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Abstract. Translations to (first-order) datalog have been used in abeurof
inferencing techniques for description logics (DLs), yet telationship between
the semantic expressivities of function-free Horn logid &t is understood only
poorly. Although Description Logic Programs (DLP) havedescribed as DLs
in the “expressive intersection” of DL and datalog, it is l&@c what an intersec-
tion of two syntactically incomparable logics is, even iftibdvave a first-order
logic semantics. In this work, weffer a characterisation for DL fragments that
can be expressed, in a concrete sense, in datalog. We theemdet the largest
such fragment for the DIALC, and provide an outlook on the extension of our
methods to more expressive DLs.

1 Introduction

Ontologies and rules are two fundamental concepts in krdiydeepresentation. Taking
ontologies as the basic modelling paradigm has led to theldement of Description
Logics (DLs) with a wide range of successful knowledge repmations languages. On
the other hand rules are the central notion in Logic Programgiuilding on first-order
Horn logic. Both have been very prolific research areas and hecently received a
boost in the context of the Semantic Web. As references topthiposes of this paper
we pointto P] and [4]. Since decidability is an important concern for DL, fumctifree
first-order Horn logic datalod' is of particular interest.

Since the semantic frameworks for DL and datalog are versgecibis natural that
the research community started investigating the relatigmbetween them. One direc-
tion explores how either formalism could be extended wittdees of the other. This
line of research is represented by approaches sugt/akg [8], CARIN [23], SWRL
[1314), DL+log[27], DL-safe rules 6], DL Rules [21,11], but also Datalog[5], and
¥3-rules B]. Another direction aims at pin-pointing how both formatis overlap. This
has led to the study of Horn description logi@ésp0] and Description Logic Programs
(DLP) [12,28]. The latter is a family of DLs that can be faithfully expredsin first-
order Horn-logic, and in particular in datalog, and the geligation of this approach is
the main topic of this papér.

3 Besides these two strands on integrating first-order rulds®Ls, there are numerous works
on extending DLs with non-monotonic features from logic gmeanming [L0,9,27,24,25]
which are interesting in their own right but not closely tetato this work.



Itis known that fragments of various DLs can be translatédl éguivalent or equi-
satisfiable datalog programs, and this has also been exghlwitsolve reasoning tasks.
This has been demonstrated, e.g., for the descriptiondddanSHIQ andEL™
[15,22,17,18]. In this paper we address the question whether there is @nmaakag-
ment that can be mapped into datalog. This would give a prec&aning to the slogan
of the “expressive intersection” of DL and datalog. Theuesl of naive attempts to de-
fine maximal fragments eventually led to the definition of aFDftagment for a given
DL in Section3 below. In Sectior4 we define the DLP fragme®.LP #,c of ALC
and prove its maximality. This result can be extendedRO7Q but the necessary
canonical syntactic descriptions are too complex to beughed in this paper. We thus
rather provide a summary of the relevant results and metind8sction5 and refer for
details and omitted proofs to the technical repa#|

2 Preliminaries

We assume the reader to be familiar with DLs (sE&7] for details and references),
and restrict to notational remarks here. The largest DL veeenter isSSROZQ™®, the
well-known DL SROIQ without any restrictions osimplicity andregularity of roles,
though only the simpler DLALC will be considered in detail within this paper. DL
knowledge bases are defined over finite sets of individuaksaiconstantd), concept
namedA, and roleR. We call.¥ = (I, A, R) asignature A signature” = (I’,A’,R")

is called arextensiorof ., in symbols¥ C ., if | C 1’ andA C A’ andR C R’".

We useFOL . to refer to standard first-order logic with equality. It is iheanown
in the folklore of DL and easy to see that there exists a tediosi r of SROZQ and
thus also ofALC into FOL - that preserves logical inference, i.e. KB KB, implies
7(KB1) E n(KB>). A definition ofr may e.g., be found inl[9, Figure 3.4].

We use the termdatalod’ to refer to the function-free Horn logic fragment of
FOL .. A datalog programis a first-order theory which contains only formulae of the
form ¥x.As A ... A Ay — B whereA;, B are atoms without function symbols of arity
greater than 0, and universal quantifies over all variabteswing in the implications.
We generally omit the quantifier, we simply wrigif n = 0, and we use. to denote
the empty head.

