
Technische Universität Dresden
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

A Goal-Oriented Algorithm for Unification in
ELHR+ w.r.t. Cycle-Restricted Ontologies

Franz Baader Stefan Borgwardt Barbara Morawska

LTCS-Report 12-05

Postal Address:
Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nöthnitzer Str. 46

Dresden

Contents

1 Introduction 2

2 The Description Logics EL and ELHR+ 4

3 Subsumption in ELHR+ 6

3.1 Proving Subsumptions by Inference Rules 6

3.2 A Structural Characterization of Subsumption 7

4 Unification in ELHR+ 9

4.1 Local Unifiers . 10

5 A Goal-Oriented Unification Algorithm 11

5.1 Soundness . 16

5.2 Completeness . 19

5.3 Termination and Complexity . 21

6 Conclusions 21

1

Abstract

Unification in Description Logics (DLs) has been proposed as an in-
ference service that can, for example, be used to detect redundancies in
ontologies. For the DL EL, which is used to define several large biomedi-
cal ontologies, unification is NP-complete. A goal-oriented NP unification
algorithm for EL that uses nondeterministic rules to transform a given
unification problem into solved form has recently been presented. In this
report, we extend this goal-oriented algorithm in two directions: on the
one hand, we add general concept inclusion axioms (GCIs), and on the
other hand, we add role hierarchies (H) and transitive roles (R+). For the
algorithm to be complete, however, the ontology consisting of the GCIs
and role axioms needs to satisfy a certain cycle restriction.

1 Introduction

The DL EL, which offers the constructors conjunction (u), existential restric-
tion (∃r.C), and the top concept (>), has recently drawn considerable attention
since, on the one hand, important inference problems such as the subsumption
problem are polynomial in EL, even in the presence of general concept inclusions
(GCIs) [11]. On the other hand, though quite inexpressive, EL can be used to
define biomedical ontologies, such as the large medical ontology SNOMEDCT.1
A tractable extension of EL [6], which includes role hierarchy and transitivity
axioms, is the basis of the OWL2EL profile of the new Web Ontology Language
OWL2.2

Unification in DLs has been proposed in [10] as a novel inference service that can,
for instance, be used to detect redundancies in ontologies. For example, assume
that one developer of a medical ontology defines the concept of a patient with
severe injury of the frontal lobe as

∃finding.(Frontal_lobe_injury u ∃severity.Severe), (1)

whereas another one represents it as

∃finding.(Severe_injury u ∃finding_site.∃part_of.Frontal_lobe). (2)

These two concept descriptions are not equivalent, but they are nevertheless
meant to represent the same concept. They can obviously be made equivalent by
treating the concept names Frontal_lobe_injury and Severe_injury as variables,
and substituting the first one by Injuryu∃finding_site.∃part_of.Frontal_lobe and
the second one by Injury u ∃severity.Severe. In this case, we say that the de-
scriptions are unifiable, and call the substitution that makes them equivalent a
unifier.

1see http://www.ihtsdo.org/snomed-ct/
2See http://www.w3.org/TR/owl2-profiles/

2

Our interest in unification w.r.t. GCIs, role hierarchies, and transitive roles stems
from the fact that these features are important for expressing medical knowledge.
For example, assume that the developers use the descriptions (3) and (4) instead
of (1) and (2):

∃finding.∃finding_site.∃part_of.Brain u
∃finding.(Frontal_lobe_injury u ∃severity.Severe) (3)

∃status.Emergency u
∃finding.(Severe_injury u ∃finding_site.∃part_of.Frontal_lobe) (4)

The descriptions (3) and (4) are not unifiable without additional background
knowledge, but they are unifiable, with the same unifier as above, if the GCIs

∃finding.∃severity.Severe v ∃status.Emergency,
Frontal_lobe v ∃proper_part_of.Brain

are present in a background ontology and this ontology additionally states that
part_of is transitive and proper_part_of is a subrole of part_of.

In [7], we were able to show that unification in the DL EL (without GCIs and
role axioms) is NP-complete. In addition to a brute-force “guess and then test”
NP-algorithm [7], we have developed a goal-oriented unification algorithm for
EL, in which nondeterministic decisions are only made if they are triggered by
“unsolved parts” of the unification problem [9], and an algorithm that is based
on a reduction to satisfiability in propositional logic (SAT) [8], which enables the
use of highly-optimized SAT solvers [13]. Whereas both approaches are clearly
better than the brute-force algorithm, none of them is uniformly better than the
other. First experiments with our system UEL [1] show that the SAT translation
is usually faster in deciding unifiability, but it needs more space than the goal-
oriented algorithm and it produces more uninteresting and large unifiers. In
fact, the SAT translation generates all so-called local unifiers, whereas the goal-
oriented algorithm produces all so-called minimal unifiers, though it may also
produce some non-minimal ones. The set of minimal unifiers is a subset of the
set of local unifiers, and in our experiments the minimal unifiers usually made
more sense in the application.

In [9] it was shown that the approaches for unification of EL-concept descriptions
(without any background ontology) mentioned above can easily be extended to
the case of a so-called acyclic TBox (a simple form of GCIs, which basically
introduce abbreviations for concept descriptions) as background ontology without
really changing the algorithms or increasing their complexity. For more general
GCIs, such a simple solution is no longer possible. In [3], we extended the brute-
force “guess and then test” NP-algorithm from [7] to the case of GCIs, which
required the development of a new characterization of subsumption w.r.t. GCIs
in EL. Unfortunately, the algorithm is complete only for general TBoxes (i.e.,

3

finite sets of GCIs) that satisfy a certain restriction on cycles, which, however,
does not prevent all cycles. For example, the cyclic GCI ∃child.Human v Human
satisfies this restriction, whereas the cyclic GCI Human v ∃parent.Human does
not. In [4] we provide a more practical unification algorithm that is based on a
translation into SAT, and can also deal with role hierarchies and transitive roles,
but still needs the ontology (now consisting of GCIs and role axioms) to be cycle-
restricted. In the presence of role hierarchies (H) and transitive roles (R+), we
use the name ELHR+ rather than EL for the logic.

Motivated by our experience that, for the case of EL without background ontol-
ogy, the goal-oriented algorithm sometimes behaves better than the one based on
a translation into SAT, we introduce a goal-oriented algorithm for unification in
ELHR+ w.r.t. cycle-restricted ontologies. In a previous report [2], we have de-
scribed a specialized version of the algorithm that only deals with cycle-restricted
EL-ontologies.

2 The Description Logics EL and ELHR+

The expressiveness of a DL is determined both by the formalism for describing
concepts (the concept description language) and the terminological formalism,
which allows to state additional constraints on the interpretation of concepts and
roles in a so-called ontology.

The concept description language considered in this report is called EL. Starting
with a finite set NC of concept names and a finite set NR of role names, EL-
concept descriptions are built from concept names by the constructors conjunction
(C uD), existential restriction (∃r.C for every r ∈ NR), and top (>). Since we
only consider EL-concept descriptions, we will sometimes dispense with the prefix
EL.

