

DEDUCTION SYSTEMS

Optimizations for Tableau Procedures

Sebastian Rudolph

Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary

Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary

• check satisfiability of C by constructing an abstraction of a model $\mathcal I$ such that $C^{\mathcal I}\neq \emptyset$

- check satisfiability of *C* by constructing an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- concepts in negation normal form (NNF) ~> makes rules simpler

- check satisfiability of *C* by constructing an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- concepts in negation normal form (NNF) \rightsquigarrow makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$

- check satisfiability of *C* by constructing an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- concepts in negation normal form (NNF) \rightsquigarrow makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize *G* with a node *v* such that $L(v) = \{C\}$

- check satisfiability of *C* by constructing an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- concepts in negation normal form (NNF) \rightsquigarrow makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize *G* with a node *v* such that $L(v) = \{C\}$
- extend G by applying tableau rules

- check satisfiability of *C* by constructing an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- concepts in negation normal form (NNF) \rightsquigarrow makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize *G* with a node *v* such that $L(v) = \{C\}$
- extend G by applying tableau rules
 - ⊔-rule non-deterministic (we guess)
- tableau branch closed if G contains an atomic contradiction (clash)

- check satisfiability of *C* by constructing an abstraction of a model $\mathcal I$ such that $C^{\mathcal I} \neq \emptyset$
- concepts in negation normal form (NNF) \rightsquigarrow makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize *G* with a node *v* such that $L(v) = \{C\}$
- extend G by applying tableau rules
 - ⊔-rule non-deterministic (we guess)
- tableau branch closed if G contains an atomic contradiction (clash)
- tableau construction successful, if no further rules are applicable and there is no contradiction

- check satisfiability of *C* by constructing an abstraction of a model $\mathcal I$ such that $C^{\mathcal I} \neq \emptyset$
- concepts in negation normal form (NNF) \rightsquigarrow makes rules simpler
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize *G* with a node *v* such that $L(v) = \{C\}$
- extend G by applying tableau rules
 - ⊔-rule non-deterministic (we guess)
- tableau branch closed if G contains an atomic contradiction (clash)
- tableau construction successful, if no further rules are applicable and there is no contradiction
- C is satisfiable iff there is a successful tableau construction

Treatment of Knowledge Bases

we condense the TBox into one concept: for $\mathcal{T} = \{C_i \sqsubseteq D_i \mid 1 \le i \le n\}, C_{\mathcal{T}} = \mathsf{NNF}(\prod_{1 \le i \le n} \neg C_i \sqcup D_i)$

we extend the rules of the \mathcal{ALC} tableau algorithm:

 \mathcal{T} -rule: for an arbitrary $v \in V$ with $C_{\mathcal{T}} \notin L(v)$, let $L(v) := L(v) \cup \{C_{\mathcal{T}}\}$.

in order to take an ABox \mathcal{A} into account, initialize G such that

- V contains a node v_a for every individual a in A
- $L(v_a) = \{C \mid C(a) \in \mathcal{A}\}$
- $\langle v_a, v_b \rangle \in E \text{ iff } r(a, b) \in \mathcal{A}$

Extensions of the Logic

- plus inverses (*ALCT*): inverse roles in edge labels, definition and use of r-neighbors instead of *r*-successors in tableau rules
- plus functional roles (ALCIF): merging of nodes to account for functionality

blocking guarantees termination:

- ALC subset-blocking
- plus inverses (ALCI): equality blocking
- plus functional roles (ALCIF): pairwise blocking

Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary

Optimizations

- Naïve implementation not performant enough
 - \mathcal{T} -regel adds one disjunction per axiom to the corresponding node
 - ontologies may contain $> 1.000 \mbox{ axioms}$ and tableaux may contain thousands of nodes

Optimizations

- Naïve implementation not performant enough
 - \mathcal{T} -regel adds one disjunction per axiom to the corresponding node
 - ontologies may contain $> 1.000 \mbox{ axioms}$ and tableaux may contain thousands of nodes
- realistic implementations use many optimizations
 - (Lazy) unfolding
 - Absorbtion
 - Dependency directed backtracking
 - Simplification and Normalization
 - Caching
 - Heuristics
 - ...