It will not be suficient for our work to consider knowledge bases KB such that
7(KB) is equivalent to a datalog program. Semantic equivadeturns out to be too
restrictive, it does e.g., not allow the use of new constamtt®ls denoting individuals
whose existence is required by ABox axioms. Equisatisfigtwh the other hand is too
weak — it does not preserve relevant logical entailments.f@tiowing notion turns out
to be a more appropriate middle-ground:

Definition 1. GivenFOL - theories T and Twith signatures? c .#”, then T seman-
tically emulatesT if

(1) every model of Thecomes a model of T when restricted to the interpretatiéns o
symbols froms”, and

(2) for every modely of T there is a model’ of T’ that has the same domain 8§
and that agrees witty on.”.



It is usually not necessary to mention the signatureb ahd T’ explicitly, since it
is always possible to find minimal signatures ToandT’ that satisfy condition (1) of
Definition 1. The concept of semantic emulation is also known by the nsansantic
conservative extensiolVe will prefer semantic emulation for its brevity.

Definition 2. GivenFOL_ theories T and Twith signatures? C ./, then T syn-
tactically emulated if for every first-order formulg over.”: T E ¢ iff T’ E .

It is easy to see thatemantic emulatioimplies syntactic emulationThis illus-
trates the strength and significanceseimantic emulatioffior knowledge representa-
tion: whenever a theory’ semantically emulates a theofy we find thatT” and T
encode the same informati@out the symbols T, and in particular that’ cannot
be distinguished from when restricting to those symbols.

Note, syntactic emulatiorf T by T’ can equivalently be characterized by the re-
quirement that for every formulaover.¥ the sets U{p} andT’U{¢} be equisatisfiable.

We will later make use of the following lemma, which genesed the well-known
least model property of datalog. The proof of this is strifigfward by unravelling of
the definitions.

Lemma 1. Let 74, 7, be interpretations over the same domain which agree on the
interpretation of constant and function symbols, and le€Talfirst-order theory that is
satisfied by7; and 7.

1. If T is a datalog program then also the intersectibnn 7, satisfies T.
2. If T can be semantically emulated by a datalog program #idea the intersection
TN I,satisfiesT.

The intersection of interpretations is defined in the obsivay based on the intersec-
tion of predicate extensions.

3 Considerations for Defining DLP

In this section, we discuss and motivate a generic definfoorDLP fragments of a
description logic. A powerful tool for obtaining this defiioin is the construction of
variants of logical expressions which preserve only thecklgtructure but may modify
concrete signature symbols:

Definition 3. Let F be aFOL. formula, a DL axiom, or a DL concept expression,
and let. be a signature. An expressiori Is a variantof F in . if F’ can be ob-
tained from F by replacing each occurrence of a fotecepindividual name with
some rolgoncepindividual name in¥. Multiple occurrences of the same entity name
in F neednotbe replaced by the same entity name6in this process.

A knowledge baskB’ is a variantof a knowledge baskB if it is obtained from
KB by replacing each axiom with a variant.

Note that we do not require all occurrences of an entity nasrigetrenamed to-
gether, soitis indeed possible to obtain-B from Ar—A. Considering all variants of



a formula or axiom allows us to study the semantics and egpigsof formulae based
on their syntactic structure, disregarding any possibleractions between signature
symbols. We therefore callROL - formula, DL axiom, or DL concept expressién
name-separatei no signature symbol occurs more than onc&in

Definition 4. Given description logicL and D, we callD a DLP fragmenbf L if

(1) every axiom o) is an axiom ofZ,

(2) there is a transformation functiodatalog that maps a» axioma to a datalog
programdatalog(a) such thatdatalog(e) semantically emulates,

(3) Dis closed under variants, i.e. given any axiarand an arbitrary variant’ of a,
we finda isin D iff ' is.

Item (1) of this definition fixes the syntactic framework fotBfragments. Item (2)
states the property that motivates the study of DLP langsiageery axioms of a DLP
fragment can be expressed in datalog. DLP languages assiétin the literature may
require the use of auxiliary symbols for the translationatatbg P8], and the datalog
program can no longer be semantically equivalent to ther@ignowledge base in this
case, even if all consequences with respect to the orignedigates are still the same.
This motivates the use of semantic emulation as introdut&ekfinition 1.

Item (3) of Definition4 reflects our desire to obtain fragments that correspond to
well-behaved logical languages as opposed to being ampit@lections of axioms.
An obvious way to implement this would be to require DLP fragnts to be described
by a context-free grammar. A typical feature of grammarddgical languages is that
they are parametrised by a logical signature that can befradaiithout changing the
essential structural features of the language. Thieceis mirrored by the requirement
of item (3) without introducing detailed requirements onuétable logical grammar.
We will find grammatical descriptions in the cases we constieugh item (3) as such
does not imply that this is possible.

