
FOUNDATIONS OF COMPLEXITY THEORY

Lecture 17: Probabilistic Turing Machines

David Carral

Knowledge-Based Systems

TU Dresden, February 1, 2021

Randomness in Computation

Random number generators are an important tool in programming

• Many known algorithms use randomness

• DTMs are fully deterministic without random choices

• NTMs have choices, but are not governed by probabilities

Could a Turing machine benefit from having access to (truly) random numbers?

David Carral, February 1, 2021 Foundations of Complexity Theory slide 2 of 47

Example: Finding the Median
It is of interest to select the k-th smallest element of a set of numbers.

For example, the median of a set of numbers {a1, . . . , an} is the ⌈ n
2 ⌉-th smallest number.

(Note: we restrict to odd n and disallow repeated numbers for simplicity)

The following simple algorithm selects the k-th smallest element:

01 selectKthElement(k, a1,...,an) :

02 pick some p ∈ {1, . . . , n} // select pivot element
03 c := number of elements ai such that ai ≤ ap

04 if c == k :

05 return ap

06 else if c > k :

07 L := list of all ai with ai < ap

08 return selectKthElement(k,L)
09 else if c < k :

10 L := list of all ai with ai > ap

11 return selectKthElement(k-c,L)

David Carral, February 1, 2021 Foundations of Complexity Theory slide 3 of 47

Example: Finding the Median – Analysis (1)

01 selectKthElement(k, a1,...,an) :

02 pick some p ∈ {1, . . . , n} // select pivot element
03 c := number of elements ai such that ai ≤ ap

04 if c == k :

05 return ap

06 else if c > k :

07 L := list of all ai with ai < ap

08 return selectKthElement(k,L)
09 else if c < k :

10 L := list of all ai with ai > ap

11 return selectKthElement(k-c,L)

What is the runtime of this algorithm?

• Lines 03, 07, and 10 run in O(n)
• The considered set shrinks by at least one element per iteration: O(n) iterations

! In the worst case, the algorithm requires quadratic time
So it would be faster to sort the list in O(n log n) and
look up the k-th smallest element directly!

David Carral, February 1, 2021 Foundations of Complexity Theory slide 4 of 47

Example: Finding the Median – Analysis (2)

01 selectKthElement(k, a1,...,an) :

02 pick some p ∈ {1, . . . , n} // select pivot element
03 c := number of elements ai such that ai ≤ ap

04 if c == k :

05 return ap

06 else if c > k :

07 L := list of all ai with ai < ap

08 return selectKthElement(k,L)
09 else if c < k :

10 L := list of all ai with ai > ap

11 return selectKthElement(k-c,L)

However, what if we pick pivot elements at random with uniform probability?

• then it is extremely unlikely that the worst case occurs

• one can show that the expected runtime is linear [Arora & Barak, Section 7.2.1]

• worse than linear runtimes can occur, but the total probability of such runs is 0

The algorithm runs in almost certain linear time.
A refined implementation that works with repeated numbers is Quickselect.

David Carral, February 1, 2021 Foundations of Complexity Theory slide 5 of 47

Probabilistic Turing Machines
How can we incorporate the power of true randomness into Turing machine definition?

Definition 17.1: A probabilistic Turing machine (PTM) is a Turing machine with
two deterministic transition functions, δ0 and δ1.
A run of a PTM is a TM run that uses either of the two transitions in each step.

• PTMs therefore are very similar to NTMs with (at most) two options per step
• We think of transitions as being selected randomly, with equal probability of 0.5:

the PTM flips a fair coin in each step
• A DTM is a special PTM where both transition functions are the same

Example 17.2: The task of picking a random pivot element p ∈ {1, . . . , n} with
uniform probability can be achieved by a PTM:

(1) Perform ℓ coin flips, where ℓ is the least number with 2ℓ ≥ n

(2) Each outcome {1, . . . , n} corresponds to one combination of the ℓ flips

(3) For any other combination (if n " 2ℓ): goto (1) Note that the probability of infinite repetition is s0.