Optimizations

- Naïve implementation not performant enough
 - \mathcal{T} -regel adds one disjunction per axiom to the corresponding node
 - ontologies may contain $> 1.000 \mbox{ axioms}$ and tableaux may contain thousands of nodes
- realistic implementations use many optimizations
 - (Lazy) unfolding
 - Absorbtion
 - Dependency directed backtracking
 - Simplification and Normalization
 - Caching
 - Heuristics
 - ...

Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary

Unfolding

- T-rule is not necessary if T is unfoldable, i.e., every axiom is:
 - definitorial: form $A \sqsubseteq C$ or $A \equiv C$ for A a concept name $(A \equiv C \text{ corresponds to } A \sqsubseteq C \text{ and } C \sqsubseteq A)$
 - acyclic: C uses A neither directly nor indirectly
 - unique: only one such axiom exists for every concept name A

Unfolding

- T-rule is not necessary if T is unfoldable, i.e., every axiom is:
 - definitorial: form $A \sqsubseteq C$ or $A \equiv C$ for A a concept name $(A \equiv C \text{ corresponds to } A \sqsubseteq C \text{ and } C \sqsubseteq A)$
 - acyclic: C uses A neither directly nor indirectly
 - unique: only one such axiom exists for every concept name A
- If \mathcal{T} is unfoldable, the TBox can be (unfolded) into a concept

• We check satisfiability of A w.r.t. the TBox T

A

• We check satisfiability of A w.r.t. the TBox T

• We check satisfiability of A w.r.t. the TBox T

 $A \\ \rightsquigarrow A \sqcap B \sqcap \exists r.C$

• We check satisfiability of A w.r.t. the TBox T

A $\rightsquigarrow A \sqcap B \sqcap \exists r.C$ $\rightsquigarrow A \sqcap (C \sqcup D) \sqcap \exists r.C$

• We check satisfiability of A w.r.t. the TBox T

A $A \sqsubseteq B \sqcap \exists r.C$ $\rightsquigarrow A \sqcap B \sqcap \exists r.C$ $B \equiv C \sqcup D$ $\rightsquigarrow A \sqcap (C \sqcup D) \sqcap \exists r.C$ $C \sqsubseteq \exists r.D$ $\rightsquigarrow A \sqcap ((C \sqcap \exists r.D) \sqcup D) \sqcap \exists r.(C \sqcap \exists r.D)$

 \mathcal{T} :

• We check satisfiability of A w.r.t. the TBox T

T: $A \sqsubseteq B \sqcap \exists r.C$ $\Rightarrow A \sqcap B \sqcap \exists r.C$ $B \equiv C \sqcup D$ $\Rightarrow A \sqcap (C \sqcup D) \sqcap \exists r.C$ $C \sqsubseteq \exists r.D$ $\Rightarrow A \sqcap ((C \sqcap \exists r.D) \sqcup D) \sqcap \exists r.(C \sqcap \exists r.D)$

• A is satisfiable w.r.t. T iff

 $A \sqcap ((C \sqcap \exists r.D) \sqcup D) \sqcap \exists r.(C \sqcap \exists r.D)$

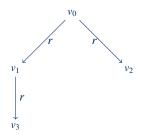
```
is satisfiable w.r.t. the empty TBox
```

TU Dresden

Deduction Systems

Tableau Algorithm Example with Unfolding

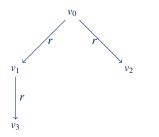
We obtain the following contradiction-free tableau for the satisfiability of $U = A \sqcap ((C \sqcap \exists r.D) \sqcup D) \sqcap \exists r.(C \sqcap \exists r.D):$



 $L(v_0) = \{U, A, (C \sqcap \exists r.D) \sqcup D, \\ \exists r.(C \sqcap \exists r.D), C \sqcap \exists r.D, \\ C, \exists r.D\} \}$ $L(v_1) = \{C \sqcap \exists r.D, C, \exists r.D\} \\ L(v_2) = \{D\} \\ L(v_3) = \{D\}$

Tableau Algorithm Example with Unfolding

We obtain the following contradiction-free tableau for the satisfiability of $U = A \sqcap ((C \sqcap \exists r.D) \sqcup D) \sqcap \exists r.(C \sqcap \exists r.D):$



$$L(v_0) = \{U, A, (C \sqcap \exists r.D) \sqcup D, \\ \exists r.(C \sqcap \exists r.D), C \sqcap \exists r.D, \\ C, \exists r.D\} \\ L(v_1) = \{C \sqcap \exists r.D, C, \exists r.D\} \\ L(v_2) = \{D\} \\ L(v_3) = \{D\}$$

Only one disjunctive decision left!