Let us discuss for a moment an alternative to item (3) in Ddimi4. It seems
natural to require that membership in a fragment can be dd@ficiently, say in poly-
nomial time. Propositiod shows that in this case no maximal fragment can exist. Def-
inition 4 allows fragments without any restriction on the compleritthe membership
relation, but the maximal DLP fragment@fLC in Sectiord is described by a context-
free language, and thusfieiently recognisable.

Proposition 1. Given description logicZL and D, we callD a P-DLP fragmenbdf £
if items (1) and (2) of Definitiod are satisfied, and in addition there is a polynomial
procedure for deciding € D for any DL axiomu.

Unless the complexity classBsand PSace coincide, there is no maxim&DLP
fragment ofALC: given anyP-DLP fragmentD of ALC, there is aP-DLP fragment
7' of ALC that covers more axioms, .8 c .

Proof. We first need to argue that, even with unlimited resourcethfodatalog transla-
tion, it is not possible that DLP supports &lLC axioms. We show that, if the concept
expressiorC is satisfiable and does not contain the symliylgy, A,, andc, then no
datalog program semantically emulates the axiom (CraR.(A;LAL))(c). For a con-
tradiction, suppose thatis semantically emulated by a datalog thedayalog(«). By



constructiong is satisfiable, and so (&, A; C L} for eachi = 1, 2. By Definition2, we
find thatdatalog() U{A C L} is satisfiable, too. Thus, there are modglsf datalog(«)
such thatA;" = 0. By the least model property of datalog, there is also a m@de
datalog(a) such thatA] = A = 0. But thendatalog(a) U {A; LI A; C 1} is satisfiable
although{a, A; LI A, C 1} is not, contradicting the supposed semantic emulation.

We can now show that there is some unsatisfiable axiom thaitigi®. To this
end, recall that deciding (un)satisfiability G£LC concept expressions is P& hard.
However, we just showed that, if the axiam= (CM3aR.(A1 L Az))(C) is in D with sym-
bolsR, A1, Az, ¢ not in C, then the concepf is unsatisfiable. Thus, iD contains all
unsatisfiableALC axioms of the form ofy, then deciding whether € D is equivalent
to deciding whethe€ is unsatisfiable (since one can clearly constauitom C in poly-
nomial time). By the assumedrfient recognisability, this would yield a polynomial
decision procedure faALC concept satisfiability — a contradiction.

Therefore, there is an unsatisfiable axiamvith « ¢ D. Now let 2’ be defined
as D U {a}. The transformation is given byatalog’(«) = datalog(e) if @ € D, and
datalog’(a) = {T — A(X), A(X) — L} otherwise, wherd\ is a new predicate symbol. It
is immediate that this defines a P-DLP fragmen#bfC. O

This proof exemplifies a general problem that occurs whendrip define DLP: the
question whether an axiom is expressible in datalog is alyicomputationally harder
than one would like to admit for a language definition. Thisutecarries over to more
expressive DLs, and remains valid even if requirements asatosure under common
normal form transformations are added to the definitionadfnents. The fact that this
problem is avoided by item (3) in Definitiohconfirms our intuition that this require-
ment closely relates to the possibility of representing Didgments syntactically, i.e.
without referring to complex semantic conditions.

Proposition 2. Consider a class K of knowledge bases that belong to a DL Rrfead
of some description logic, and such that the maximal sizexioinas in K is bounded.
Deciding satisfiability of knowledge bases in K is possiblpalynomial time.

Proof. Let the maximal size of axioms be boundedNyLet V be a vocabulary with
N concept, role and constant symbols. By assumption we knawftn every of the
finitely many axiomsy of size less thamN there is a translatiodataloga). We use
this as a (finite) look-up table in the definition @@talog (B) for axiomss in KB € K:
Find a renamingr = o(8) such thatr is an expression in the vocabulavy Hereo is
a usual 1-1 renaming of symbols, not a variant in the senseetihiion 3. Look up
the datalog programatalod @) and setlatalog (8) = o-(datalog«)). It is easy to see
thatdatalogyg () still satisfies item (2) of Definitiod. Thus satisfiability of KBe K
can be decided by checking satisfiability(df.xg datalogyg (8). The maximal number
of variables occurring within these datalog programs mag Be bounded bi. Satis-
fiability of datalog with at mosN variables per rule can be decided in time polynomial
in 2N [7]. The renamings- can likewise be found in time polynomial if'2SinceN
is a constant, this yields a polynomial time upper bound feiding satisfiability of
knowledge bases iX. O

