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Abstract. Translations to (first-order) datalog have been used in a number of
inferencing techniques for description logics (DLs), yet the relationship between
the semantic expressivities of function-free Horn logic and DL is understood only
poorly. Although Description Logic Programs (DLP) have been described as DLs
in the “expressive intersection” of DL and datalog, it is unclear what an intersec-
tion of two syntactically incomparable logics is, even if both have a first-order
logic semantics. In this work, we offer a characterisation for DL fragments that
can be expressed, in a concrete sense, in datalog. We then determine the largest
such fragment for the DLALC, and provide an outlook on the extension of our
methods to more expressive DLs.

1 Introduction

Ontologies and rules are two fundamental concepts in knowledge representation. Taking
ontologies as the basic modelling paradigm has led to the development of Description
Logics (DLs) with a wide range of successful knowledge representations languages. On
the other hand rules are the central notion in Logic Programming building on first-order
Horn logic. Both have been very prolific research areas and have recently received a
boost in the context of the Semantic Web. As references for the purposes of this paper
we point to [2] and [4]. Since decidability is an important concern for DL, function-free
first-order Horn logic “datalog” is of particular interest.

Since the semantic frameworks for DL and datalog are very close it is natural that
the research community started investigating the relationship between them. One direc-
tion explores how either formalism could be extended with features of the other. This
line of research is represented by approaches such asAL-log [8], CARIN [23], SWRL
[13,14],DL+log [27], DL-safe rules [26], DL Rules [21,11], but also Datalog± [5], and
∀∃-rules [3]. Another direction aims at pin-pointing how both formalisms overlap. This
has led to the study of Horn description logics [15,20] and Description Logic Programs
(DLP) [12,28]. The latter is a family of DLs that can be faithfully expressed in first-
order Horn-logic, and in particular in datalog, and the generalisation of this approach is
the main topic of this paper.3

3 Besides these two strands on integrating first-order rules with DLs, there are numerous works
on extending DLs with non-monotonic features from logic programming [10,9,27,24,25]
which are interesting in their own right but not closely related to this work.



It is known that fragments of various DLs can be translated into equivalent or equi-
satisfiable datalog programs, and this has also been exploited to solve reasoning tasks.
This has been demonstrated, e.g., for the description logics Horn-SHIQ andEL++

[15,22,17,18]. In this paper we address the question whether there is a maximal frag-
ment that can be mapped into datalog. This would give a precise meaning to the slogan
of the “expressive intersection” of DL and datalog. The failure of naive attempts to de-
fine maximal fragments eventually led to the definition of a DLP fragment for a given
DL in Section3 below. In Section4 we define the DLP fragmentDLPALC of ALC
and prove its maximality. This result can be extended toSROIQ but the necessary
canonical syntactic descriptions are too complex to be included in this paper. We thus
rather provide a summary of the relevant results and methodsin Section5 and refer for
details and omitted proofs to the technical report [19].

2 Preliminaries

We assume the reader to be familiar with DLs (see [19,2] for details and references),
and restrict to notational remarks here. The largest DL we encounter isSROIQfree, the
well-known DLSROIQ without any restrictions onsimplicityandregularity of roles,
though only the simpler DLALC will be considered in detail within this paper. DL
knowledge bases are defined over finite sets of individual names (constants)I , concept
namesA, and rolesR. We callS = 〈I ,A,R〉 asignature. A signatureS ′ = 〈I ′,A′,R′〉
is called anextensionof S , in symbolsS ⊆ S ′, if I ⊆ I ′ andA ⊆ A′ andR ⊆ R′.

We useFOL= to refer to standard first-order logic with equality. It is well known
in the folklore of DL and easy to see that there exists a translationπ of SROIQ and
thus also ofALC into FOL= that preserves logical inference, i.e. KB1 |= KB2 implies
π(KB1) |= π(KB2). A definition ofπmay e.g., be found in [19, Figure 3.4].

We use the term “datalog” to refer to the function-free Horn logic fragment of
FOL=. A datalog programis a first-order theory which contains only formulae of the
form ∀x.A1 ∧ . . . ∧ An → B whereAi , B are atoms without function symbols of arity
greater than 0, and universal quantifies over all variables occurring in the implications.
We generally omit the quantifier, we simply writeB if n = 0, and we use⊥ to denote
the empty head.

It will not be sufficient for our work to consider knowledge bases KB such that
π(KB) is equivalent to a datalog program. Semantic equivalence turns out to be too
restrictive, it does e.g., not allow the use of new constant symbols denoting individuals
whose existence is required by ABox axioms. Equisatisfiability on the other hand is too
weak – it does not preserve relevant logical entailments. The following notion turns out
to be a more appropriate middle-ground:

Definition 1. GivenFOL= theories T and T′ with signaturesS ⊆ S ′, then T′ seman-
tically emulatesT if

(1) every model of T′ becomes a model of T when restricted to the interpretations of
symbols fromS , and

(2) for every modelJ of T there is a modelI of T′ that has the same domain asJ,
and that agrees withJ onS .