Lazy Unfolding

- computation of NNF together with unfolding may decrease performance, e.g.:
 - satisfiability of $C \sqcap \neg C$ w.r.t. $\mathcal{T} = \{C \sqsubseteq A \sqcap B\}$
 - unfolding: $C \sqcap A \sqcap B \sqcap \neg (C \sqcap A \sqcap B)$
 - NNF + unfolding: $C \sqcap A \sqcap B \sqcap (\neg C \sqcup \neg A \sqcup \neg B)$

Lazy Unfolding

- computation of NNF together with unfolding may decrease performance, e.g.:
 - satisfiability of $C \sqcap \neg C$ w.r.t. $\mathcal{T} = \{C \sqsubseteq A \sqcap B\}$
 - unfolding: $C \sqcap A \sqcap B \sqcap \neg (C \sqcap A \sqcap B)$
 - NNF + unfolding: $C \sqcap A \sqcap B \sqcap (\neg C \sqcup \neg A \sqcup \neg B)$
- better: apply NNF and unfolding if needed, via corresponding tableau rules:

 $- A \equiv C \rightsquigarrow A \sqsubseteq C \text{ and } A \sqsupseteq C$

- $□-rule: For v ∈ V such that A □ C ∈ T, \neg A ∈ L(v) and \neg C ∉ L(v)$ $let L(v) := L(v) ∪ {¬C}.$
- ¬-rule: For $v \in V$ such that $\neg C \in L(v)$ and NNF($\neg C$) ∉ L(v), let $L(v) := L(v) \cup {NNF(\neg C)}.$

Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary

- What if \mathcal{T} is not unfoldable?
 - Separate T into T_u (unfoldable part) and T_g (GCIs, not unfoldable)
 - \mathcal{T}_u is treated via \sqsubseteq and \sqsupseteq -rules
 - \mathcal{T}_g is treated via the \mathcal{T} -rule

- What if T is not unfoldable?
 - Separate \mathcal{T} into \mathcal{T}_{μ} (unfoldable part) and \mathcal{T}_{ν} (GCIs, not unfoldable)
 - \mathcal{T}_u is treated via \Box and \Box -rules
 - \mathcal{T}_{g} is treated via the \mathcal{T} -rule
- absorption decreases \mathcal{T}_{e} and increases \mathcal{T}_{u}
 - 1) take an axiom from \mathcal{T}_g , e.g., $A \sqcap B \sqsubseteq C$
 - 2 transform the axiom: $A \sqsubseteq C \sqcup \neg B$
 - 3 if \mathcal{T}_u contains an axiom of the form $A \equiv D$ ($A \sqsubseteq D$ and $D \sqsupseteq A$), then $A \sqsubseteq C \sqcup \neg B$ cannot be absorbed;
 - $A \sqsubseteq C \sqcup \neg B$ remains in \mathcal{T}_g
 - - 4) otherwise, if \mathcal{T}_u contains an axiom of the form $A \sqsubseteq D$, then absorb $A \sqsubseteq C \sqcup \neg B$ resulting in $A \sqsubseteq D \sqcap (C \sqcup \neg B)$
 - **5** otherwise move $A \sqsubseteq C \sqcup \neg B$ to \mathcal{T}_{μ}