It is interesting that the previous result does not requimg assumptions on the
computational complexity of recognising or translating®&xioms. Intuitively, Propo-



Concepts necessarily equivalentto L% =7 |VRL? |[LInL? | LAuC

Concepts necessarily equivalentito L7 == 1 [ARLT LN C|LTuLT

Body (C € LY iff ~CC Ain DLParc): LT :=L7 LT[ -A|VRLI|ILINLE LI ULE
Head C € L7 iff ACCin DLPAs): LA u= L2 [A|VRLA|ILAALA LA ULY
AssertionsC € L7 iff C() in DLPasc): LY ==L [ARL LI LS LT ULy

Fig. 1. DLP a,c concepts in negation normal form

sition 2 states that reasoning in any DLP language is necessarityo&! tractable.
Indeed, many DLs allow complex axioms to be decomposed imtanaber of simpler
normal forms of bounded size, and in any such case tradtaisilobtained. Moreover,
Proposition2 clarifies why HornSH 7 Q cannot be in DLP: kEpTime worst-case com-
plexity of reasoning can be proven for a cl&sf Horn-SH 7Q knowledge bases as in
the above proposition (se2(], noting that remaining complex axioms can be decom-
posed in HornSHIQ).

4 The DLP Fragment of ALC

Using Definitiond4, it is now possible to investigate DLP fragments of relevdegcrip-

tion logics. In this paper, we detail this approach L C; some remarks on the more
complex case aSROIQ are given in Sectiob below. It turns out that the largest DLP
fragment of ALC exists, and can be defined as follows, where we use the nagatio
normal formNNF for simplifying our presentation.

Definition 5. We define the description logie LP # »¢ to contain all knowledge bases
consisting only ofALC axioms which are

— GCls Cc D such thaNNF(~C LI D) is anL{ concept as defined in Fig, or
— ABox axioms @a) whereNNF(C) is anL ' concept as defined in Fid.

The headings in Figl give the basic intuition about the significance of the vari-
ous concept languages. The distinction of head and bodyept$ics typical for many
works on DLP and Horn DLs, while our use of additional assegl concepts takes into
account that emulation allows for some forms of Skolemisafiypical example repre-
sentatives of the respective grammars-a#g1 VYR.(-BL =C) for LY, =AU (BN YR.C)
for L}j, and=AuL IR Bfor L.

Though name separation prevents most forms of semantiaatiens within con-
cepts, we still require grammars for andL 7 to characterise concepts all variants of
which are equivalent to and L, respectively. This includes concept expressions such
asAn3iRLandBUVYRT.

We start with an easy observation on Definit@nThis result will not explicitly be
used later on but might add to the understanding of this diefimi

Lemma 2. Consider arbitraryALC concept expressions C that do not contain quan-
tifiers ¥, 4, and the symbols and L.



1. If C € L then C has a conjunctive normal forfr; LI; Ci,j with G j a negated
atom for all i, j.

2. If C e L{{ or C € L then C has a conjunctive normal forfm; |_|; Cij with G ;
negated or unnegated atoms and for every i there is at mosj sneh that G; is
an unnegated atom.

(Since the assumptions require that C does not contain dfiexatthere is no dif-
ference here between€L; and Ce L)

Proof. Notice, thatC ¢ L7 andC ¢ L7 since neitherr nor L occurinC. For item (1),

note that ifC € Lg‘ then eithelC is a negated atom, @ = C; M C,orC = C, LG,

with C; € Lg‘. The claim now follows easily from the induction hypothesiseC,, Cs.
For item (2), by the assumptions @we haveC € Lﬁ‘ if one of the following cases

holds true:

1.Ce Lg‘. Then the claim follows from part (1) of the lemma.

2. Cis an atom. Then the claim is obviously true.

3.C=CinCywith G € Lﬁ. If C/ is a conjunctive normal form df; satisfying the
claim thenC; 1 C} is a conjunctive normal form o€ satisfying the claim.