David Carral, February 1, 2021 Foundations of Complexity Theory slide 6 of 47

The Language of a PTM

Under which condition should we say “w is accepted by the PTMM”?

Some options: w is accepted by the PTMM if . . .

(1) it is possible that it will halt and accept

(2) it is more likely than not that it will halt and accept

(3) it is more likely than, say, 0.75 that it will halt and accept

(4) it is certain that it will halt and accept (probability 1)

Main question: Which definition is needed to obtain practical algorithms?

• (1) corresponds to the usual acceptance condition for NTMs.

• (4) corresponds to the usual acceptance condition for “co-NTMs”.

• (2) is similarly difficult to check (majority vote over all runs).

• (3) could be useful for determining w ∈ L(M) with high probability, but how would
we know if w # L(M)?

! Definitions do not seem to capture practical & efficient probabilistic algorithms yet

David Carral, February 1, 2021 Foundations of Complexity Theory slide 7 of 47

Probabilistic Turing Machines
How can we incorporate the power of true randomness into Turing machine definition?

Definition 17.1: A probabilistic Turing machine (PTM) is a Turing machine with
two deterministic transition functions, δ0 and δ1.
A run of a PTM is a TM run that uses either of the two transitions in each step.

• PTMs therefore are very similar to NTMs with (at most) two options per step
• We think of transitions as being selected randomly, with equal probability of 0.5:

the PTM flips a fair coin in each step
• A DTM is a special PTM where both transition functions are the same

Example 17.2: The task of picking a random pivot element p ∈ {1, . . . , n} with
uniform probability can be achieved by a PTM:

(1) Perform ℓ coin flips, where ℓ is the least number with 2ℓ ≥ n

(2) Each outcome {1, . . . , n} corresponds to one combination of the ℓ flips

(3) For any other combination (if n " 2ℓ): goto (1) Note that the probability of infinite repetition is s0.

David Carral, February 1, 2021 Foundations of Complexity Theory slide 6 of 47

The Language of a PTM

Under which condition should we say “w is accepted by the PTMM”?

Some options: w is accepted by the PTMM if . . .

(1) it is possible that it will halt and accept

(2) it is more likely than not that it will halt and accept

(3) it is more likely than, say, 0.75 that it will halt and accept

(4) it is certain that it will halt and accept (probability 1)

Main question: Which definition is needed to obtain practical algorithms?

• (1) corresponds to the usual acceptance condition for NTMs.

• (4) corresponds to the usual acceptance condition for “co-NTMs”.

• (2) is similarly difficult to check (majority vote over all runs).

• (3) could be useful for determining w ∈ L(M) with high probability, but how would
we know if w # L(M)?

! Definitions do not seem to capture practical & efficient probabilistic algorithms yet

David Carral, February 1, 2021 Foundations of Complexity Theory slide 7 of 47

Random numbers as witnesses
Towards efficient probabilistic algorithms, we can restrict to PTMs where any run is
guaranteed to be of polynomial length.

A useful alternative view on such PTMs is as follows:

Definition 17.3 (Polytime PTM, alternative definition): A polynomially time-
bounded PTM is a polynomially time-bounded deterministic TM that receives in-
puts of the form w#r, where w ∈ Σ∗ is an input word, and r ∈ {0, 1}∗ is a sequence
of random numbers of length polynomial in |w|. If w#r is accepted, we may call r

a witness for w.

Note the similarity to the notion of polynomial verifiers used for NP.