On the semantic side, concept descriptions are interpreted as sets. To be more
precise, an interpretation I = (∆I , ·I) consists of a non-empty domain ∆I and
an interpretation function that maps concept names to subsets of ∆I and role
names to binary relations over ∆I . This function is inductively extended to
concept descriptions as shown in the semantics column of Table 1.

A general concept inclusion axiom (GCI) is of the form C v D for concept
descriptions C,D, a role hierarchy axiom is of the form r v s for role names
r, s, and a transitivity axiom is of the form r ◦ r v r for a role name r. An
interpretation I satisfies such an axiom if the corresponding condition in the
semantics column of Table 1 holds, where ◦ in this column stands for composition
of binary relations. An ELHR+-ontology is a finite set of such axioms. It is an
EL-ontology if it contains only GCIs. An interpretation is a model of an ontology
if it satisfies all its axioms.

4

Name Syntax Semantics
concept name A AI ⊆ ∆I
role name r rI ⊆ ∆I ×∆I
top > >I = ∆I
conjunction C uD (C uD)I = CI ∩DI
existential restr. ∃r.C (∃r.C)I = {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}
concept def. A ≡ C AI = CI

GCI C v D CI ⊆ DI

role hierarchy r v s rI ⊆ sI

transitivity r ◦ r v r rI ◦ rI ⊆ rI

Table 1: Syntax and semantics of EL.

A concept description C is subsumed by a concept descriptionD w.r.t. an ontology
O (written C vO D) if every model of O satisfies the GCI C v D. We say that
C is equivalent to D w.r.t. O (C ≡O D) if C vO D and D vO C. If O is empty,
we also write C v D and C ≡ D instead of C vO D and C ≡O D, respectively.
As shown in [11, 6], subsumption w.r.t. ELHR+-ontologies (and thus also w.r.t.
EL-ontologies) is decidable in polynomial time.

Since conjunction is interpreted as intersection, the concept descriptions (CuD)u
E and Cu(DuE) are always equivalent. Thus, we dispense with parentheses and
write nested conjunctions in flat form C1u· · ·uCn. Nested existential restrictions
∃r1.∃r2. . . .∃rn.C will sometimes also be written as ∃r1r2 . . . rn.C, where r1r2 . . . rn
is viewed as a word over the alphabet of role names, i.e., an element of N∗R.

The role hierarchy induced by an ontologyO is a binary relation EO on NR, which
is defined as the reflexive-transitive closure of the relation {(r, s) | r v s ∈ O}.
Using elementary reachability algorithms, the role hierarchy can be computed in
polynomial time in the size of O. It is easy to see that rEO s implies that rI ⊆ sI

for all models I of O.

An EL-concept description is an atom if it is an existential restriction or a concept
name. The atoms of an EL-concept description C are the subdescriptions of C
that are atoms, and the top-level atoms of C are the atoms occurring in the top-
level conjunction of C. Obviously, any EL-concept description is the conjunction
of its top-level atoms, where the empty conjunction corresponds to >. The atoms
of an ELHR+-ontology O are the atoms of all the concept descriptions occurring
in GCIs of O.

An atom is called flat if it is a concept name or an existential restriction of the
form ∃r.A for a concept name A. A GCI is called flat if it is of the form AuB v C,
where A,B are flat atoms or > and C is a flat atom. An ELHR+-ontology is
called flat if all its GCIs are flat. Every ELHR+-ontology can be transformed in

5

polynomial time into an equivalent flat ontology (see [5] for details).

3 Subsumption in ELHR+

All previous unification algorithms for EL depend on a structural characterization
of subsumption. While [7] provides one for the case of an empty background
ontology, in [3] a more general characterization is used that accounts for GCIs.
This is proved using a Gentzen-style proof calculus for subsumption. We now
extend this calculus to prove a similar characterization for arbitrary ELHR+-
ontologies.

3.1 Proving Subsumptions by Inference Rules

In [2] we defined a system of inference rules that characterize subsumption in EL
modulo a flat EL-ontology O. More precisely, they define a binary relation `O
on all concept descriptions such that C `O D iff C vO D. For details about this
relation, we refer to [2]. We will describe here only the changes that are necessary
to generalize this approach to ELHR+-ontologies.

We only need to modify the inference rule that deals with existential restrictions:

(R8) Closure under existential restriction: For all EL-concept descriptions C,D
and each r ∈ NR,

C `O D
∃r.C `O ∃r.D

We replace it by the following two rules:

(R8′) Role hierarchy: For all EL-concept descriptions C,D and all role names r, s
with r v s ∈ O,

C `O D
∃r.C `O ∃s.D

(R8′′) Role transitivity: For all EL-concept descriptions C,D and each transitive
role r,

C `O ∃r.D
∃r.C `O ∃r.D

6

Notice that if r = s, then (R8′) is exactly (R8). The following lemma is an
extension of Lemma 9 from [2].

Lemma 1. Let O be a flat ELHR+-ontology and C,D be two EL-concept descrip-
tions. Then C `O D iff C vO D.

Proof. It is easy to verify that the two new inference rules are sound, i.e., we have
C vO D whenever we can derive C `O D using these rules.

If C `O D does not hold, we can show that CI * DI holds in the following canon-
ical model I of T . The domain of I is the set C of all EL-concept descriptions built
over NC and NR. For every concept name A, we define AI := {E ∈ C | E `O A}
and for every role name r, we set rI := {(E,F) ∈ C2 | E `O ∃r.F}. With exactly
the same arguments as in [2], we can show that C ′I = {E ∈ C | E `O C ′} holds
for each concept description C ′. There it was also shown that I is a model of all
GCIs in O. It remains to verify that it also satisfies the role axioms.

Let r v s ∈ O and (E,F) ∈ rI , i.e., there is a proof tree T for E `O ∃r.F . Then
the following is a proof tree for E `O ∃s.F :

(T)
E `O ∃r.F

(R3)
F `O F (R8′)

∃r.F `O ∃s.F (R9)
E `O ∃s.F

This shows that rI ⊆ sI , i.e., I satisfies this role hierarchy axiom.

For each transitive role r, we have to show that rI ◦rI ⊆ rI holds. Let (E1, E2) ∈
rI and (E2, E3) ∈ rI , i.e., there are proof trees T1 for E1 `O ∃r.E2 and T2 for
E2 `O ∃r.E3. Then the following is a proof tree for E1 `O ∃r.E3:

(T1)
E1 `O ∃r.E2

(T2)
E2 `O ∃r.E3 (R8′′)
∃r.E2 `O ∃r.E3 (R9)

E1 `O ∃r.E3

To conclude the proof, we notice that C ∈ CI , since C `O C holds by rule
(R3). On the other hand, we assumed that C `O D does not hold, which implies
C /∈ DI , and thus CI * DI .