4. C=CuCywith G € L andCy € L. Let[T; | J; Ci%j and[ T, I, C4,, be the con-
junctive normal forms that exist by induction hypothesigséging the respective
claims. A conjunctive normal form d@ = C; U C; is obtained as the conjunction
ofall | J;C!; u ||, C&,, for all combinations of, m. Since| |; C{; contains at most

one positive atom and|,, C,Znn contains only negative atoms we are finished.o

It is obvious thatDLP 4 ¢ satisfies items (1) and (3) of Definitigh so what re-
mains to show is thaD L? ¢ knowledge bases can indeed be expressed in datalog.
Following the grammatical structure 81.LP 4 c¢, we specify three auxiliary functions
for constructing datalog programs to semantically emwd¥? # . knowledge base.
The following two lemmata can be proven by simple inductj@es L9 for further de-
tails.

Lemma 3. Given a concept name A, and a concept €7, Fig. 2 recursively defines
a datalog programilg;(A C C) that semantically emulatesAC.

For an example of this transformation, consider Lt concepte = =B L (C 1
YR.D). Thendlgﬂ(A C E) consists of the following rules:

AR A X1 () = Xa(X)
B(¥) — Xu(x)

Xa(x) — C(x)

X2(X) AR(XY) = X3(X)
X3(x) — D(x)

Clearly, this rule set could be further simplified to obtdie three rule#\(x) A B(x) —
X2(X), Xo(x) — C(X), X2(X) A R(%,y) — D(X) which are easily seen to semantically
emulateAC E.

Lemma 4. Given a constant a and a concept € L, Fig. 3 recursively defines a
datalog progranligy;(C(a), 1) that semantically emulates().



c \d|gﬁ‘(A cC)

DelLy digg' (=X Z D) U{A(X) A X(X) — L}
B {A(Q) = B(X)}
YRD dig/{(X c D)
U {A(X) A R(XY) = X(¥)}
D, Dy d|gﬁl(A c D)y d|gﬁl(A C Dy)
D,uDse (LZ[ [ L“g[) dlgﬁ{(XZ [ Dl) U dlggl(ﬂxl [ Dz) U {A(X) A Xl(x) - Xz(X)}

c ‘dlgg‘(ﬂAE C)

DelL? T

DelLf {AM)}

-B {B(x) = A(X)}

YRD digg' (=X & D) U {R(x,y) A X(y) = A(X)}

D1 Dye (L“g[ il L“g[) d|g§(_'A cC D)y d|g§(—|A C Dy)
D,uDse (L‘g{ [ L‘g‘) dlgg(ﬂxlg Dl) Udlgg{(ﬁXZE Dz) U {Xl(x) A Xz(X) - A(X)}
A, B concept nameR a role, X fresh concept names

Fig. 2. Transforming axiom# c L} and-A c L to datalog

Again, this transformation is designed for a concise dédinjtnot for optimised
output. For an example, consider thg conceptE = -Bu IRC. Thendlgﬁ‘(E(a), 1)
consists of the following rules{ andY indicating fresh concept names as in the defi-
nition of the transformation):

B(x) — Xu(x) Xz(a) — R(a,b)
Xa(@) — Y(b) X3() A Xa(¥) = Xao(X)
— X3(X) Xi(x) = Xa(x)
— Xs(b) Xs(X) A Xe(X) = X7(X)
X7(X) — C(x) Y(X) — Xe(X)

As before, this rule set can be simplified significantly byrétiating most of the intro-
duced auxiliary concept symbols. Doing this, we obtain tivee ruleB(x) — Xa(X),
Xz(a) — R(a, b), andXz(a) — C(b), which again are easily seen to semantically emu-
late E(a) as claimed. Here, the fresh constant synibatts as a Skolem constant that
represents the individual that the existential conceptesgion may require to exist.

Combining the previous lemmata, we obtain the emulatioaréra forOLP 7 c.

Theorem 1. For everyD LP 4 ¢ axioma as in Definition5, one can construct a data-
log programdig(a) that emulatesr.

Proof. If & = C C D is a TBox axiom, defindatalog(e) := dig/{(A £ NNF(-Cu D)) U
{A(X)}. If @ = C(a) is an ABox axiom, defingatalog(e) := digZ'(C(a), L). The result
follows by Lemma3 and4. O



c |dg(C(a). E)

DelL{ dig/{(X C DU E) U {X(a)}

D; 1D, digz'(Da(a), E) U digy'(D2(a), E)

D,uD;e€ (LZ{ L Lg‘) dlg“g[(_'X [ Dz) U dIgZ‘(Dl(a), Eu —|X)

IRD digZ(=X C E) U digZ(D(b). ~Y) U {X(a) — R(ab), X(a) — Y(b)}

Ee Lg‘, X,Y fresh concept nameb,a fresh constant

Fig. 3. Transforming axiom€(a) with C € L to datalog

We still need to show thaDLP 4 ¢ is indeed the largest DLP fragment@tLC.
We first introduce two transformations — etb and ge —, and rsakee basic observa-
tions that allow us to use these transformations for showiagimality of DLP # sc.

