Foundations of Constraint Programming Tutorial 2 (on November 6th)

Lukas Schweizer

WS 2018

Exercise 2.1:

Consider the following two CSPs

$$
\begin{aligned}
& P_{1}:=\langle x+y \leq z, 4 \leq z<6 ; x, y, z \in[2 . .6]\rangle \\
& P_{2}:=\langle a<z, x+y=a, z \geq 5 ; a \in[4 . .6], x, y, z \in[2 . .6]\rangle
\end{aligned}
$$

a) Fix the order $X=a, x, y, z$ between variables. Represent each constraint C of P_{1} and P_{2} as set of projections $d[Y]$, where $d \in[4 . .6] \times[2 . .6]^{3}$ and Y is the subsequence of X which exactly contains the variables mentioned in C (cf. Slide 3, Lecture 2).
b) Give all solutions to P_{1} and P_{2}.
c) Are P_{1} and P_{2} equivalent? Are they equivalent with respect to some subsequence of $X=a, x, y, z$?

Exercise 2.2:

Consider the following Boolean constraints (see also Slide 22, Lecture 2):

$$
\begin{aligned}
i_{1} \wedge o_{2} & =y_{1} \\
i_{2} \wedge o_{1} & =y_{2} \\
\neg y_{1} & =o_{1} \\
\neg y_{2} & =o_{2}
\end{aligned}
$$

For the above constraints show two successful derivations using the Boolean constraint propagation rules given on Slides 23-24 (Lecture 2). For each derivation step you should underline the selected constraint and give the used rule. The initial CSPs are:
a) $\left\langle i_{1} \wedge o_{2}=y_{1}, i_{2} \wedge o_{1}=y_{2}, \neg y_{1}=o_{1}, \neg y_{2}=o_{2} ; i_{1}=0, i_{2}=1\right\rangle$
b) $\left\langle i_{1} \wedge o_{2}=y_{1}, i_{2} \wedge o_{1}=y_{2}, \neg y_{1}=o_{1}, \neg y_{2}=o_{2} ; o_{2}=1, i_{1}=1\right\rangle$

Exercise 2.3:

Consider the CSP from Slide 33, Lecture 2:

$$
\langle x \cdot y=z ; x \in[1 . .20], y \in[9 . .11], z \in[155 . .161]\rangle
$$

Transform this CSP using the three Multiplication Rules from Slide 32 until you reach a fixed point. Give the selected constraint and the used rule for each derivation step.