The prior definition is closely related to the alternative version:
• Every run of a PTM corresponds to a sequence of results of coin flips
• Polytime PTMs only perform a polynomially bounded number of coin flips
• A DTM can simulate the same computation when given the outcome of the coin

flips as part of the input

(Note: the polynomial bound comes from a fixed polynomial for the given TM, of course)
David Carral, February 1, 2021 Foundations of Complexity Theory slide 8 of 47

PP: Polynomial Probabilistic Time

David Carral, February 1, 2021 Foundations of Complexity Theory slide 9 of 47

Polynomial Probabilistic Time

The challenge of defining practical algorithms is illustrated by a basic class of PTM
languages based on polynomial time bounds:

Definition 17.4: A language L is in Polynomial Probabilistic Time (PP) if there is
a PTM M such that:

• there is a polynomial function f such that M will always halt after f (|w|) steps
on all input words w,

• if w ∈ L, then Pr [M accepts w] > 1
2 ,

• if w # L, then Pr [M accepts w] ≤ 1
2 .

Alternative view: We could also say thatM is a polynomially time-bounded PTM that
accepts any word that is accepted in the majority of runs (or: the majority of witnesses)
! PP is sometimes called Majority-P (which would indeed be a better name)

David Carral, February 1, 2021 Foundations of Complexity Theory slide 10 of 47

PP is hard (1)

It turns out that PP is far from capturing the idea of “practically efficient”:

Theorem 17.5: NP ⊆ PP

Proof: Since DTMs are special cases of PTMs, L1 ∈ PP and L2 ≤m L1 imply L2 ∈ PP. It
therefore suffices to show that some NP-complete problem is in PP.

The following PP algorithmM solves Sat on input formula ϕ:

(1) Randomly guess an assignment for ϕ.

(2) If the assignment satisfies ϕ, accept.

(3) If the assignment does not satisfy ϕ, randomly accept or reject with equal probability.

Therefore:

• if ϕ is unsatisfiable, Pr
!M accepts ϕ

"
= 1

2 : the input is rejected;

• if ϕ is satisfiable, Pr
!M accepts ϕ

"
> 1

2 : the input is accepted. □

David Carral, February 1, 2021 Foundations of Complexity Theory slide 11 of 47

Complementing PP (1)

Theorem 17.6: PP is closed under complement.

Proof: Let L ∈ PP be accepted by PTMM, time-bounded by the polynomial p(n). We
therefore know:

• If w ∈ L, then Pr [M accepts w] > 1
2

• If w # L, then Pr [M accepts w] ≤ 1
2

We first ensure that, in the second case, no word is accepted with probability 1
2 .

We construct an PTMM′ that first executesM, and then:

• ifM rejects: M′ rejects

• ifM accepts: M′ flips coins for p(n) + 1 steps, rejects if they all of these coins are
heads, and accepts otherwise.

This gives us Pr [M′ accepts w] = Pr [M accepts w] − (1
2)p(n)+1 for all w ∈ Σ∗.

We will show thatM′ still describes the language L.

David Carral, February 1, 2021 Foundations of Complexity Theory slide 12 of 47

Complementing PP (2)

Theorem 17.7: PP is closed under complement.

Proof (continued): Pr [M′ accepts w] = Pr [M accepts w] − (1
2)p(n)+1. We claim:

• If w ∈ L, then Pr [M′ accepts w] > 1
2

• If w # L, then Pr [M′ accepts w] < 1
2

The second inequality is clear (we subtract a non-zero number from ≤ 1
2).

The first inequality follows since the probability of any run ofM on inputs of length n is
an integer multiple of (1

2)p(n). The same holds for sums of probabilities of runs, hence, if
w ∈ L, then Pr [M accepts w] ≥ 1

2 + (1
2)p(n). The claim follows since (1

2)p(n) > (1
2)p(n)+1.

To finish the proof, we construct the complementM′ ofM′ by exchanging accepting
and non-accepting states inM′. Then:
• If w ∈ L, then Pr

#
M′ accepts w

$
< 1

2

• If w # L, then Pr
#
M′ accepts w

$
> 1

2

as required. □

David Carral, February 1, 2021 Foundations of Complexity Theory slide 13 of 47

PP is hard (2)

Since NP ⊆ PP (Theorem 17.5), we also get:

Corollary 17.8: coNP ⊆ PP

PP therefore appears to be strictly harder than NP or coNP.