It is usually not necessary to mention the signatures ofT andT′ explicitly, since it
is always possible to find minimal signatures forT andT′ that satisfy condition (1) of
Definition 1. The concept of semantic emulation is also known by the namesemantic
conservative extension. We will prefer semantic emulation for its brevity.

Definition 2. GivenFOL= theories T and T′ with signaturesS ⊆ S
′, then T′ syn-

tactically emulatesT if for every first-order formulaϕ overS : T |= ϕ iff T′ |= ϕ.

It is easy to see thatsemantic emulationimplies syntactic emulation. This illus-
trates the strength and significance ofsemantic emulationfor knowledge representa-
tion: whenever a theoryT′ semantically emulates a theoryT, we find thatT′ andT
encode the same informationabout the symbolsin T, and in particular thatT′ cannot
be distinguished fromT when restricting to those symbols.

Note,syntactic emulationof T by T′ can equivalently be characterized by the re-
quirement that for every formulaϕ overS the setsT∪{ϕ} andT′∪{ϕ} be equisatisfiable.

We will later make use of the following lemma, which generalises the well-known
least model property of datalog. The proof of this is straightforward by unravelling of
the definitions.

Lemma 1. Let I1, I2 be interpretations over the same domain which agree on the
interpretation of constant and function symbols, and let T be a first-order theory that is
satisfied byI1 andI2.

1. If T is a datalog program then also the intersectionI1 ∩ I2 satisfies T.
2. If T can be semantically emulated by a datalog program thenalso the intersection
I1 ∩ I2 satisfies T.

The intersection of interpretations is defined in the obvious way based on the intersec-
tion of predicate extensions.

3 Considerations for Defining DLP

In this section, we discuss and motivate a generic definitionfor DLP fragments of a
description logic. A powerful tool for obtaining this definition is the construction of
variants of logical expressions which preserve only the logical structure but may modify
concrete signature symbols:

Definition 3. Let F be aFOL= formula, a DL axiom, or a DL concept expression,
and letS be a signature. An expression F′ is a variantof F in S if F ′ can be ob-
tained from F by replacing each occurrence of a role/concept/individual name with
some role/concept/individual name inS . Multiple occurrences of the same entity name
in F neednotbe replaced by the same entity name ofS in this process.

A knowledge baseKB′ is a variantof a knowledge baseKB if it is obtained from
KB by replacing each axiom with a variant.

Note that we do not require all occurrences of an entity name to be renamed to-
gether, so it is indeed possible to obtainA⊓¬B from A⊓¬A. Considering all variants of



a formula or axiom allows us to study the semantics and expressivity of formulae based
on their syntactic structure, disregarding any possible interactions between signature
symbols. We therefore call aFOL= formula, DL axiom, or DL concept expressionF
name-separatedif no signature symbol occurs more than once inF.

Definition 4. Given description logicsL andD, we callD a DLP fragmentofL if

(1) every axiom ofD is an axiom ofL,
(2) there is a transformation functiondatalog that maps aD axiomα to a datalog

programdatalog(α) such thatdatalog(α) semantically emulatesα,
(3) D is closed under variants, i.e. given any axiomα and an arbitrary variantα′ ofα,

we findα is inD iff α′ is.

Item (1) of this definition fixes the syntactic framework for DLP fragments. Item (2)
states the property that motivates the study of DLP languages: every axioms of a DLP
fragment can be expressed in datalog. DLP languages as discussed in the literature may
require the use of auxiliary symbols for the translation to datalog [28], and the datalog
program can no longer be semantically equivalent to the original knowledge base in this
case, even if all consequences with respect to the original predicates are still the same.
This motivates the use of semantic emulation as introduced in Definition1.

Item (3) of Definition4 reflects our desire to obtain fragments that correspond to
well-behaved logical languages as opposed to being arbitrary collections of axioms.
An obvious way to implement this would be to require DLP fragments to be described
by a context-free grammar. A typical feature of grammars forlogical languages is that
they are parametrised by a logical signature that can be modified without changing the
essential structural features of the language. This effect is mirrored by the requirement
of item (3) without introducing detailed requirements on a suitable logical grammar.
We will find grammatical descriptions in the cases we consider, though item (3) as such
does not imply that this is possible.

Let us discuss for a moment an alternative to item (3) in Definition 4. It seems
natural to require that membership in a fragment can be decided efficiently, say in poly-
nomial time. Proposition1 shows that in this case no maximal fragment can exist. Def-
inition 4 allows fragments without any restriction on the complexityof the membership
relation, but the maximal DLP fragment ofALC in Section4 is described by a context-
free language, and thus efficiently recognisable.

Proposition 1. Given description logicsL andD, we callD a P-DLP fragmentof L
if items (1) and (2) of Definition4 are satisfied, and in addition there is a polynomial
procedure for decidingα ∈ D for any DL axiomα.

Unless the complexity classesP andPS coincide, there is no maximalP-DLP
fragment ofALC: given anyP-DLP fragmentD ofALC, there is aP-DLP fragment
D′ ofALC that covers more axioms, i.e.D ⊂ D′.