Definition 6. Let C be an arbitraryALC concept expression. The expression@}b
(eliminate top andbottom) is obtained from C by elimination of top and bottom sym-
bols, achieved by applying exhaustively the following rewules:

TNMD~D L1uD~D TUDP T 1MMDeH L VRTHT
DNnT—D DulL—D DUT+HT DNl L JR.L - L

Note, that etfC) may still contain subexpressions of the fofR. L anddR.T
The next lemma summarises some easy observations on etb.
Lemma 5. For any ALC concept expression C

1. etl{C) is logically equivalent to C, i.e., for any interpretatién’, 7) and any ae
4%, we have & C’ iffa € eth(C).

2. CeLZiffettC)eL? CelLlifethC)elLy CelLlifethC)elLS
CeLfiffetC)eLy CelLiffethC)eLy

3. If C does not contain subexpressions of the fgRnL or AR.T then etlfC) = L,
or eth(C) = T, or eth(C) does neither contain. nor T.

Definition 7. Let C be an arbitraryALC concept expression. The expressio(Q)es
obtained from C byguantifier eliminationi.e., every subexpression of C of the form
VYR.D or AR.D is simply replaced by D.

Lemma 6. Let(l, A, R) be a signature and fix a domaih There is an interpretation
I, on4 of the role symbols iR such that for any interpretatiofip on4 of the signature
(1,A,0), and for any concept C df, A, R), we find C = qg(C)’° with 7 = To U 7.

Proof. SettingZ1(R) = {(a,a) | a € 4} for all R € R, we obtain:
(YRD) ={ac4|beDoforall(ab) e R\'} = {ae4|ae Do} = Do,
(ARD)! = {aec 4 |thereis(a, by € R’* with b e D0} = {ae 4 |ae Do} =D’. O

Note, that Lemm@& is true for arbitraryALC concept expressions, they need neither
belong toDLP 7 rc nor be name-separated.



Lemma 7. Let C be an arbitraryALC concept expression. Then

CelLf iff qeC)elLy,
CelL? iff qeC)ell,
CelLl if qeC)eLi

Proof. Here is a sample from the inductive proof for the first equénak. The goal in
this case is to show thatRD) € L iff D € L.

The “if” direction is directly covered by a grammar rule. Fbe “only if” direction,
we observe that there are only two grammar rules that canupeod formula of the
form (YR.D). The first isYR.LZ, for which we directly find that{R.D) € LZ implies
D € L{. The second rule igR LY. Thus YR D) € L impliesD € L%, which sufices
sinceL c L. O

Theorem 2. DLP a ¢ is the largest DLP fragment ofl LC.

Proof. For a contradiction, suppose that there is a DLP fragnferaf ALC that

is strictly larger thanDLP #,c. Then there is some GAI’' C D’ in ¥ but not in
DLP arc. The other possibility that there is an ABox axi@f(a) € ¥ with C’(a) ¢ L'

is completely analogous. By Definitighhany name-separated varight D of C' C D’

is still in 7. SinceDLP ¢ is closed under variant§; C D is not in DLP a,¢c. By
Definition 5 this means that the negation normal foErof —C U D is not in Lﬁ. By
Lemmasb and7 also etb(g€f)) is not in Lﬁ. Let ES" be a conjunctive normal form of
etb(qeE)). Thuse® = Com...MCon,with Con = Lj1L.. .ULin where eachy j is

a concept name or the negation of a concept name. Again, iegerified thakE € L}

iff E" e LY. Furthermore, for ong 1 < i < k there are two unnegated concept names
among{L;1,...,Lin}. Otherwise, we could sho&®" ¢ Lﬁ‘. For this we need the ex-
tended grammar diﬁ. Without loss of generality leét = 1 andLy1 = Aq, Lio = A2
positive. The name separation®fmay have been lost by building the transformation
to conjunctive normal fornE®™, but we still have the following:

1. For any atorA, if A occurs inES" then-A does not occur ifE°™, and vice versa.

2. For any two diferent conjunct€on andCon; of E™, there is a literal occurring
in Con and not inCon; (and by symmetry also a liter#ll occurring inCon; and
notinCon).

Claim 1 can be easily seen since the transformation féono E° is effected by re-
peated application of the rewriting rul€{mn C,) U Cz — (Cy L C3) M (C, U C3).