- What if \mathcal{T} is not unfoldable?
 - Separate T into T_u (unfoldable part) and T_g (GCIs, not unfoldable)
 - \mathcal{T}_u is treated via \sqsubseteq and \sqsupseteq -rules
 - \mathcal{T}_g is treated via the \mathcal{T} -rule
- absorption decreases \mathcal{T}_g and increases \mathcal{T}_u
 - 1 take an axiom from \mathcal{T}_g , e.g., $A \sqcap B \sqsubseteq C$
 - 2 transform the axiom: $A \sqsubseteq C \sqcup \neg B$
 - if \mathcal{T}_u contains an axiom of the form $A \equiv D$ ($A \sqsubseteq D$ and $D \sqsupseteq A$), then $A \sqsubseteq C \sqcup \neg B$ cannot be absorbed;
 - $A \sqsubseteq C \sqcup \neg B$ remains in \mathcal{T}_g
- Otherwise, if *T_u* contains an axiom of the form *A* ⊆ *D*, then absorb *A* ⊆ *C* ⊔ ¬*B* resulting in *A* ⊆ *D* ⊓ (*C* ⊔ ¬*B*)
- **5** otherwise move $A \sqsubseteq C \sqcup \neg B$ to \mathcal{T}_u
- If $A \equiv D \in T_u$, try rewriting/absorption with other axioms in T_u

- What if \mathcal{T} is not unfoldable?
 - Separate T into T_u (unfoldable part) and T_g (GCIs, not unfoldable)
 - \mathcal{T}_u is treated via \sqsubseteq and \sqsupseteq -rules
 - \mathcal{T}_g is treated via the \mathcal{T} -rule
- absorption decreases \mathcal{T}_g and increases \mathcal{T}_u
 - 1 take an axiom from \mathcal{T}_g , e.g., $A \sqcap B \sqsubseteq C$
 - 2 transform the axiom: $A \sqsubseteq C \sqcup \neg B$
 - if \mathcal{T}_u contains an axiom of the form $A \equiv D$ ($A \sqsubseteq D$ and $D \sqsupseteq A$), then $A \sqsubseteq C \sqcup \neg B$ cannot be absorbed;

 $A \sqsubseteq C \sqcup \neg B$ remains in \mathcal{T}_g

3 otherwise, if \mathcal{T}_u contains an axiom of the form $A \sqsubseteq D$, then absorb $A \sqsubseteq C \sqcup \neg B$ resulting in $A \sqsubseteq D \sqcap (C \sqcup \neg B)$

otherwise move
$$A \sqsubseteq C \sqcup \neg B$$
 to \mathcal{T}

- If $A \equiv D \in T_u$, try rewriting/absorption with other axioms in T_u
- nondeterministic: $B \sqsubseteq C \sqcup \neg A$ also possible

Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary

- · despite those optimizations, search space often to big
- let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$

- · despite those optimizations, search space often to big
- let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$

 $\nu \qquad \sqcap \text{-rule } \mathsf{L}(\mathsf{v}) := L(v) \cup \{(C_1 \sqcup D_1), \dots, (C_n \sqcup D_n), \\ \exists r. \neg A, \forall r. (A \sqcap B)\}$

- · despite those optimizations, search space often to big
- let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$

 $v \qquad \square \text{-rule} \quad \mathsf{L}(\mathsf{v}) := L(v) \cup \{(C_1 \sqcup D_1), \dots, (C_n \sqcup D_n), \\ \exists r. \neg A, \forall r. (A \sqcap B)\} \\ \sqcup \text{-rule} \quad \mathsf{L}(\mathsf{v}) := L(v) \cup \{C_1\} \\ \vdots \qquad \vdots \qquad \vdots \\ \sqcup \text{-rule} \quad \mathsf{L}(\mathsf{v}) := L(v) \cup \{C_n\}$

- · despite those optimizations, search space often to big
- let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$

- · despite those optimizations, search space often to big
- let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$

 $\begin{array}{ccccc} v & & & & & & & \\ r & & & & & \\ \downarrow & & & & \\ w & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} \neg r. \neg A, \forall r. (A \sqcap B) \} \\ & & & \\ \Box - rule & \mathsf{L}(\mathsf{v}) & := & L(v) \cup \{C_1\} \\ & & \\ \vdots & & \\ & & \\ \Box - rule & \mathsf{L}(\mathsf{v}) & := & L(v) \cup \{C_n\} \\ & & \\ \exists - rule & \mathsf{L}(\mathsf{w}) & := & \{\neg A\} \\ & & \\ \forall - rule & \mathsf{L}(\mathsf{w}) & := & \{\neg A, A\} & clash \end{array}$