Proof. We first need to argue that, even with unlimited resources forthe datalog transla-
tion, it is not possible that DLP supports allALC axioms. We show that, if the concept
expressionC is satisfiable and does not contain the symbolsR, A1, A2, andc, then no
datalog program semantically emulates the axiomα ≔ (C⊓∃R.(A1⊔A2))(c). For a con-
tradiction, suppose thatα is semantically emulated by a datalog theorydatalog(α). By



construction,α is satisfiable, and so is{α,Ai ⊑ ⊥} for eachi = 1, 2. By Definition2, we
find thatdatalog(α)∪{Ai ⊑ ⊥} is satisfiable, too. Thus, there are modelsIi of datalog(α)
such thatAIi

i = ∅. By the least model property of datalog, there is also a modelI of
datalog(α) such thatAI1 = AI2 = ∅. But thendatalog(α) ∪ {A1 ⊔ A2 ⊑ ⊥} is satisfiable
although{α,A1 ⊔ A2 ⊑ ⊥} is not, contradicting the supposed semantic emulation.

We can now show that there is some unsatisfiable axiom that is not in D. To this
end, recall that deciding (un)satisfiability ofALC concept expressions is PS hard.
However, we just showed that, if the axiomα = (C⊓∃R.(A1⊔A2))(c) is inD with sym-
bolsR, A1, A2, c not in C, then the conceptC is unsatisfiable. Thus, ifD contains all
unsatisfiableALC axioms of the form ofα, then deciding whetherα ∈ D is equivalent
to deciding whetherC is unsatisfiable (since one can clearly constructα fromC in poly-
nomial time). By the assumed efficient recognisability, this would yield a polynomial
decision procedure forALC concept satisfiability – a contradiction.

Therefore, there is an unsatisfiable axiomα with α < D. Now letD′ be defined
asD ∪ {α}. The transformation is given bydatalog′(α) = datalog(α) if α ∈ D, and
datalog′(α) = {⊤ → A(x),A(x)→ ⊥} otherwise, whereA is a new predicate symbol. It
is immediate that this defines a P-DLP fragment ofALC. ⊓⊔

This proof exemplifies a general problem that occurs when trying to define DLP: the
question whether an axiom is expressible in datalog is typically computationally harder
than one would like to admit for a language definition. This result carries over to more
expressive DLs, and remains valid even if requirements suchas closure under common
normal form transformations are added to the definition of fragments. The fact that this
problem is avoided by item (3) in Definition4 confirms our intuition that this require-
ment closely relates to the possibility of representing DLPfragments syntactically, i.e.
without referring to complex semantic conditions.

Proposition 2. Consider a class K of knowledge bases that belong to a DLP fragment
of some description logic, and such that the maximal size of axioms in K is bounded.
Deciding satisfiability of knowledge bases in K is possible in polynomial time.

Proof. Let the maximal size of axioms be bounded byN. Let V be a vocabulary with
N concept, role and constant symbols. By assumption we know that for every of the
finitely many axiomsα of size less thanN there is a translationdatalog(α). We use
this as a (finite) look-up table in the definition ofdatalogK(β) for axiomsβ in KB ∈ K:
Find a renamingα = σ(β) such thatα is an expression in the vocabularyV. Hereσ is
a usual 1-1 renaming of symbols, not a variant in the sense of Definition 3. Look up
the datalog programdatalog(α) and setdatalogKB(β) = σ(datalog(α)). It is easy to see
that datalogKB(β) still satisfies item (2) of Definition4. Thus satisfiability of KB∈ K
can be decided by checking satisfiability of

⋃
β∈KB datalogKB(β). The maximal number

of variables occurring within these datalog programs may also be bounded byN. Satis-
fiability of datalog with at mostN variables per rule can be decided in time polynomial
in 2N [7]. The renamingsσ can likewise be found in time polynomial in 2N. SinceN
is a constant, this yields a polynomial time upper bound for deciding satisfiability of
knowledge bases inK. ⊓⊔

It is interesting that the previous result does not require any assumptions on the
computational complexity of recognising or translating DLP axioms. Intuitively, Propo-