The following strong result also hints in this direction:

Theorem 17.9: PH ⊆ PPP

Note: The proof is based on a non-trivial result known as Toda’s Theorem, which is about complexity classes where one can count satisfying
assignments of propositional formulae (“#Sat”), together with the insight that this count can be computed in polynomial time using a PP oracle.

David Carral, February 1, 2021 Foundations of Complexity Theory slide 14 of 47

An upper bound for PP

We can also find a suitable upper bound for PP:

Theorem 17.10: PP ⊆ PSpace

Proof: Consider a PTMM that runs in time bounded by the polynomial p(n).

We can decide ifM accepts input w as follows:

(1) for each word r ∈ {0, 1}p(|w|):

(2) decide ifM has an accepting run on w for the sequence r of random numbers;

(3) accept if the total number of accepting runs is greater than 2p(|w|)−1, else reject.

This algorithm runs in polynomial space, as each iteration only needs to store r and the
tape of the simulated polynomial TM computation. □

David Carral, February 1, 2021 Foundations of Complexity Theory slide 15 of 47

Complete problems for PP

We can define PP-hardness and PP-completeness using polynomial many-one
reductions as before.

Using the similarity with NP, it is not hard to find a PP-complete problem:

MajSat

Input: A propositional logic formula ϕ.

Problem: Is ϕ satisfied by more than half of its assignments?

It is not hard to reduce the question whether a PTMs accepts an input to MajSat:

• Describe the behaviour of the PTM in logic, as in the proof of the Cook-Levin
Theorem

• Each satisfying assignment then corresponds to one run

David Carral, February 1, 2021 Foundations of Complexity Theory slide 16 of 47

BPP: A practical probabilistic class

David Carral, February 1, 2021 Foundations of Complexity Theory slide 17 of 47

How to use PTMs in practice

A practical idea for using PTMs:

• The output of a PTM on a single (random) run is governed by probabilities

• We can repeat the run many times to be more certain about the result

Problem: The acceptance probability for words in languages in PP can be arbitrarily
close to 1

2 :

• It is enough if 2m−1 + 1 runs accept out of 2m runs overall

• So one would need an exponential number of repetitions to become reasonably
certain

! Not a meaningful way of doing probabilistic computing

We would rather like PTMs to accept with a fixed probability that does not converge to 1
2 .

David Carral, February 1, 2021 Foundations of Complexity Theory slide 18 of 47

A practical probabilistic class
The following way of deciding languages is based on a more easily detectable difference
in acceptance probabilities:

Definition 17.11: A language L is in Bounded-Error Polynomial Probabilistic Time
(BPP) if there is a PTM M such that:

• there is a polynomial function f such that M will always halt after f (|w|) steps
on all input words w,

• if w ∈ L, then Pr [M accepts w] ≥ 2
3 ,

• if w # L, then Pr [M accepts w] ≤ 1
3 .

In other words: Languages in BPP are decided by polynomially time-bounded PTMs
with error probability ≤ 1

3 .

Note that the bound on the error probability is uniform across all inputs:
• For any given input, the probability for a correct answer is at least 2

3
• It would be weaker to require that the probability of a correct answer is at least 2

3
over the space of all possible inputs (this would allow worse probabilities on some inputs)

David Carral, February 1, 2021 Foundations of Complexity Theory slide 19 of 47

Better error bounds

Intuition suggests: If we run an PTM for a BPP language multiple times, then we can
increase our certainty of a particular outcome.

Approach:

• Given input w, run M for k times

• Accept if the majority of these runs accepts, and reject otherwise.

Which outcome do we expect when repeating a random experiment k times?

• The probability of a single correct answer is p ≥ 2
3

• We therefore expect a percentage p of runs to return the correct result

What is the probability that we see some significant deviation from this expectation?