- · despite those optimizations, search space often to big
- let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$

$$\begin{array}{cccc} & & & & & & & \\ \mathbf{v} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

- · despite those optimizations, search space often to big
- let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$

 despite those optimizations, search space often to big let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$ \sqcap -rule L(v) := $L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \ldots, (C_$ $\exists r. \neg A, \forall r. (A \sqcap B) \}$ \sqcup -rule L(v) := $L(v) \cup \{C_1\}$ r w clash \sqcup -rule L(v) $:= \mathcal{L}(v) \cup \{D_n\}$ $L(w) := \{\neg A\}$ ∃-rule

 despite those optimizations, search space often to big let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$ \sqcap -rule L(v) := $L(v) \cup \{(C_1 \sqcup D_1), \dots, (C_n \sqcup D_n), \dots, (C$ $\exists r. \neg A, \forall r. (A \sqcap B) \}$ \sqcup -rule L(v) := $L(v) \cup \{C_1\}$ r w clash := \sqcup -rule L(v) $:= \mathcal{L}(v) \cup \{D_n\}$ \exists -rule L(w) := $\{\neg A\}$ \forall -rule L(w) := { $\neg A, A$ } clash

- despite those optimizations, search space often to big let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$ \sqcap -rule L(v) := $L(v) \cup \{(C_1 \sqcup D_1), \dots, (C_n \sqcup D_n), \dots, (C$ $\exists r. \neg A, \forall r. (A \sqcap B) \}$ \sqcup -rule L(v) := $L(v) \cup \{C_1\}$ r w := clash \sqcup -rule L(v) $:= \mathcal{L}(v) \cup \{D_n\}$ \exists -rule L(w) := $\{\neg A\}$ ∀-rule $L(w) := \{\neg A, A\}$ clash
- exponentially big search space is traversed

TU Dresden

Deduction Systems

• goal: recognize bad branching decisions quickly and do not repeat them

- goal: recognize bad branching decisions quickly and do not repeat them
- most frequently used: backjumping

- goal: recognize bad branching decisions quickly and do not repeat them
- most frequently used: backjumping
- backjumping works roughly as follows:
 - concepts in the node label are tagged with a set of integers (dependency set) allowing to identify the concept's "origin"
 - initially, all concepts are tagged with \emptyset
 - tableau rules combine and extend these tags
 - \Box -rule adds the tag {*d*} to the existing tag, where *d* is the \Box -depth (number of \Box -rules applied by now)
 - when encountering a contradiction, the labels alow to identify the origin of the concepts causing the contradiction
 - jump back to the last relevant application of a ⊔-rule

- goal: recognize bad branching decisions quickly and do not repeat them
- most frequently used: backjumping
- backjumping works roughly as follows:
 - concepts in the node label are tagged with a set of integers (dependency set) allowing to identify the concept's "origin"
 - initially, all concepts are tagged with \emptyset
 - tableau rules combine and extend these tags
 - \Box -rule adds the tag {*d*} to the existing tag, where *d* is the \Box -depth (number of \Box -rules applied by now)
 - when encountering a contradiction, the labels alow to identify the origin of the concepts causing the contradiction
 - jump back to the last relevant application of a \sqcup -rule
- irrelevant part of the search space is not considered

 $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$ tagged with \emptyset


```
\begin{array}{ccc} (C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v) & \text{tagged with } \emptyset \\ _{\mathcal{V}} & \sqcap \text{-rule} & \mathsf{L}(\mathsf{v}) & \coloneqq & L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\ & \exists r. \neg A, \forall r. (A \sqcap B)\} & \text{all with } \emptyset \end{array}
```