Concepts necessarily equivalent to⊤: LA⊤ F ⊤ | ∀R.L
A
⊤ | L

A
⊤ ⊓ LA⊤ | L

A
⊤ ⊔ C

Concepts necessarily equivalent to⊥: LA⊥ F ⊥ | ∃R.L
A
⊥ | L

A
⊥ ⊓ C | LA⊥ ⊔ LA⊥

Body (C ∈ LAB iff ¬C ⊑ A inDLPALC): LAB F LA⊤ | L
A
⊥ | ¬A | ∀R.LAB | L

A
B ⊓ LAB | L

A
B ⊔ LAB

Head (C ∈ LAH iff A ⊑ C inDLPALC): LAH F LAB | A | ∀R.L
A
H | L

A
H ⊓ LAH | L

A
H ⊔ LAB

Assertions (C ∈ LAa iffC(a) inDLPALC): LAa F LAH | ∃R.L
A
a | L

A
a ⊓ LAa | L

A
a ⊔ LAB

Fig. 1.DLPALC concepts in negation normal form

sition 2 states that reasoning in any DLP language is necessarily “almost” tractable.
Indeed, many DLs allow complex axioms to be decomposed into anumber of simpler
normal forms of bounded size, and in any such case tractability is obtained. Moreover,
Proposition2 clarifies why Horn-SHIQ cannot be in DLP: ET worst-case com-
plexity of reasoning can be proven for a classK of Horn-SHIQ knowledge bases as in
the above proposition (see [20], noting that remaining complex axioms can be decom-
posed in Horn-SHIQ).

4 The DLP Fragment ofALC

Using Definition4, it is now possible to investigate DLP fragments of relevantdescrip-
tion logics. In this paper, we detail this approach forALC; some remarks on the more
complex case ofSROIQ are given in Section5 below. It turns out that the largest DLP
fragment ofALC exists, and can be defined as follows, where we use the negation
normal formNNF for simplifying our presentation.

Definition 5. We define the description logicDLPALC to contain all knowledge bases
consisting only ofALC axioms which are

– GCIs C⊑ D such thatNNF(¬C ⊔ D) is anLAH concept as defined in Fig.1, or
– ABox axioms C(a) whereNNF(C) is anLAa concept as defined in Fig.1.

The headings in Fig.1 give the basic intuition about the significance of the vari-
ous concept languages. The distinction of head and body concepts is typical for many
works on DLP and Horn DLs, while our use of additional assertional concepts takes into
account that emulation allows for some forms of Skolemisation. Typical example repre-
sentatives of the respective grammars are¬A⊓∀R.(¬B⊔¬C) for LAB , ¬A⊔ (B⊓∀R.C)
for LAH , and¬A⊔ ∃R.B for LAa .

Though name separation prevents most forms of semantic interactions within con-
cepts, we still require grammars forLA⊤ andLA⊥ to characterise concepts all variants of
which are equivalent to⊤ and⊥, respectively. This includes concept expressions such
asA⊓ ∃R.⊥ andB⊔ ∀R.⊤.

We start with an easy observation on Definition5. This result will not explicitly be
used later on but might add to the understanding of this definition.

Lemma 2. Consider arbitraryALC concept expressions C that do not contain quan-
tifiers∀, ∃, and the symbols⊤ and⊥.



1. If C ∈ LAB then C has a conjunctive normal form
�

i
⊔

j Ci, j with Ci, j a negated
atom for all i, j.

2. If C ∈ LAH or C ∈ LAa then C has a conjunctive normal form
�

i
⊔

j Ci, j with Ci, j

negated or unnegated atoms and for every i there is at most onej such that Ci, j is
an unnegated atom.
(Since the assumptions require that C does not contain quantifiers there is no dif-
ference here between C∈ LAH and C∈ LAa .)

Proof. Notice, thatC < LA⊤ andC < LA⊥ since neither⊤ nor⊥ occur inC. For item (1),
note that ifC ∈ LAB then eitherC is a negated atom, orC = C1 ⊓ C2 or C = C1 ⊔ C2

with Ci ∈ LAB . The claim now follows easily from the induction hypothesisonC1,C2.
For item (2), by the assumptions onC we haveC ∈ LAH if one of the following cases

holds true:

1. C ∈ LAB . Then the claim follows from part (1) of the lemma.
2. C is an atom. Then the claim is obviously true.
3. C = C1 ⊓C2 with Ci ∈ LAH . If C′i is a conjunctive normal form ofCi satisfying the

claim thenC′1 ⊓C′2 is a conjunctive normal form ofC satisfying the claim.
4. C = C1⊔C2 with Ci ∈ LAH andC1 ∈ LAB . Let

�
i
⊔

j C
1
i, j and

�
m
⊔

n C2
m,n be the con-

junctive normal forms that exist by induction hypothesis satisfying the respective
claims. A conjunctive normal form ofC = C1 ⊔C2 is obtained as the conjunction
of all

⊔
j C

1
i, j ⊔
⊔

n C2
m,n for all combinations ofi,m. Since

⊔
j C

1
i, j contains at most

one positive atom and
⊔

n C2
m,n contains only negative atoms we are finished.⊓⊔

It is obvious thatDLPALC satisfies items (1) and (3) of Definition4, so what re-
mains to show is thatDLPALC knowledge bases can indeed be expressed in datalog.
Following the grammatical structure ofDLPALC, we specify three auxiliary functions
for constructing datalog programs to semantically emulateaDLPALC knowledge base.
The following two lemmata can be proven by simple inductions, see [19] for further de-
tails.

Lemma 3. Given a concept name A, and a concept C∈ LAH , Fig. 2 recursively defines
a datalog programdlgAH (A ⊑ C) that semantically emulates A⊑ C.