Claim 2 can be proven by induction on the structural complexitofn the simplest
caseE already is a conjunctive normal from. Then name separatidnh @ven implies
that diferent conjunct€on are disjoint. Next assume thgt= E; LI ... U E, and by
induction hypothesis eadf) has a conjunctive normal forig = Con 1 M...nCon n,
such that forj # k the conjunciCon ; contains a literal, that does not occur@on .
Furthermore, name separation®tells us that dferentE;,, E;, do not share a literal.
By elementary computation we have

Ecnf: |_| |_| (Conl,ill_l...l_lcorh,in)

1<iz<my 1<ip<my



Lets look at two dferent conjuncts irE®™. Typically we may conside€on 1 Li C,
andCon, LI C; with C; = Comnp, LI ... LI Com,,. By induction hypothesis there is a
literal I in Cony 1 that does not occur i€on 2. Under the present assumptidreccurs
in Cony1 U C; and not inCony» U C,. This completes our proof of clai® Returning
to our main line of reasoning we define interpretatidhand’, on a universel by

Al = 4 Lﬁ:(bforallZsjsnl
Alz = 4 Lﬁz(?)foralllsjgnl,j;EZ

Thus
Con*=Com?=4 and Con'"?=0

By property?2 it is possible to extend the interpretatiofssuch thatConj[i = A for
i €{i,1} and 2< j < k. In total we have

(Ecnf).71 — (Ecnf)fz =4 and Ecnf)flnfz =0

Since the normal form and the etb transformation presegieabequivalence, we also
have geE)’ = 4 fori = 1,2 and geE)’*"/2 = 0. By Lemma6 there are expansiods
of 7; such thaE”' = qeE)’ = 4 fori € {1,2} andE’ 12" = EL1012)" = geE)/" /2 =
0. By Lemmal, this contradicts the possibility tha{E) can be emulated by a datalog
formula. O

5 The Datalog Fragment of SROZIQ

The previous section showed that syntactic descriptiarstie become rather complex
when maximising languages in a canonical way, but the $itnas substantially more
intricate when considerin§ROZ7 Q"¢ instead ofAA.LC as an underlying DL. Here, we
summarise the conclusions that have been obtained®ridr this case. There, a maxi-
mal DLP fragment ofSRO7Q"™® has been developed under the additional requirement
of closure under disjunctive normal forms (DNF):

Theorem 3. The largest DL fragment aSROIQ"® that is also closed under DNF
exists, and it can be characterised by a parametrised setashmar productions. We
call this DLDLP.

Disjunctive normal forms here are mainly required to cuitia syntactic com-
plexity of the obtained fragment, and we conjecture that aimal DLP fragment of
SROIQ™® that does not have this property also exists. Rather thareieancrete de-
scription of this fragment, we are interested here in theegaiinsights that are obtained
from proofs of such results. The above result consists @ktiparts: (1) specifying an
explicit syntactic characterisation, (2) showing that@ll’ axioms can bd-OL _-
emulated in datalog, (3) showing th&xL# is the largest such DL. Here we give an
overview of the main methods that are used in each step.

Syntactic Characterisation The main challenge here is to reduce the presentational
complexity as far as possible.BLP normal formis introduced that incorporates DNF



and an improved form of NNF, and which ignores concepts fha,L7/L 7 above,
are always equivalent to/L. The syntax ofD L% in normal form is still very complex
due to the interplay of number restrictions and nominalsithpossible even in name-
separated axioms.

Datalog Emulation A recursive datalog transformation as in the cas&OdiP 4 ¢
above is provided. The individual steps are substantiallyeninvolved, and even lead
to exponentially large datalog programs in various cadésyegh these programs are
very regular and can be constructed in a single pass withmmapkex computations.
We conjecture that this blow-up is unavoidable but thisedsas not been investigated
further.

Maximality The least model property of datalog was used for showing maliy of
DLP arc, but no extension of this direct approachf’® has been found. Instead,
additional model-theoretic properties of datalog weredubat incorporate submodels
and product model$]. Using various inductive arguments, it has then been stbain
any extension oL leads to axioms that cannot BOL _-emulated in datalog.

