows the
comparative behaviour of the two approaches over the 22 instances that suc-
ceeded in both methods. The tone of each point depicts the number of repairs
of the unwanted consequence, as shown on the scale on the right. In the figure,
points below the diagonal line correspond to instances where the precompilation
approach performed better than the näıve approach. As it can be seen, the pre-
compilation approach typically outperforms the näıve one, even in these simple
cases, although there exist instances where the opposite behaviour is observed.
However, there are also 20 instances where only the näıve approach succeeded.
In our experiments the computation of the MinAs was typically the most time
consuming part; the computation of the repairs once all the MinAs were available
could be done fairly quickly.



6 Conclusions

We introduced error-tolerant reasoning inspired by inconsistency-tolerant se-
mantics from DLs and consistent query answering over inconsistent databases.
The main difference is that we allow for a general notion of error beyond incon-
sistency. We studied brave, cautious, and IAR reasoning, which depend on the
class of repairs from which a consequence can be derived. Although we focused
on subsumption w.r.t. EL TBoxes, these notions can be easily extended to any
kind of monotonic consequences from a logical language.

Our results show that error-tolerant reasoning is hard in general for EL,
although brave reasoning remains polynomial for some of its sublogics. Interest-
ingly, IAR semantics, introduced to regain tractability of inconsistency-tolerant
query answering in light-weight DLs, is coNP-hard, even for the basic logic
HL with core axioms. Moreover, the number of repairs is not the only culprit
for hardness of these tasks: for both brave and cautious reasoning there is no
polynomial-time algorithm on the size of T and the number of repairs that can
solve these problems unless P = NP.

To overcome the complexity issues, we propose to compile the repairs into a
labeled ontology. While the compilation step may require exponential time, after
its execution IAR semantics can be decided in polynomial time, and brave and
cautious semantics become repair-polynomial. Surprisingly, the idea of precom-
puting the set of all repairs to improve the efficiency of reasoning seems to have
been overlooked by the inconsistency-tolerant reasoning community.

To investigate the feasibility of error-tolerant reasoning in practice, we de-
veloped prototype tools based on computing all MinAs, and annotating axioms
with the repairs they belong to. Our experiments show that despite their theo-
retical complexity, brave and cautious reasoning can be performed successfully
in many practical cases, even for large ontologies. Our saturation-based proce-
dure can detect a large number of MinAs for some consequences in a fairly short
amount of time. We plan to study optimizations that can help us reduce the
reasoning times further. A deeper analysis of our experimental results will be
a first step in this direction. There is a close connection between error-tolerant
reasoning and axiom-pinpointing [6, 7]; our labelled ontology method also re-
lates to context-based reasoning [4]. Techniques developed for those areas, like
e.g. automata-based pinpointing methods [5], could be useful in this setting.

It is known that for some inexpressive DLs, all MinAs can be enumerated in
output-polynomial time [26,27]; the complexity of enumerating their repairs has
not, to the best of our knowledge, been studied. We will investigate if enumer-
ating repairs is also output-polynomial in those logics, and hence error-tolerant
reasoning is repair-polynomial.

We will study the benefits of using labelled axioms for ontology contrac-
tion [12] and ontology evolution. Contraction operations can be simulated by
modifying axiom labels, and minimal insertion operations add a labelled axiom.
We will also extend our algorithms for more expressive logics. A full implemen-
tation and testing of these approaches is under development.
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