For an example of this transformation, consider theLAH conceptE = ¬B ⊔ (C ⊓
∀R.D). ThendlgAH (A ⊑ E) consists of the following rules:

A(x) ∧ X1(x) → X2(x)
B(x) → X1(x)

X2(x) → C(x)
X2(x) ∧ R(x, y) → X3(x)

X3(x) → D(x)

Clearly, this rule set could be further simplified to obtain the three rulesA(x) ∧ B(x)→
X2(x), X2(x) → C(x), X2(x) ∧ R(x, y) → D(x) which are easily seen to semantically
emulateA ⊑ E.

Lemma 4. Given a constant a and a concept C∈ LAa , Fig. 3 recursively defines a
datalog programdlgAH (C(a),⊥) that semantically emulates C(a).



C dlgAH (A ⊑ C)

D ∈ LAB dlgAB (¬X⊑D)∪ {A(x)∧X(x)→⊥}

B {A(x)→ B(x)}

∀R.D dlgAH (X ⊑ D)
∪ {A(x) ∧ R(x, y)→ X(y)}

D1 ⊓ D2 dlgAH (A ⊑ D1) ∪ dlgAH (A ⊑ D2)

D1 ⊔ D2 ∈ (LAH ⊔ LAB ) dlgAH (X2 ⊑ D1) ∪ dlgAB (¬X1 ⊑ D2) ∪ {A(x) ∧ X1(x)→ X2(x)}

C dlgAB (¬A ⊑ C)

D ∈ LA⊤ {}

D ∈ LA⊥ {A(x)}

¬B {B(x)→ A(x)}

∀R.D dlgAB (¬X ⊑ D) ∪ {R(x, y) ∧ X(y)→ A(x)}

D1 ⊓ D2 ∈ (LAB ⊓ LAB ) dlgAB (¬A ⊑ D1) ∪ dlgAB (¬A ⊑ D2)

D1 ⊔ D2 ∈ (LAB ⊔ LAB ) dlgAB (¬X1⊑D1)∪ dlgAB (¬X2⊑D2) ∪ {X1(x) ∧ X2(x)→ A(x)}

A,B concept names,Ra role,X(i) fresh concept names

Fig. 2. Transforming axiomsA ⊑ LAH and¬A ⊑ LAB to datalog

Again, this transformation is designed for a concise definition, not for optimised
output. For an example, consider theLAa conceptE = ¬B⊔ ∃R.C. ThendlgAH (E(a),⊥)
consists of the following rules (Xi andY indicating fresh concept names as in the defi-
nition of the transformation):

B(x) → X1(x) X2(a) → R(a, b)
X2(a) → Y(b) X3(x) ∧ X4(x) → X2(x)

→ X3(x) X1(x) → X4(x)
→ X5(b) X5(x) ∧ X6(x) → X7(x)

X7(x) → C(x) Y(x) → X6(x)

As before, this rule set can be simplified significantly by eliminating most of the intro-
duced auxiliary concept symbols. Doing this, we obtain the three rulesB(x) → X2(x),
X2(a) → R(a, b), andX2(a) → C(b), which again are easily seen to semantically emu-
late E(a) as claimed. Here, the fresh constant symbolb acts as a Skolem constant that
represents the individual that the existential concept expression may require to exist.

Combining the previous lemmata, we obtain the emulation theorem forDLPALC.

Theorem 1. For everyDLPALC axiomα as in Definition5, one can construct a data-
log programdlg(α) that emulatesα.

Proof. If α = C ⊑ D is a TBox axiom, definedatalog(α) ≔ dlgAH (A ⊑ NNF(¬C⊔D))∪
{A(x)}. If α = C(a) is an ABox axiom, definedatalog(α) ≔ dlgAa (C(a),⊥). The result
follows by Lemma3 and4. ⊓⊔



C dlgAa (C(a),E)

D ∈ LAH dlgAH (X ⊑ D ⊔ E) ∪ {X(a)}

D1 ⊓ D2 dlgAa (D1(a),E) ∪ dlgAa (D2(a), E)

D1 ⊔ D2 ∈ (LAa ⊔ LAB ) dlgAB (¬X ⊑ D2) ∪ dlgAa (D1(a),E ⊔ ¬X)

∃R.D dlgAB (¬X ⊑ E) ∪ dlgAa (D(b),¬Y) ∪ {X(a)→ R(a,b), X(a)→ Y(b)}

E ∈ LAB , X,Y fresh concept names,b a fresh constant

Fig. 3. Transforming axiomsC(a) with C ∈ LAa to datalog

We still need to show thatDLPALC is indeed the largest DLP fragment ofALC.
We first introduce two transformations – etb and qe –, and makesome basic observa-
tions that allow us to use these transformations for showingmaximality ofDLPALC.