 $(C_{1} \sqcup D_{1}) \sqcap \ldots \sqcap (C_{n} \sqcup D_{n}) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v) \quad \text{tagged with } \emptyset$ $v \qquad \sqcap \text{-rule } L(v) := L(v) \cup \{(C_{1} \sqcup D_{1}), \ldots, (C_{n} \sqcup D_{n}), \\ \exists r. \neg A, \forall r. (A \sqcap B)\} \quad \text{all with } \emptyset$ $\sqcup \text{-rule } L(v) := L(v) \cup \{C_{1}\} \qquad C_{1} \text{ tagged with } \{1\}$ $\vdots \qquad \vdots \qquad \vdots$ $\sqcup \text{-rule } L(v) := L(v) \cup \{C_{n}\} \qquad C_{n} \text{ tagged with } \{n\}$

 $\begin{array}{c|c} (C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v) \quad \text{tagged with } \emptyset \\ \\ v \qquad \sqcap \text{-rule } L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\ \exists r. \neg A, \forall r. (A \sqcap B)\} \quad \text{all with } \emptyset \\ \\ \sqcup \text{-rule } L(v) := L(v) \cup \{C_1\} \qquad C_1 \text{ tagged with } \{1\} \\ \\ \vdots \qquad \vdots \qquad \vdots \\ \\ W \qquad \exists \text{-rule } L(v) := L(v) \cup \{C_n\} \qquad C_n \text{ tagged with } \{n\} \\ \\ \exists \text{-rule } L(w) := \{\neg A\} \qquad A, r \text{ tagged with } \emptyset \end{array}$

 $\begin{array}{c|c} (C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v) \quad \text{tagged with } \emptyset \\ \\ v \qquad \sqcap \text{-rule} \quad \mathsf{L}(v) := \quad L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\ \quad \exists r. \neg A, \forall r. (A \sqcap B)\} \quad \text{all with } \emptyset \\ \\ \sqcup \text{-rule} \quad \mathsf{L}(v) := \quad L(v) \cup \{C_1\} \qquad C_1 \text{ tagged with } \{1\} \\ \\ \vdots \qquad \vdots \qquad \vdots \\ \\ w \qquad \qquad \exists \text{-rule} \quad \mathsf{L}(v) := \quad L(v) \cup \{C_n\} \qquad C_n \text{ tagged with } \{n\} \\ \\ \exists \text{-rule} \quad \mathsf{L}(w) := \quad \{\neg A\} \qquad A, r \text{ tagged with } \emptyset \\ \\ \forall \text{-rule} \quad \mathsf{L}(w) := \quad \{\neg A, A\} \text{ clash} \qquad \neg A \text{ tagged with mit } \emptyset$

•
$$tag(A) \cup tag(\neg A) = \emptyset$$

- $tag(A) \cup tag(\neg A) = \emptyset$
- None of the Li-rules has contributed to the cotradiction

- $tag(A) \cup tag(\neg A) = \emptyset$
- None of the ⊔-rules has contributed to the cotradiction
- Output false (unsatisfiable)

TU Dresden

Deduction Systems

Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary

- Simplification and Normalization
 - quick recognition of trivial contradictions
 - normalization, z.B., $A \sqcap (B \sqcap C) \equiv \sqcap \{A, B, C\}, \forall r.C \equiv \neg \exists r. \neg C$
 - simplification, e.g., $\sqcap \{A, \ldots, \neg A, \ldots\} \equiv \bot, \exists r. \bot \equiv \bot, \forall r. \top \equiv \top$

• Simplification and Normalization

- quick recognition of trivial contradictions
- normalization, z.B., $A \sqcap (B \sqcap C) \equiv \sqcap \{A, B, C\}, \forall r.C \equiv \neg \exists r. \neg C$
- simplification, e.g., $\sqcap \{A, \ldots, \neg A, \ldots\} \equiv \bot, \exists r. \bot \equiv \bot, \forall r. \top \equiv \top$
- caching
 - prevents the repeated construction of equal subtrees
 - L(v) initialized with $\{C_1, \ldots, C_n\}$ via \exists and \forall -rules
 - check if satisfiability status is cached, otherwise
 - check satisfiability of $C_1 \sqcap \ldots \sqcap C_n$, update the cache