3.2 A Structural Characterization of Subsumption

Based on this proof-theoretic characterization of subsumption, we will now gener-
alize a structural characterization of subsumption from [3] to ELHR+-ontologies.

We say that a subsumption between two atoms is structural if their top-level
structure is compatible. To be more precise, following [4] we define structural

7

subsumption between atoms as follows: the atom C is structurally subsumed by
the atom D w.r.t. O (C vs

O D) iff one of the following holds:

1. C = D is a concept name,

2. C = ∃r.C ′, D = ∃s.D′, r EO s, and C ′ vO D′.

3. C = ∃r.C ′, D = ∃s.D′, and C ′ vO ∃t.D′ for a transitive role t such that
r EO tEO s.

It is easy to see that subsumption w.r.t. ∅ between two atoms implies structural
subsumption w.r.t. O, which in turn implies subsumption w.r.t. O. Other im-
portant properties of vs

O are reflexivity and transitivity (see [5]). The following
lemma extends Lemma 6 from [2] and is an important foundation for the algo-
rithm we will present later.

Lemma 2. Let O be an ELHR+-ontology and C1, . . . , Cn, D1, . . . , Dm be atoms.
Then C1 u · · · u Cn vO D1 u · · · uDm iff for every j ∈ {1, . . . ,m}

1. there is an index i ∈ {1, . . . , n} such that Ci vs
O Dj or

2. there are atoms A1, . . . , Ak, B of T (k ≥ 0) such that

(a) A1 u · · · u Ak vO B,
(b) for every η ∈ {1, . . . , k} there is i ∈ {1, . . . , n} with Ci vs

O Aη, and
(c) B vs

O Dj.

Proof. If one of the alternatives 1. or 2. holds for every atom Dj, then clearly
the claimed subsumption relationship holds. In [2], the other direction was first
reduced to the case of a flat EL-ontology. This reduction also works in the
same way for ELHR+-ontologies, which is why we can reuse most of the proof of
Lemma 6 from [2].

Assume that C1 u · · · u Cn vO D1 u · · · u Dm. By Lemma 1, there must be a
proof tree T for C1 u · · · u Cn `O D1 u · · · uDm. We prove by induction on the
height of T that for every atom Dj one of the alternatives 1. or 2. holds. We
consider the rule applied at the root of T. If this rule is one of the original rules,
we can show the claim using the same arguments as in [2] since they only depend
on reflexivity and transitivity of vs

O and the GCIs in O, but not on any other
properties derived from O. Hence we consider only proof trees that end with the
application of one of our new inference rules (R8′) or (R8′′).

If (R8′) has been applied, then n = m = 1, C1 = ∃r.C ′, D1 = ∃s.D′, r v s ∈ O,
and there is a proof tree for C ′ `O D′. By Lemma 1, we have C ′ vO D′. Since
rEO s, we have C1 vs

O D1 by definition of vs
O, i.e., the first alternative holds for

D1.

8

If (R8′′) has been applied, then n = m = 1, C1 = ∃r.C ′, D1 = ∃r.D′, r ◦ r v
r ∈ O, and there is a proof tree for C ′ `O ∃r.D′. Again, Lemma 1 shows that
C ′ vO ∃r.D′, and thus we have C1 vs

O D1 since r EO r EO r, i.e., the first
alternative holds for D1.

4 Unification in ELHR+

We partition the set NC into a set Nv of concept variables (which may be replaced
by substitutions) and a set Nc of concept constants (which must not be replaced
by substitutions). A substitution σ maps every concept variable to an EL-concept
description. It is extended to concept descriptions in the usual way:

• σ(A) := A for all A ∈ Nc ∪ {>},

• σ(C uD) := σ(C) u σ(D) and σ(∃r.C) := ∃r.σ(C).

An EL-concept description C is ground if it does not contain variables. Obviously,
a ground concept description is not modified by applying a substitution. An
ELHR+-ontology is ground if it does not contain variables.

Definition 3. Let O be a ground ELHR+-ontology. An ELHR+-unification prob-
lem w.r.t. O is a finite set Γ = {C1 v? D1, . . . , Cn v? Dn} of subsumptions
between EL-concept descriptions. A substitution σ is a unifier of Γ w.r.t. O if σ
solves all the subsumptions in Γ, i.e., if σ(C1) vO σ(D1), . . . , σ(Cn) vO σ(Dn).
We say that Γ is unifiable w.r.t. O if it has a unifier.

Note that some of the previous papers on unification in DLs use equivalences
C ≡? D instead of subsumptions C v? D. This difference is, however, irrelevant
since C ≡? D can be seen as a shorthand for the two subsumptions C v? D and
D v? C, and C v? D has the same unifiers as C u D ≡? C. Also note that we
have restricted the background ontology O to be ground. This is not without
loss of generality. If O contained variables, then we would need to apply the
substitution also to its GCIs, and instead of requiring σ(Ci) vO σ(Di) we would
thus need to require σ(Ci) vσ(O) σ(Di), which would change the nature of the
problem considerably (see [5] for a more detailed discussion).

As mentioned in the introduction, the unification algorithm we will present in
Section 5 is complete only for ELHR+-ontologies that satisfy a certain restriction
on cycles.

Definition 4. The ELHR+-ontology O is called cycle-restricted iff there is no
nonempty word w ∈ N+

R and EL-concept description C such that C vO ∃w.C.

9

In [5] we show that a given ELHR+-ontology can be tested for cycle-restrictedness
in polynomial time. The main idea is that it is sufficient to consider the cases
where C is a concept name or >.

To simplify the description of the algorithm, it is convenient to first flatten the
ontology and the unification problem. The unification problem Γ is called flat if
it contains only flat subsumptions of the form C1 u · · · u Cn v? D, where n ≥ 0
and C1, . . . , Cn, D are flat atoms.3

Let Γ be a unification problem and O an ELHR+-ontology. By introducing aux-
iliary variables and concept names, respectively, Γ and O can be transformed in
polynomial time into a flat unification problem Γ′ and a flat ELHR+-ontology O′
such that the unifiability status remains unchanged, i.e., Γ has a unifier w.r.t.
O iff Γ′ has a unifier w.r.t. O′. In addition, if O was cycle-restricted, then so is
O′ (see [5] for details). Thus, we can assume without loss of generality that the
input unification problem and ontology are flat.

4.1 Local Unifiers

The main idea underlying the “in NP” results in [7, 3] is to show that any unifi-
cation problem that is unifiable has a so-called local unifier.

We denote by At the set of atoms occurring as subdescriptions in subsumptions
in Γ or axioms in O and define

Attr := At ∪ {∃t.D′ | ∃s.D′ ∈ At, tEO s, t transitive}.

Furthermore, we define the set of non-variable atoms by Atnv := Attr\Nv. Though
the elements of Atnv cannot be variables, they may contain variables if they are
of the form ∃r.X for some role r and a variable X.