Definition 6. Let C be an arbitraryALC concept expression. The expression etb(C)
(eliminate top andbottom) is obtained from C by elimination of top and bottom sym-
bols, achieved by applying exhaustively the following rewrite rules:

⊤ ⊓ D 7→ D ⊥ ⊔ D 7→ D ⊤ ⊔ D 7→ ⊤ ⊥ ⊓ D 7→ ⊥ ∀R.⊤ 7→ ⊤
D ⊓ ⊤ 7→ D D ⊔ ⊥ 7→ D D ⊔ ⊤ 7→ ⊤ D ⊓ ⊥ 7→ ⊥ ∃R.⊥ 7→ ⊥

Note, that etb(C) may still contain subexpressions of the form∀R.⊥ and∃R.⊤

The next lemma summarises some easy observations on etb.

Lemma 5. For anyALC concept expression C

1. etb(C) is logically equivalent to C, i.e., for any interpretation〈∆I,I〉 and any a∈
∆I, we have a∈ CI iff a ∈ etb(C)I.

2. C ∈ LA⊤ iff etb(C) ∈ LA⊤ C ∈ LA⊥ iff etb(C) ∈ LA⊥ C ∈ LAa iff etb(C) ∈ LAa
C ∈ LAB iff etb(C) ∈ LAB C ∈ LAH iff etb(C) ∈ LAH

3. If C does not contain subexpressions of the form∀R.⊥ or ∃R.⊤ then etb(C) = ⊥,
or etb(C) = ⊤, or etb(C) does neither contain⊥ nor⊤.

Definition 7. Let C be an arbitraryALC concept expression. The expression qe(C) is
obtained from C byquantifier elimination, i.e., every subexpression of C of the form
∀R.D or ∃R.D is simply replaced by D.

Lemma 6. Let 〈I ,A,R〉 be a signature and fix a domain∆. There is an interpretation
I1 on∆ of the role symbols inR such that for any interpretationI0 on∆ of the signature
(I ,A, ∅), and for any concept C of〈I ,A,R〉, we find CI = qe(C)I0 withI = I0 ∪ I1.

Proof. SettingI1(R) = {〈a, a〉 | a ∈ ∆} for all R∈ R, we obtain:

(∀R.D)I = {a ∈ ∆ | b ∈ DI0 for all 〈a, b〉 ∈ RI1} = {a ∈ ∆ | a ∈ DI0} = DI0,

(∃R.D)I = {a ∈ ∆ | there is〈a, b〉 ∈ RI1 with b ∈ DI0} = {a ∈ ∆ | a ∈ DI0} = DI0. ⊓⊔

Note, that Lemma6 is true for arbitraryALC concept expressions, they need neither
belong toDLPALC nor be name-separated.



Lemma 7. Let C be an arbitraryALC concept expression. Then

C ∈ LAB iff qe(C) ∈ LAB ,
C ∈ LAH iff qe(C) ∈ LAH ,
C ∈ LAa iff qe(C) ∈ LAa .

Proof. Here is a sample from the inductive proof for the first equivalence. The goal in
this case is to show that (∀R.D) ∈ LAB iff D ∈ LAB .

The “if” direction is directly covered by a grammar rule. Forthe “only if” direction,
we observe that there are only two grammar rules that can produce a formula of the
form (∀R.D). The first is∀R.LAB , for which we directly find that (∀R.D) ∈ LAB implies
D ∈ LAB . The second rule is∀R.LA⊤ . Thus (∀R.D) ∈ LAB impliesD ∈ LA⊤ , which suffices
sinceLA⊤ ⊆ LAB . ⊓⊔

Theorem 2. DLPALC is the largest DLP fragment ofALC.

Proof. For a contradiction, suppose that there is a DLP fragmentF of ALC that
is strictly larger thanDLPALC. Then there is some GCIC′ ⊑ D′ in F but not in
DLPALC. The other possibility that there is an ABox axiomC′(a) ∈ F with C′(a) < LAa
is completely analogous. By Definition4, any name-separated variantC ⊑ D of C′ ⊑ D′

is still in F . SinceDLPALC is closed under variants,C ⊑ D is not inDLPALC. By
Definition 5 this means that the negation normal formE of ¬C ⊔ D is not in LAH . By
Lemmas5 and7 also etb(qe(E)) is not inLAH . Let Ecnf be a conjunctive normal form of
etb(qe(E)). ThusEcnf = Con1⊓ . . .⊓Conk with Coni = Li,1⊔ . . .⊔Li,ni where eachLi, j is
a concept name or the negation of a concept name. Again, it canbe verified thatE ∈ LAH
iff Ecnf ∈ LAH . Furthermore, for onei, 1 ≤ i ≤ k there are two unnegated concept names
among{Li,1, . . . , Li,ni }. Otherwise, we could showEcnf ∈ LAH . For this we need the ex-
tended grammar ofLAH . Without loss of generality leti = 1 andL1,1 = A1, L1,2 = A2

positive. The name separation ofE may have been lost by building the transformation
to conjunctive normal formEcnf, but we still have the following:

1. For any atomA, if A occurs inEcnf then¬A does not occur inEcnf, and vice versa.
2. For any two different conjunctsConi andConj of Ecnf, there is a literall occurring

in Coni and not inConj (and by symmetry also a literall′ occurring inConj and
not inConi).