• Simplification and Normalization

- quick recognition of trivial contradictions
- normalization, z.B., $A \sqcap (B \sqcap C) \equiv \sqcap \{A, B, C\}, \forall r.C \equiv \neg \exists r. \neg C$
- simplification, e.g., $\sqcap \{A, \ldots, \neg A, \ldots\} \equiv \bot, \exists r. \bot \equiv \bot, \forall r. \top \equiv \top$
- caching
 - prevents the repeated construction of equal subtrees
 - L(v) initialized with $\{C_1, \ldots, C_n\}$ via \exists and \forall -rules
 - check if satisfiability status is cached, otherwise
 - check satisfiability of $C_1 \sqcap \ldots \sqcap C_n$, update the cache
- heuristics
 - try to find good orders for the "don't care" nondeterminism
 - e.g., \sqcap , \forall , \sqcup , \exists

• Simplification and Normalization

- quick recognition of trivial contradictions
- normalization, z.B., $A \sqcap (B \sqcap C) \equiv \sqcap \{A, B, C\}, \forall r.C \equiv \neg \exists r. \neg C$
- simplification, e.g., $\sqcap \{A, \ldots, \neg A, \ldots\} \equiv \bot, \exists r. \bot \equiv \bot, \forall r. \top \equiv \top$
- caching
 - prevents the repeated construction of equal subtrees
 - L(v) initialized with $\{C_1, \ldots, C_n\}$ via \exists and \forall -rules
 - check if satisfiability status is cached, otherwise
 - check satisfiability of $C_1 \sqcap \ldots \sqcap C_n$, update the cache
- heuristics
 - try to find good orders for the "don't care" nondeterminism
 - $\text{ e.g.}, \sqcap, \forall, \sqcup, \exists$
- ...

Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary

One of the most wide-spread tasks for automated reasoning is classification

- compute all subclass relationships between atomic concepts in $\ensuremath{\mathcal{T}}$

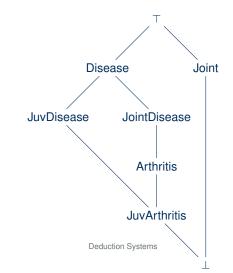
One of the most wide-spread tasks for automated reasoning is classification

- compute all subclass relationships between atomic concepts in $\ensuremath{\mathcal{T}}$
- check for *T* ⊨ *C* ⊑ *D* can be reduced to checking satisfiability of *T* together with the ABox (*C* ⊓ ¬*D*)(*a*) (or, equivalenty: *C*(*a*), (¬*D*)(*a*))
 - $\rightsquigarrow~$ if \top is satisfiable: subsumption does not hold (as we have constructed a counter-model)
 - \rightsquigarrow if \top is unsatisfiable: subsumption holds (no counter-model exists)

One of the most wide-spread tasks for automated reasoning is classification

- compute all subclass relationships between atomic concepts in $\ensuremath{\mathcal{T}}$
- check for *T* ⊨ *C* ⊑ *D* can be reduced to checking satisfiability of *T* together with the ABox (*C* ⊓ ¬*D*)(*a*) (or, equivalenty: *C*(*a*), (¬*D*)(*a*))
 - $\rightsquigarrow~$ if \top is satisfiable: subsumption does not hold (as we have constructed a counter-model)
 - \rightsquigarrow if \top is unsatisfiable: subsumption holds (no counter-model exists)
- naïve approach needs n² subsumption checks for n concept names
- normally cached in the concept hierarchy graph

Concept Hierarchy Graph



TU Dresden

most wide-spread technique is called enhanced traversal

most wide-spread technique is called enhanced traversal

· hierarchy is created incrementally by introducing concept after concept

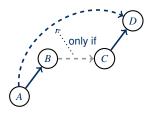
most wide-spread technique is called enhanced traversal

- hierarchy is created incrementally by introducing concept after concept
- top-down phase: recognize direct superconcepts
- bottom-up phase: recognize direct subconcepts

Optimizing Classification

most wide-spread technique is called enhanced traversal

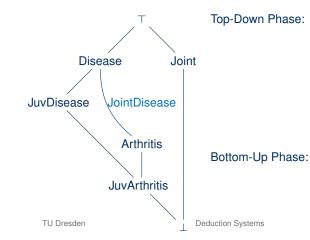
- · hierarchy is created incrementally by introducing concept after concept
- top-down phase: recognize direct superconcepts
- bottom-up phase: recognize direct subconcepts
- transitivity of **_** used to save checks