We provide some examples to illustrate the issues that doctlre general case
(datalog emulations are provided in parentheses). DLPessns of the fornA m
ARBC YS.C (A(X) AR(X,y) A B(Y) A S(x,2) — C(2)) are well-known. The same is true
for A C AR{c} (A(X) — R(x,c)) but hardly forA C >2R.({c} U {d}) (A(X) — R(x,0),
AX) — R(x,d), A(X) Ac =~ d — 1). Another unusual form of DLP axioms arises
when Skolem constants (not functions) can be used as in feg¢aa- >2 R A (R(c, 9),
R(c, §), A(S), A(S), s~ § — L with freshs, ') andA C JdR.({c} 1 3AS.T) (A(X) —
R(x, ¢), A(X) — S(c, s) with freshs). This is possible since semantic emulation is more
general than semantic equivalence.

For a more comple®DLP axiom, consider the GGk} C >2R.(—{a} L Au B). It
is semantically emulated HR(c, s1), R(C, &), a =~ 5 — A(s1),a = S — A(S)} where
5 are fresh constants. Note how equalities of fresh constaatased to simulate finite
amounts of disjunctive behaviour. In contrast,C >2R.(={a} Lt AL B L C) is notin
DLP.

Another complex example {g} C >4 R.(Au {a} u ({b} M <1 S.({c} u {d}))) which is
semantically emulated by a datalog program that contaiogte89 rules. Interestingly,
the axiom{c} C >3R.(AU {a} L ({b} 1 <1 S.({c} U {d}))) which only difers by using 3
instead of 4 cannot bieOL --emulated by any datalog program.

6 Conclusions and Outlook

DLP provides an interesting example of a general type oflprabgiven two KR for-
malisms that can be translated to first-order logic, how casymtactically characterise

all theories of the source formalism that can faithfully bpresented in the target for-
malism? In this work, we proposed to interpret “faithful repentation” by means of
semantic emulation (a weaker notion of semantic equivalgmehile “syntactic” has
been realised by requiring closure under variants (nofermirenamings of signature
symbols). These two simple principles allowed us to showetkistence of a largest
DLP fragment for the DLALC. In this sense, we argue that our approach introduces a
workable definition for the vague notion of the “intersentiof two KR formalisms.



Our rigorous definition of DLP fragments also clarifies th@atences between DLP
and the DLsSL and HornSH ZQ which can both be expressed in terms of datalog as
well. Neither&L nor HornSHZQ can be semantically emulated in datalog but both
satisfy a weaker version of syntactic emulation that isiolehby restricting to variable-
free formulaey in Definition 2. Under such weaker requirements, a larger space of
possible DL fragments is allowed, but it is unknown whetHigitely many) maximal
languages exist in this case. There is clearly no largest Buinguage, since botbL
andDLP abide by the weakened principles whereas their (intragjabiion does not
(contradicting PropositioB).

Even when weakening the requirements of DLP fragments lile HornSHI7Q
is still excluded by Propositio, which explains why HorrSH 7Q cannot be trans-
lated to datalog axiom-by-axiom. In the presence of travisit Horn-SHZQ also is
not really closed under variants, but this problem could \®r@ome by using distinct
signature sets for simple and non-simple roles. Again, éipien which results can be
established for Hor®H 7Q-like DLs based on the remaining weakened principles.

This work also explicitly introduces a notion eimulationwhich appears to be
novel, though loosely related to conservative extensibmessence, it requires that a
theory can take the place of another theory in all logicaltexts, based on a given
syntactic interface. Examples given in this paper illustthat this can be very filerent
from semantic equivalence. Yet, emulation can be arguectfioa minimal require-
ments for preserving a theory’s semantics even in comlinatith additional informa-
tion, so it appears to be a natural tool for enabling infoiaraéxchange in distributed
knowledge systems. We think that the articulation of thigarois useful for studying
the semantic interplay of heterogeneous logical formaisngeneral.

Finally, the approach of this paper — seeking a logical fragtthat is provably max-
imal under certain conditions — immediately leads to a nurobgirther research ques-
tions. For example, what is the maximal fragment of SWRL (attagu SROZQ,” see
[14)) that can be expressedBROIQ? Clearly, this fragment would contain DL Rules
[21] and maybe some form of DL-safe ruleaf]. But also the maximaFOL - frag-
ment that can be expressed in a well-known subset such asitre&l Fragment] or
the two-variable fragment might be of general interest. Vgei@a that ultimate answers
to such questions can indeed be obtained based on similaitibefs of fragmentsas
used for DLP in this work. At the same time, our studySRO7Q indicates that the re-
quired definitions and arguments can become surprisinghptex when dealing with a
syntactically rich formalism like description logic. Theam reason for this is that con-
structs that are usually considered “syntactic sugar” hawetrivial semantic #ects
when considering logical fragments that are closed undéaivis.
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