Claim 1 can be easily seen since the transformation fromE to Ecnf is effected by re-
peated application of the rewriting rule (C1 ⊓C2) ⊔C3 7→ (C1 ⊔C3) ⊓ (C2 ⊔C3).
Claim 2 can be proven by induction on the structural complexity ofE. In the simplest
caseE already is a conjunctive normal from. Then name separation of E even implies
that different conjunctsConi are disjoint. Next assume thatE = E1 ⊔ . . . ⊔ En and by
induction hypothesis eachEi has a conjunctive normal formEi = Coni,1⊓ . . .⊓Coni,mi ,
such that forj , k the conjunctConi, j contains a literal, that does not occur inConi,k.
Furthermore, name separation ofE tells us that differentEi1, Ei2 do not share a literal.
By elementary computation we have

Ecnf =
�

1≤i1≤m1

. . .
�

1≤in≤mn

(Con1,i1 ⊔ . . . ⊔Conn,in)



Lets look at two different conjuncts inEcnf. Typically we may considerCon1,1 ⊔ Cr

andCon1,2 ⊔ Cr with Cr = Con2,i2 ⊔ . . . ⊔ Conn,in. By induction hypothesis there is a
literal l in Con1,1 that does not occur inCon1,2. Under the present assumptionsl occurs
in Con1,1 ⊔Cr and not inCon1,2 ⊔Cr . This completes our proof of claim2. Returning
to our main line of reasoning we define interpretationsI1 andI2 on a universe∆ by

AI1
1 = ∆ LI1

1, j = ∅ for all 2 ≤ j ≤ n1

AI2
2 = ∆ LI2

1, j = ∅ for all 1 ≤ j ≤ n1, j , 2

Thus
ConI1

1 = ConI2

1 = ∆ and ConI1∩I2

1 = ∅

By property2 it is possible to extend the interpretationsIi such thatConIi
j = ∆ for

i ∈ {i, 1} and 2≤ j ≤ k. In total we have

(Ecnf)I1 = (Ecnf)I2 = ∆ and (Ecnf)I1∩I2 = ∅

Since the normal form and the etb transformation preserve logical equivalence, we also
have qe(E)Ii = ∆ for i = 1, 2 and qe(E)I1∩I2 = ∅. By Lemma6 there are expansionsI∗i
of Ii such thatEI

∗
i = qe(E)Ii = ∆ for i ∈ {1, 2} andEI1

∗∩I2
∗

= E(I1∩I2)∗ = qe(E)I1∩I2 =

∅. By Lemma1, this contradicts the possibility thatπ(E) can be emulated by a datalog
formula. ⊓⊔

5 The Datalog Fragment ofSROIQ

The previous section showed that syntactic descriptions tend to become rather complex
when maximising languages in a canonical way, but the situation is substantially more
intricate when consideringSROIQfree instead ofALC as an underlying DL. Here, we
summarise the conclusions that have been obtained in [19] for this case. There, a maxi-
mal DLP fragment ofSROIQfree has been developed under the additional requirement
of closure under disjunctive normal forms (DNF):

Theorem 3. The largest DL fragment ofSROIQfree that is also closed under DNF
exists, and it can be characterised by a parametrised set of grammar productions. We
call this DLDLP.

Disjunctive normal forms here are mainly required to curtail the syntactic com-
plexity of the obtained fragment, and we conjecture that a maximal DLP fragment of
SROIQfree that does not have this property also exists. Rather than in the concrete de-
scription of this fragment, we are interested here in the general insights that are obtained
from proofs of such results. The above result consists of three parts: (1) specifying an
explicit syntactic characterisation, (2) showing that allDLP axioms can beFOL=-
emulated in datalog, (3) showing thatDLP is the largest such DL. Here we give an
overview of the main methods that are used in each step.

Syntactic Characterisation The main challenge here is to reduce the presentational
complexity as far as possible. ADLP normal formis introduced that incorporates DNF



and an improved form of NNF, and which ignores concepts that,like LA⊤ /L
A
⊥ above,

are always equivalent to⊤/⊥. The syntax ofDLP in normal form is still very complex
due to the interplay of number restrictions and nominals that is possible even in name-
separated axioms.
Datalog Emulation A recursive datalog transformation as in the case ofDLPALC
above is provided. The individual steps are substantially more involved, and even lead
to exponentially large datalog programs in various cases, although these programs are
very regular and can be constructed in a single pass without complex computations.
We conjecture that this blow-up is unavoidable but this issue has not been investigated
further.

Maximality The least model property of datalog was used for showing maximality of
DLPALC, but no extension of this direct approach toDLP has been found. Instead,
additional model-theoretic properties of datalog were used that incorporate submodels
and product models [6]. Using various inductive arguments, it has then been shownthat
any extension ofDLP leads to axioms that cannot beFOL=-emulated in datalog.