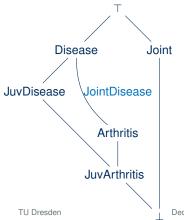
- If $A \sqsubseteq B$ and $C \sqsubseteq D$ hold,
- then $B \sqsubseteq C \longrightarrow A \sqsubseteq D$
- and $A \not\sqsubseteq D \longrightarrow B \not\sqsubseteq C$

Goal: insertion of JointDisease

already created hierarchy:



already created hierarchy:



Goal: insertion of JointDisease

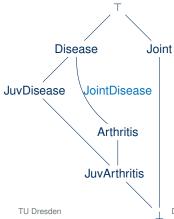
Top-Down Phase:

• JointDisease \sqsubseteq ? Disease

Bottom-Up Phase:

Deduction Systems

already created hierarchy:



Goal: insertion of JointDisease

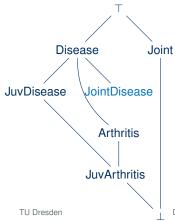
Top-Down Phase:

- JointDisease \sqsubseteq Disease
- JointDisease \sqsubseteq ? JuvDisease

Bottom-Up Phase:

Deduction Systems

already created hierarchy:

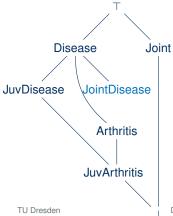


Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease \sqsubseteq Disease
- JointDisease $\not\sqsubseteq$ JuvDisease
- JointDisease \sqsubseteq ? Arthritis

already created hierarchy:

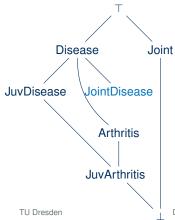


Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease \sqsubseteq Disease
- JointDisease $\not\sqsubseteq$ JuvDisease
- JointDisease
 Arthritis
- JointDisease ⊑[?] Joint

already created hierarchy:



Goal: insertion of JointDisease

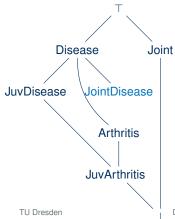
Top-Down Phase:

- JointDisease \sqsubseteq Disease
- JointDisease $\not\sqsubseteq$ JuvDisease
- JointDisease $\not\sqsubseteq$ Arthritis

Bottom-Up Phase:

● JuvArthritis ⊑ ? JointDisease

already created hierarchy:



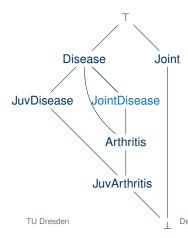
Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease \sqsubseteq Disease
- JointDisease $\not\sqsubseteq$ JuvDisease
- JointDisease $\not\sqsubseteq$ Arthritis

- JuvArthritis \sqsubseteq JointDisease
- JuvDisease \sqsubseteq ? JointDisease

already created hierarchy:



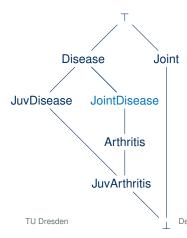
Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease \sqsubseteq Disease
- JointDisease $\not\sqsubseteq$ JuvDisease
- JointDisease ⊈ Arthritis

- Arthritis ⊑ ? JointDisease

already created hierarchy:



Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease \sqsubseteq Disease
- JointDisease $\not\sqsubseteq$ JuvDisease
- JointDisease $\not\sqsubseteq$ Arthritis

- JuvArthritis \sqsubseteq JointDisease
- JuvDisease $\not\sqsubseteq$ JointDisease
- Arthritis JointDisease

Agenda

- Recap Tableau Calculus
- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary

Summary

- we have a tableau algorithm for \mathcal{ALCIF} knowledge bases
 - ABox treated like for \mathcal{ALC}
 - number restrictions are treated similar to functionality and existential quantifiers
- termination via cycle detection
 - becomes harder as the logic becomes more expressive
- naive tableau algorithm not sufficiently performant
- diverse optimizations improve average case
- specific methods for classification
 - enhanced traversal
- tableaux algorithms or variants modifications thereof are the basis of OWL reasoners