We call a function S that associates every variable X ∈ Nv with a set SX ⊆ Atnv
an assignment. Such an assignment induces the following relation >S on Nv: >S

is the transitive closure of

{(X, Y) ∈ Nv ×Nv | Y occurs in an element of SX}.

We call the assignment S acyclic if >S is irreflexive (and thus a strict partial
order). Any acyclic assignment S induces a unique substitution σS, which can be
defined by induction along >S:

• If X ∈ Nv is minimal w.r.t. >S, then we define σS(X) :=
d
D∈SX

D.

• Assume that σ(Y) is already defined for all Y such that X >S Y . Then we
define σS(X) :=

d
D∈SX

σS(D).
3If n = 0, then we have an empty conjunction on the left-hand side, which as usual stands

for >.

10

We call a substitution σ local if it is of this form, i.e., if there is an acyclic
assignment S such that σ = σS. If the unifier σ of Γ w.r.t.O is a local substitution,
then we call it a local unifier of Γ w.r.t. O.

The main technical result shown in [3] is that any unifiable EL-unification prob-
lem w.r.t. a cycle-restricted ontology has a local unifier. This yields the following
brute-force unification algorithm for EL w.r.t. cycle-restricted ontologies: first
guess an acyclic assignment S, and then check whether the induced local sub-
stitution σS solves Γ. As shown in [3], this algorithm runs in nondeterministic
polynomial time. NP-hardness follows from the fact that already unification in
EL w.r.t. the empty ontology is NP-hard [7]. In [3] it is also shown why cycle-
restrictedness is needed: there is a non-cycle-restricted EL-ontology O and an
EL-unification problem Γ such that Γ has a unifier w.r.t. O, but it does not have
a local unifier.

5 A Goal-Oriented Unification Algorithm

The brute-force algorithm is not practical since it blindly guesses an acyclic as-
signment and only afterwards checks whether the guessed assignment induces a
unifier. In this section, we introduce a more goal-oriented unification algorithm,
in which nondeterministic decisions are only made if they are triggered by “un-
solved parts” of the unification problem. In addition, failure due to wrong guesses
can be detected early. This goal-oriented algorithm generalizes the goal-oriented
algorithm for unification in EL (without background ontology) introduced in [9],
though the rules look quite different because here we consider unification prob-
lems that consist of subsumptions whereas in [9] we considered equivalences. It
is more closely related to the algorithm presented in [2] for unification w.r.t.
cycle-restricted EL-ontologies.

We assume that the cycle-restricted ELHR+-ontology O and the unification prob-
lem Γ0 are flat. Given O and Γ0, the sets At, Attr, and Atnv are defined as above.
Starting with Γ0, the algorithm maintains a current unification problem Γ and
a current acyclic assignment S, which initially assigns the empty set to all vari-
ables. For each subsumption in Γ it maintains the information on whether it is
solved or not. Initially, all subsumptions of Γ0 are unsolved, except those with a
variable on the right-hand side. Rules are applied only to unsolved subsumptions.
A (non-failing) rule application does the following:

• it solves exactly one unsolved subsumption,

• it may extend the current assignment S, and

• it may introduce new flat subsumptions built from elements of Attr.

11

Each rule application that extends S additionally expands Γ w.r.t. X as follows:
every subsumption s ∈ Γ of the form C1 u · · · u Cn v? X is expanded by adding
the subsumption C1 u · · · u Cn v? A to Γ for every A ∈ SX .

Subsumptions are only added if they are not already present in Γ. If a new
subsumption is added to Γ, either by a rule application or by expansion of Γ,
then it is initially designated unsolved, except if it has a variable on the right-
hand side. Once a subsumption is in Γ, it will not be removed. Likewise, if a
subsumption in Γ is marked as solved, then it will not become unsolved later.

If a subsumption is marked as solved, this does not necessarily mean that it is
indeed already solved by the substitution induced by the current assignment. In-
stead, it may be the case that the task of satisfying the subsumption was deferred
to solving other subsumptions, which are “smaller” than the given subsumption
in a certain well-defined sense. A subsumption whose right-hand side is a variable
is always marked as solved since the task of solving it is deferred to solving the
subsumptions introduced by expansion.

The rules of the algorithm consist of the three eager rules Eager Ground Solving,
Eager Solving, and Eager Extension (see Figure 1), and several nondeterministic
rules (see Figures 2 and 3). Eager rules are applied with higher priority than
nondeterministic rules, and among the eager rules, Eager Ground Solving has the
highest priority, then comes Eager Solving, and then Eager Extension.

Algorithm 5. Let Γ0 be a flat EL-unification problem. We initialize Γ := Γ0 and
SX := ∅ for all variables X ∈ Nv. While Γ contains an unsolved subsumption, do
the following:

(1) Eager rule application: If some eager rules apply to an unsolved subsump-
tion s in Γ, apply the one with the highest priority. If the rule application
fails, return “not unifiable”.

(2) Nondeterministic rule application: If no eager rule is applicable, let s be
an unsolved subsumption in Γ. If one of the nondeterministic rules applies
to s, choose one of these rules and apply it. If none of these rules apply to s
or the rule application fails, then return “not unifiable”.

(3) Eager application of Decomposition: If in the previous step one of the
rules Mutation 2 or 3 was applied, do the following for all subsumptions s′

added to Γ by this rule application: If one of the rules Decomposition 1 or 2
applies to s′, nondeterministically choose one of the applicable decomposition
rules and apply it to s′.4

Once all subsumptions in Γ are solved, return the substitution σ induced by the
current assignment.

4Note that Decomposition 1 always applies to the new subsumptions. Whether Decomposi-
tion 2 is also applicable depends on the existence of an appropriate transitive role t.

12

Eager Ground Solving:

Condition: This rule applies to s = C1 u · · · u Cn v? D if it is ground.
Action: If C1 u · · · u Cn vO D does not hold, the rule application fails.
Otherwise, s is marked as solved.

Eager Solving:

Condition: This rule applies to s = C1 u · · · u Cn v? D if either

• there is an index i ∈ {1, . . . , n} such that Ci = D or Ci = X ∈ Nv

and D ∈ SX , or

• D is ground and
d
G vO D holds, where G is the set of all ground

atoms in {C1, . . . , Cn} ∪
⋃
X∈{C1,...,Cn}∩Nv

SX .

Action: Its application marks s as solved.

Eager Extension:

Condition: This rule applies to s = C1 u · · · uCn v? D if there is an index
i ∈ {1, . . . , n} with Ci = X ∈ Nv and {C1, . . . , Cn} \ {X} ⊆ SX .
Action: Its application adds D to SX . If this makes S cyclic, the rule
application fails.
Otherwise, Γ is expanded w.r.t. X and s is marked as solved.

Figure 1: The Eager rules of Algorithm 5.