We provide some examples to illustrate the issues that occurin the general case
(datalog emulations are provided in parentheses). DLP expressions of the formA ⊓
∃R.B ⊑ ∀S.C (A(x)∧R(x, y)∧B(y)∧S(x, z)→ C(z)) are well-known. The same is true
for A ⊑ ∃R.{c} (A(x) → R(x, c)) but hardly forA ⊑ >2R.({c} ⊔ {d}) (A(x) → R(x, c),
A(x) → R(x, d), A(x) ∧ c ≈ d → ⊥). Another unusual form of DLP axioms arises
when Skolem constants (not functions) can be used as in the case{c} ⊑ >2R.A (R(c, s),
R(c, s′), A(s), A(s′), s ≈ s′ → ⊥ with fresh s, s′) andA ⊑ ∃R.({c} ⊓ ∃S.⊤) (A(x) →
R(x, c), A(x)→ S(c, s) with freshs). This is possible since semantic emulation is more
general than semantic equivalence.

For a more complexDLP axiom, consider the GCI{c} ⊑ >2R.(¬{a} ⊔ A ⊔ B). It
is semantically emulated by{R(c, s1),R(c, s2), a ≈ s1 → A(s1), a ≈ s2 → A(s2)} where
si are fresh constants. Note how equalities of fresh constantsare used to simulate finite
amounts of disjunctive behaviour. In contrast,{c} ⊑ >2R.(¬{a} ⊔ A ⊔ B⊔C) is not in
DLP.

Another complex example is{c} ⊑ >4R.(A⊔ {a} ⊔ ({b} ⊓61S.({c} ⊔ {d}))) which is
semantically emulated by a datalog program that contains about 30 rules. Interestingly,
the axiom{c} ⊑ >3R.(A⊔ {a} ⊔ ({b} ⊓ 61S.({c} ⊔ {d}))) which only differs by using 3
instead of 4 cannot beFOL=-emulated by any datalog program.

6 Conclusions and Outlook

DLP provides an interesting example of a general type of problem: given two KR for-
malisms that can be translated to first-order logic, how can we syntactically characterise
all theories of the source formalism that can faithfully be represented in the target for-
malism? In this work, we proposed to interpret “faithful representation” by means of
semantic emulation (a weaker notion of semantic equivalence), while “syntactic” has
been realised by requiring closure under variants (non-uniform renamings of signature
symbols). These two simple principles allowed us to show theexistence of a largest
DLP fragment for the DLALC. In this sense, we argue that our approach introduces a
workable definition for the vague notion of the “intersection” of two KR formalisms.



Our rigorous definition of DLP fragments also clarifies the differences between DLP
and the DLsEL and Horn-SHIQ which can both be expressed in terms of datalog as
well. NeitherEL nor Horn-SHIQ can be semantically emulated in datalog but both
satisfy a weaker version of syntactic emulation that is obtained by restricting to variable-
free formulaeϕ in Definition 2. Under such weaker requirements, a larger space of
possible DL fragments is allowed, but it is unknown whether (finitely many) maximal
languages exist in this case. There is clearly no largest such language, since bothEL
andDLP abide by the weakened principles whereas their (intractable) union does not
(contradicting Proposition2).

Even when weakening the requirements of DLP fragments like this, Horn-SHIQ
is still excluded by Proposition2, which explains why Horn-SHIQ cannot be trans-
lated to datalog axiom-by-axiom. In the presence of transitivity, Horn-SHIQ also is
not really closed under variants, but this problem could be overcome by using distinct
signature sets for simple and non-simple roles. Again, it isopen which results can be
established for Horn-SHIQ-like DLs based on the remaining weakened principles.

This work also explicitly introduces a notion ofemulationwhich appears to be
novel, though loosely related to conservative extensions.In essence, it requires that a
theory can take the place of another theory in all logical contexts, based on a given
syntactic interface. Examples given in this paper illustrate that this can be very different
from semantic equivalence. Yet, emulation can be argued to define minimal require-
ments for preserving a theory’s semantics even in combination with additional informa-
tion, so it appears to be a natural tool for enabling information exchange in distributed
knowledge systems. We think that the articulation of this notion is useful for studying
the semantic interplay of heterogeneous logical formalisms in general.

Finally, the approach of this paper – seeking a logical fragment that is provably max-
imal under certain conditions – immediately leads to a number of further research ques-
tions. For example, what is the maximal fragment of SWRL (“datalog∪ SROIQ,” see
[14]) that can be expressed inSROIQ? Clearly, this fragment would contain DL Rules
[21] and maybe some form of DL-safe rules [26]. But also the maximalFOL= frag-
ment that can be expressed in a well-known subset such as the Guarded Fragment [1] or
the two-variable fragment might be of general interest. We argue that ultimate answers
to such questions can indeed be obtained based on similar definitions of fragmentsas
used for DLP in this work. At the same time, our study ofSROIQ indicates that the re-
quired definitions and arguments can become surprisingly complex when dealing with a
syntactically rich formalism like description logic. The main reason for this is that con-
structs that are usually considered “syntactic sugar” havenon-trivial semantic effects
when considering logical fragments that are closed under variants.
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