In step (2), the choice which unsolved subsumption to consider next is don’t
care nondeterministic. However, choosing which rule to apply to the chosen
subsumption is don’t know nondeterministic. Additionally, the application of
nondeterministic rules requires don’t know nondeterministic guessing.

This is an extension of the algorithm from [2] by more general nondeterministic
rules and the addition of step (3). This additional step immediately applies all
possible Decomposition rules after each application of Mutation 2 or 3. This
ensures that in each rule application the generated subsumptions are “smaller”
than the triggering subsumption in some well-defined sense, which will be used
to prove soundness (see Section 5.1).

The eager rules are mainly there for optimization purposes, i.e., to avoid non-
deterministic choices if a deterministic decision can be made. For example, a
ground subsumption, as considered by Eager Ground Solving, either holds, in
which case any substitution solves it, or it does not, in which case it does not
have a solution. This condition can be checked in polynomial time using the sub-
sumption algorithm for ELHR+ [6]. In the case considered by Eager Solving, the
substitution induced by the current assignment already solves the subsumption.
The Eager Extension rule solves a subsumption that contains only a variable X

13

Decomposition 1:

Condition: This rule applies to s = C1 u · · · u Cn v? ∃s.D′ if there is an
index i ∈ {1, . . . , n} with Ci = ∃r.C ′ and r EO s.
Action: Its application chooses such an index i, adds the subsumption
C ′ v? D′ to Γ, expands it w.r.t. D′ if D′ is a variable, and marks s as solved.

Decomposition 2:

Condition: This rule applies to s = C1 u · · · u Cn v? ∃s.D′ if there is an
index i ∈ {1, . . . , n} and a transitive role t with Ci = ∃r.C ′ and rEO tEO s.
Action: Its application chooses such an index i, adds the subsumption
C ′ v? ∃t.D′ to Γ and marks s as solved.

Extension:
Condition: This rule applies to s = C1 u · · · uCn v? D if there is an index
i ∈ {1, . . . , n} with Ci ∈ Nv.
Action: Its application chooses such an index i and adds D to SCi

. If this
makes S cyclic, the rule application fails. Otherwise, Γ is expanded w.r.t.
Ci and s is marked as solved.

Figure 2: The nondeterministic rules Decomposition 1 and 2 and Extension.

and some elements of SX on the left-hand side. The rule is motivated by the
following observation: for any assignment S ′ extending the current assignment,
the induced substitution σ′ satisfies σ′(X) ≡ σ′(C1) u · · · u σ′(Cn). Thus, if S ′X
contains D, then σ′(X) v σ′(D), and σ′ solves the subsumption. Conversely, if
σ′ solves the subsumption, then σ′(X) v σ′(D), and thus adding D to S ′X yields
an equivalent induced substitution.

The nondeterministic rules only come into play if no eager rules can be applied.
In order to solve an unsolved subsumption s = C1u· · ·uCn v? D, we consider the
two conditions of Lemma 2. Regarding the first condition, which is addressed by
the rules Decomposition 1 and 2 and Extension, assume that γ is induced by an
acyclic assignment S. To satisfy the first condition of the lemma with γ, the atom
γ(D) must structurally subsume a top-level atom in γ(C1) u · · · u γ(Cn). This
atom can either be of the form γ(Ci) for a non-variable atom Ci, or of the form
γ(C) for C ∈ SCi

and a variable Ci. In the second case, the atom C can either
already be in SCi

or it can be put into SCi
by an application of the Extension

rule. The two versions of Decomposition correspond to the cases (2) and (3) in
the definition of structural subsumption.5

The Mutation rules cover the second condition in Lemma 2. Each rule covers a
different case: For example, Mutation 1 is applicable only to subsumptions with
more that one conjunct on the left-hand side. It solves the subsumption by making

5Case (1) of this definition is already handled by the Solving rules.

14

Mutation 1:
Condition: This rule applies to s = C1 u · · · uCn v? D if n > 1 and there
are atoms A1, . . . , Ak, B of O such that A1 u · · · u Ak vO B holds.
Action: Its application chooses such atoms, marks s as solved, and gener-
ates the following subsumptions:

• it chooses for each η ∈ {1, . . . , k} an i ∈ {1, . . . , n} and adds the
subsumption Ci v? Aη to Γ,

• it adds the subsumption B v? D to Γ.
Mutation 2:

Condition: This rule applies to s = ∃r.X v? D if X is a variable, D is
ground, and there are atoms ∃r1.A1, . . . ,∃rk.Ak of O such that rEO r1, . . . ,
r EO rk, and ∃r1.A1 u · · · u ∃rk.Ak vO D hold.
Action: Its application chooses such atoms, adds the subsumptions
∃r.X v? ∃r1.A1, . . . , ∃r.X v? ∃rk.Ak to Γ, and marks s as solved.

Mutation 3:
Condition: This rule applies to s = ∃r.X v? ∃s.Y ifX and Y are variables,
and there are atoms ∃r1.A1, . . . ,∃rk.Ak,∃u.B of O such that r EO r1, . . . ,
r EO rk, uEO s, and ∃r1.A1 u · · · u ∃rk.Ak vO ∃u.B hold.
Action: Its application chooses such atoms, adds the subsumptions
∃r.X v? ∃r1.A1, . . . , ∃r.X v? ∃rk.Ak, ∃u.B v? ∃s.Y to Γ, and marks s
as solved.

Mutation 4:
Condition: This rule applies to s = C v? ∃s.Y if C is a ground atom or
>, Y is a variable, and there is an atom ∃u.B of O such that either

• C vO ∃u.B and uEO s, or

• C vO ∃t.B for a transitive role t with uEO tEO s.

Action: Its application chooses such an atom, adds the subsumption B v?

Y to Γ, and marks s as solved.

Figure 3: The nondeterministic Mutation rules of Algorithm 5.

15

sure that all conditions of the second condition of Lemma 2 are satisfied. The
rule guesses atoms A1, . . . , Ak, B of O such that A1 u · · · uAk vO B holds. This
can be checked using the polynomial-time subsumption algorithm for ELHR+ .
Whenever the second condition of Lemma 2 requires a structural subsumption
γ(E) vs

O γ(F) to hold for a (hypothetical) unifier γ of Γ, the rule creates the new
subsumption E v? F , which has to be solved later on. This way, the rule ensures
that the substitution built by the algorithm actually satisfies the conditions of the
lemma. The other Mutation rules follow the same idea, but they consider cases
where only a single atom occurs on the left-hand side of the subsumption to be
solved. The reason for considering these cases separately is that in the proof of
soundness we need the newly introduced subsumptions to be “smaller” than the
subsumption that triggered their introduction. For Mutation 1 this is the case
due to the smaller left-hand side (only one atom), whereas for the other mutation
rules this is not so clear. Actually, for Mutation 2 and 3, the new subsumptions
turn out to be smaller only after Decomposition is applied to them. Mutation 4
implicitly applies a form of decomposition.

In contrast to the algorithm presented in [2] for unification w.r.t. cycle-restricted
EL-ontologies, this algorithm uses two modified Decomposition rules instead of
only one to account for the generalized definition of structural subsumption. Ad-
ditionally, the new algorithm separates the implicit application of the Decompo-
sition rules in the rules Mutation 2 and 3 into a separate step in the algorithm.
For Mutation 1 this is not necessary, while for Mutation 4 it is not possible since
applying condition (3) of the definition of structural subsumption to the result-
ing subsumption could lead to non-termination (see the proof of Lemma 8 for
details).

5.1 Soundness

The soundness of the unification algorithm in [2] is shown with the help of a mea-
sure assigned to all subsumptions generated during the process of computation.
The measure is equipped with a well-founded order �, which is used for an in-
duction argument. In order to show that the modified algorithm is also sound, we
have to slightly modify the measure and show that it works for the new rules, i.e.,
the measure of the subsumptions obtained by applications of these rules is smaller
than the measure of the unsolved subsumptions to which they were applied.

In the following, let S be the final assignment computed by Algorithm 5 on input
Γ0 and σ be the substitution induced by S. With Γ̂ we denote the final set of
subsumptions computed by this run, i.e., the original subsumptions of Γ0 together
with the new ones generated by rule applications.

Definition 6. Let s = C1 u · · · u Cn v? Cn+1 ∈ Γ̂.

• s is small if n = 1 and C1 is ground or Cn+1 is ground.

16

• We define m(s) := (m1(s),m2(s),m3(s),m4(s)), where

– m1(s) := 0 if s is small, and m1(s) := 1 otherwise.
– m2(s) := X if Cn+1 = X or Cn+1 = ∃r.X for a variable X and a role

name r ∈ NR, and m2(s) := ⊥ otherwise.
– m3(s) := max{rd(σ(Ci)) | i ∈ {1, . . . , n}}.
– m4(s) := rd(σ(Cn+1))

• The strict partial order � on such tuples is the lexicographic order, where
the first, third, and fourth components are compared w.r.t. the normal
order > on natural numbers. The variables in the second component are
compared w.r.t. the relation >S induced by the acyclic assignment and ⊥
is smaller than any variable.

• We extend � to Γ̂ by setting s1 � s2 iff m(s1) � m(s2).

As in the proof of Lemma 30 in [2], we use induction on this well-founded strict
partial order to show that σ solves Γ̂.

Lemma 7. σ is a unifier of Γ̂ w.r.t. O, and thus also of its subset Γ0.

Proof. Let s ∈ Γ̂ and assume that σ solves all subsumptions s′ ∈ Γ̂ with s′ ≺ s.
There are several cases to consider depending on the way s was solved.

• If s has a non-variable atom on the right-hand side, then it was initially
marked as unsolved and must have been solved by a successful rule appli-
cation. The cases of the Eager rules and the Extension rule can be handled
exactly as in [2] since the measure is not needed. We now consider the new
nondeterministic rules.

– Decomposition 1: Then s is of the form C1 u · · · u Cn v? ∃s.D′ with
Ci = ∃r.C ′ and r EO s and we have s′ = C ′ v? D′ ∈ Γ̂. We will show
that s � s′ holds. By induction, this implies that σ solves s′, and by
Lemma 2 thus also s. To compare m(s) and m(s′), we observe first
that m2(s) = m2(s′). We now make a case distinction on m1(s′).
If s′ is small, then s is either not small, i.e., m1(s) > m1(s′), or small
and of the form ∃r.C ′ v? ∃s.D′. In the second case, we have m1(s) =
m1(s′) and m3(s) > m3(s′).
If s′ is not small, then both C ′ and D′ are variables, and thus s is also
not small, which yields m1(s) = m1(s′). Furthermore,

m3(s) ≥ rd(σ(∃r.C ′)) = rd(σ(C ′)) + 1 > rd(σ(C ′)) = m3(s′).

Thus, in all cases we have s � s′.

17

– Decomposition 2: Then s is of the form C1 u · · · u Cn v? ∃s.D′ with
Ci = ∃r.C ′ and we have s′ = C ′ v? ∃t.D′ ∈ Γ̂ for some transitive role
t with r EO t EO s. Again, s � s′ can be shown in exactly the same
way as in the case of Decomposition 1.

– Mutation 1: Then s is of the form C1 u · · · u Cn v? D with n > 1
and there are atoms A1, . . . , Ak, B of T with A1 u · · · u Ak vO B.
Furthermore, for every η ∈ {1, . . . , k} there is a subsumption sη =
Ci v? Aη ∈ Γ̂ for some i ∈ {1, . . . , n} and the subsumption s′ = B v?

D is also in Γ̂.
Since s is not small and all the subsumptions s1, . . . , sk, s′ are small,
they are smaller than s w.r.t. �. By induction, σ solves those small
subsumptions, and thus we have σ(C1)u· · ·uσ(Cn) vO A1u· · ·uAk vO
B vO σ(D), i.e., σ solves s.

– Mutation 2: Then s is of the form ∃r.X v? D, D is ground, and
∃r1.A1 u · · · u ∃rk.Ak vO D holds for atoms ∃r1.A1, . . . ,∃rk.Ak of O
with r EO s1, . . . , r EO rk. We take a look at one of the produced
subsumptions ∃r.X v? ∃rη.Aη for η ∈ {1, . . . , k}.
Itself, this subsumption is not smaller than s w.r.t. �. However, one or
more of the Decomposition rules applies to it, and thus there must also
be a subsumption s′ = X v? Aη or s′′ = X v? ∃t.Aη with rEOtEOrη in
Γ̂. Both of these are smaller than s w.r.t. � since they are both small,
their right-hand sides are ground, and m3(s′) = m3(s′′) = rd(σ(X)) <
rd(σ(∃r.X)) = m3(s). By induction, the produced subsumption is
solved by σ, which implies by Lemma 2 that σ(∃r.X) vO ∃rη.Aη.
Since this holds for all η ∈ {1, . . . , k}, we conclude that σ(∃r.X) vO
∃r.A1 u · · · u ∃r.Ak vO D.

– Mutation 3: Then s is of the form ∃r.X v? ∃s.Y and the subsumption
∃r1.A1 u · · · u ∃rk.Ak vO ∃u.B holds between atoms of O with r EO
r1, . . . , r EO rk, u EO s. As above, we can show that the produced
subsumptions ∃r.X v? ∃rη.Aη for η ∈ {1, . . . , k} are solved by σ. We
now consider the remaining subsumption ∃u.B v? ∃s.Y .
Again, one or more of the Decomposition rules applies to it, and thus
the subsumption s′ = B v? Y or s′′ = B v? ∃t.Y with u EO t EO s
must be in Γ̂. Both are smaller than s w.r.t. � since they are both
small while s is not. By induction, the produced subsumption is solved
by σ, and thus we have ∃u.B vO σ(∃s.Y) by Lemma 2.
We can conclude that σ(∃r.X) vO ∃r1.A1 u · · · u ∃rk.Ak vO ∃u.B vO
σ(∃s.Y).

– Mutation 4: Then s is of the form C v? ∃s.Y , C is ground, and there
is an atom ∃u.B of O with u EO s such that either C vO ∃u.B or
C vO ∃t.B for a transitive role t with uEO tEO s. Furthermore, the
subsumption s′ = B v? Y is in Γ̂. Both s and s′ are small and m2(s) =

18

Y = m2(s′). Since B is a constant, i.e., has depth 0, we have m3(s) ≥
m3(s′). Finally, m4(s) = rd(σ(∃s.Y)) > rd(σ(Y)) = m4(s′), and thus
s � s′. By induction, B vO σ(Y) holds, and thus Lemma 2 implies
that either C vO ∃u.B vO σ(∃s.Y) or C vO ∃t.B vO σ(∃s.Y).

• The case that s has a variable as its right-hand side can again be handled
exactly as in the proof of Lemma 30 in [2].

5.2 Completeness

Assume that Γ0 is unifiable w.r.t. O and let γ be a ground unifier of Γ0 w.r.t.
O. As in [2], we can use this unifier to find a successful computation path
of Algorithm 5 on Γ0 such that the following invariants are preserved by the
successive rule applications for the current set of subsumptions Γ and the current
assignment S:

(I) γ is a unifier of Γ.

(II) For all B ∈ SX , we have γ(X) vO γ(B).

In [2], it is shown that these invariants are maintained by expanding Γ and by
applying eager rules. We also know that invariant (II) guarantees that the current
assignment is always acyclic. We now reprove a variant of Lemma 34 from [2]
that deals with the modified nondeterministic rules.

Lemma 8. Let s be an unsolved subsumption of Γ to which no eager rule applies.
Then there is a nondeterministic rule that can be successfully applied to s while
maintaining the invariants.

Proof. s must be of the form C1 u · · · u Cn v? D, where C1, . . . , Cn are flat
atoms from At or > and D ∈ Atnv. By invariant (I), γ solves s, i.e., we have
γ(C1) u · · · u γ(Cn) vO γ(D). By Lemma 2, one of the following alternatives
holds:

1. There is an index i ∈ {1, . . . , n} such that E vs
O γ(D) for a top-level atom E

of γ(Ci). We consider the following cases for Ci, which can obviously not be
>.

• If Ci is a concept name, then Ci = E = D and Eager Solving is applicable
to s, which contradicts the assumption.
• If Ci = ∃r.C ′, then γ(Ci) = ∃r.γ(C ′) = E, and thus D = ∃s.D′ and rEOs

and either (i) γ(C ′) vO γ(D′) or (ii) γ(C ′) vO ∃t.γ(D′) for a transitive
role t with r EO tEO s. In case (i), Decomposition 1 can be successfully
applied to s and results in a new subsumption C ′ v? D′ that is solved by
γ. Similarly, in case (ii) Decomposition 2 can be applied.

19

• If Ci = X is a variable, then invariant (II) is preserved by adding D to
SX since γ(X) v E vO γ(D). This implies that S stays acyclic, and thus
we can successfully apply Extension to s.

2. There are atoms A1, . . . , Ak, B of O such that for all η ∈ {1, . . . , k} there
is i ∈ {1, . . . , n} with γ(Ci) vO E vs

O Aη for a top-level atom E of γ(Ci),
A1 u · · · u Ak vO B, and B vs

O γ(D). If n > 1, we can apply Mutation 1
in such a way that all created subsumptions are solved by γ. The possible
subsequent applications of Decomposition rules again preserve the invariants
and cannot fail.
If n = 1, we distinguish several cases for C1 and D:

• If both C1 and D are ground, then the Eager Ground Solving rule is
applicable to s, which contradicts our assumption.
• If C1 = X is a variable, then the Eager Extension rule is applicable to s,

which again contradicts our assumption.
• If C1 = ∃r.X for a variable X, then we have Aη = ∃rη.A′η with r EO rη

and γ(∃r.X) vO Aη for every η ∈ {1, . . . , k}. Thus, we can add the
subsumptions C v? A1, . . . , C v? Ak to Γ A′1, . . . , A

′
k without violating

invariant (I). If D is ground, we have A1u· · ·uAk vO B vO D, and thus
we can successfully apply Mutation 2 to s. Otherwise, D = ∃s.Y for a
variable Y , which implies that B = ∃u.B′ with u EO s and B vO γ(D).
In this case, we can apply Mutation 3 to s while preserving the invariants.
• If C1 is ground and D = ∃s.Y for a variable Y , then we have

C1 vO A1 u · · · u Ak vO B = ∃u1.B1

and u1 EO s and either (i) B1 vO γ(Y) or (ii) B1 vO ∃t1.γ(Y) for some
transitive role t1 with u1EO t1EO s. In case (i), we can successfully apply
Mutation 4 to s while maintaining the invariants.
In case (ii), note that the resulting subsumption B1 vO γ(∃t1.Y) is similar
to the original C1 vO γ(∃s.Y) since B1 is also ground. Since B1 is a
concept name, again the second case of Lemma 2 applies and we can
derive the same consequences as above. In particular, there is an atom
∃u2.B2 of O such that B1 vO ∃u2.B2 and u2 EO t1 and either (i) B2 vO
γ(Y) or (ii) B2 vO ∃t2.γ(Y) for some transitive role t2 with u2EO t2EO t1.
An important consequence is that

C1 vO ∃u1.B1 vO ∃u1.∃u2.B2 vO ∃t1.∃t1.B2 vO ∃t1.B2

since both u1 and u2 are subroles of the transitive role t1. In case (i), we
can thus again successfully apply Mutation 4 to s.
In case (ii), we can apply the same case analysis as before. This process
cannot go on indefinitely since at some point the same concept name Bi

20

would occur twice and then we would have a subsumption Bi vO ∃t1.Bi,
which is impossible since O is cycle-restricted. Thus, at some point we
must find an atom ∃uk.Bk of O such that uk EO t1, C1 vO ∃t1.Bk, and
Bk vO γ(Y), i.e., we can successfully apply Mutation 4 to s.

To summarize, we have shown that for any unifiable input problem Γ0 there is
a non-failing run of Algorithm 5 on Γ0 during which the invariants (I) and (II)
are satisfied. Together with the fact that any run of the algorithm terminates
(see below), this shows completeness, i.e., whenever Γ0 has a unifier w.r.t. O, the
algorithm computes one.

5.3 Termination and Complexity

Similar termination arguments as in [2] also hold for the algorithm with the new
nondeterministic rules. The only remark we have to make concerns the number
and the form of the subsumptions created in the course of a computation. These
subsumptions can have one of the following forms:

1. subsumptions from Γ0;

2. subsumptions created by expansion of Γ0: these are of the form C1 u · · · u
Cn v? A for a subsumption C1 u · · · u Cn v? X ∈ Γ0 and A ∈ Atnv,

3. subsumptions of the form C v D, where C ∈ At, D ∈ Attr.

Hence for the modified algorithm, the set of atoms appearing in the subsumptions
is larger since the right-hand sides can be from Attr and not only from At. But
the increase is only polynomial in the size of the input and therefore there are
only polynomially many subsumptions of the above forms.

Hence, since each rule application solves one subsumption and each such applica-
tion takes only polynomial time, the modified algorithm is sound and complete
and terminates in time polynomial in the size of the input Γ0 and O.

Theorem 9. Algorithm 5 is an NP-decision procedure for unifiability in ELHR+

w.r.t. cycle-restricted ontologies.

6 Conclusions

We have presented a goal-oriented NP-algorithm for unification in ELHR+ w.r.t.
cycle-restricted ontologies. In [4], we have developed a reduction of this problem
to SAT, which is based on a characterization of subsumption different from the one

21

in Lemma 2. Though clearly better than the brute-force algorithm introduced in
[3], both algorithms suffer from a high degree of nondeterminism due to having to
guess true subsumptions between concepts built from atoms of the background
cycle-restricted ontology. We must find optimizations to tackle this problem
before an implementation becomes feasible.

On the theoretical side, the main topic for future research is to consider unifica-
tion w.r.t. unrestricted ELHR+-ontologies. In order to generalize the brute-force
algorithm in this direction, we need to find a more general notion of locality.
Starting with the goal-oriented algorithm, one idea could be not to fail when a
cyclic assignment is generated, but rather to add rules that can break such cycles,
similar to what is done in procedures for general E-unification [14].

Another idea could be to use just the rules of our goal-oriented algorithm, and
not fail when a cyclic assignment S is generated. Our conjecture is that then the
background ontology O together with the cyclic TBox TS := {X ≡

d
C∈SX

C |
X ∈ Nv} induced by S satisfies C vO∪TS

D for all subsumptions C v? D in Γ0 if
an appropriate hybrid semantics [12] for the combined ontology O ∪ TS is used.

All the results on unification in Description Logics mentioned here are restricted
to relatively inexpressive logics that do not support all Boolean operators. If
we close EL under negation, then we obtain the DL ALC, which corresponds to
the modal logic K [15]. Whether unification in K is decidable is a long-standing
open problem. It is only known that relatively minor extensions of K have an
undecidable unification problem [16].

References

[1] Franz Baader, Stefan Borgwardt, Julian Mendez, and Barbara Morawska.
UEL: Unification solver for EL. In Proc. of the 25th Int. Workshop on De-
scription Logics (DL’12), volume 846 of CEUR Workshop Proceedings, 2012.

[2] Franz Baader, Stefan Borgwardt, and Barbara Morawska. Unification
in the description logic EL w.r.t. cycle-restricted TBoxes. LTCS-Report
11-05, Chair for Automata Theory, Institute for Theoretical Computer
Science, Technische Universität Dresden, Dresden, Germany, 2011. See
http://lat.inf.tu-dresden.de/research/reports.html.

[3] Franz Baader, Stefan Borgwardt, and Barbara Morawska. Extending uni-
fication in EL towards general TBoxes. In Proc. of the 13th Int. Conf. on
Principles of Knowledge Representation and Reasoning (KR’12), pages 568–
572. AAAI Press, 2012. Short paper.

[4] Franz Baader, Stefan Borgwardt, and Barbara Morawska. SAT-encoding
of unification in ELHR+ w.r.t. cycle-restricted ontologies. In Proc. of the

22

6th Int. Joint Conf. on Automated Reasoning (IJCAR’12), volume 7364 of
Lecture Notes in Artificial Intelligence, pages 30–44. Springer-Verlag, 2012.

[5] Franz Baader, Stefan Borgwardt, and Barbara Morawska. SAT encoding
of unification in ELHR+ w.r.t. cycle-restricted ontologies. LTCS-Report
12-02, Chair for Automata Theory, Institute for Theoretical Computer
Science, Technische Universität Dresden, Dresden, Germany, 2012. See
http://lat.inf.tu-dresden.de/research/reports.html.

[6] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL en-
velope. In Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJ-
CAI’05), pages 364–369. Professional Book Center, 2005.

[7] Franz Baader and Barbara Morawska. Unification in the description logic
EL. In Proc. of the 20th Int. Conf. on Rewriting Techniques and Applications
(RTA’09), volume 5595 of Lecture Notes in Computer Science, pages 350–
364. Springer-Verlag, 2009.

[8] Franz Baader and Barbara Morawska. SAT encoding of unification in EL.
In Proc. of the 17th Int. Conf. on Logic for Programming, Artificial Intelli-
gence, and Reasoning (LPAR’10), volume 6397 of Lecture Notes in Computer
Science, pages 97–111. Springer-Verlag, 2010.

[9] Franz Baader and Barbara Morawska. Unification in the description logic
EL. Logical Methods in Computer Science, 6(3), 2010.

[10] Franz Baader and Paliath Narendran. Unification of concept terms in de-
scription logics. Journal of Symbolic Computation, 31(3):277–305, 2001.

[11] Sebastian Brandt. Polynomial time reasoning in a description logic with
existential restrictions, GCI axioms, and - what else? In Proc. of the 16th
Eur. Conf. on Artificial Intelligence (ECAI’04), pages 298–302. IOS Press,
2004.

[12] Sebastian Brandt and Jörg Model. Subsumption in EL w.r.t. hybrid TBoxes.
In Proc. of the 28th German Conf. on Artificial Intelligence (KI’05), volume
3698 of LNCS, pages 34–48. Springer, 2005.

[13] Carla P. Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman. Sat-
isfiability solvers. In Handbook of Knowledge Representation, pages 89–134.
Elsevier, 2008.

[14] Barbara Morawska. General E-unification with eager variable elimination
and a nice cycle rule. Journal of Automated Reasoning, 39(1):77–106, 2007.

[15] Klaus Schild. A correspondence theory for terminological logics: Prelimi-
nary report. In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence
(IJCAI’91), pages 466–471, 1991.

23

[16] Frank Wolter and Michael Zakharyaschev. Undecidability of the unification
and admissibility problems for modal and description logics. ACM Transac-
tions on Computational Logic, 9(4), 2008.

24

	Introduction
	The Description Logics EL and ELHR+
	Subsumption in ELHR+
	Proving Subsumptions by Inference Rules
	A Structural Characterization of Subsumption

	Unification in ELHR+
	Local Unifiers

	A Goal-Oriented Unification Algorithm
	Soundness
	Completeness
	Termination and Complexity

	Conclusions