• It is still possible that only less than half of the runs return the correct result anyway

• How likely is this, depending on the number of repetitions k?

David Carral, February 1, 2021 Foundations of Complexity Theory slide 20 of 47

A practical probabilistic class
The following way of deciding languages is based on a more easily detectable difference
in acceptance probabilities:

Definition 17.11: A language L is in Bounded-Error Polynomial Probabilistic Time
(BPP) if there is a PTM M such that:

• there is a polynomial function f such that M will always halt after f (|w|) steps
on all input words w,

• if w ∈ L, then Pr [M accepts w] ≥ 2
3 ,

• if w # L, then Pr [M accepts w] ≤ 1
3 .

In other words: Languages in BPP are decided by polynomially time-bounded PTMs
with error probability ≤ 1

3 .

Note that the bound on the error probability is uniform across all inputs:
• For any given input, the probability for a correct answer is at least 2

3
• It would be weaker to require that the probability of a correct answer is at least 2

3
over the space of all possible inputs (this would allow worse probabilities on some inputs)

David Carral, February 1, 2021 Foundations of Complexity Theory slide 19 of 47

Better error bounds

Intuition suggests: If we run an PTM for a BPP language multiple times, then we can
increase our certainty of a particular outcome.

Approach:

• Given input w, run M for k times

• Accept if the majority of these runs accepts, and reject otherwise.

Which outcome do we expect when repeating a random experiment k times?

• The probability of a single correct answer is p ≥ 2
3

• We therefore expect a percentage p of runs to return the correct result

What is the probability that we see some significant deviation from this expectation?

• It is still possible that only less than half of the runs return the correct result anyway

• How likely is this, depending on the number of repetitions k?

David Carral, February 1, 2021 Foundations of Complexity Theory slide 20 of 47

Chernoff bounds
Chernoff bounds are a general type of result for estimating the probability of a certain
deviation from the expectation when repeating a random experiment.

There are many such bounds – some more accurate, some more usable. We merely
give the following simplified special case:

Theorem 17.12: Let X1, . . . , Xk be mutually independent random variables that
can take values from {0, 1}, and let µ =

%k
i=1 E[Xi] be the sum of their expected

values. Then, for every constant 0 < δ < 1:

Pr

&
''''''(

)))))))

k*

i=1

Xi − µ
)))))))
≥ δµ
+
,,,,,,- ≤ e

−δ2µ/4

Example 17.13: Consider k = 1000 tosses of fair coins, X1, . . . , X1000, with heads
corresponding to result 1 and tails corresponding to 0. We expect µ =

%n
i=1 E[Xi] =

500 to be the sum of these experiments. By the above bound, the probability of
seeing 600 = 500 + 0.2 · 500 or more heads is

Pr
#)))%k

i=1 Xi − 500
))) ≥ 100

$
≤ e
−0.22·500/4 ≤ 0.0068.

David Carral, February 1, 2021 Foundations of Complexity Theory slide 21 of 47

Much better error bounds

We can now show that even a small, input-dependent probability of finding correct
answers is enough to construct an algorithm whose certainty is exponentially close to 1:

Theorem 17.14: Consider a language L and a polynomially time-bounded
PTM M for which there is a constant c > 0 such that, for every word w ∈ Σ∗,
Pr
!M classifies w correctly

" ≥ 1
2 + |w|−c.

Then, for every constant d > 0, there is a polynomially time-bounded PTM M′
such that Pr

!M′ classifies w correctly
" ≥ 1 − 2−|w|

d
.

Proof: We constructM′ as before by runningM for k times, where we set k = 8|w|2c+d.
Note that this is number of repetitions is polynomial in |w|.
To use our Chernoff bound, define k random variables Xi with Xi = 1 if the ith run ofM
returns the correct result:

• Set p to be Pr [Xi = 1] ≥ 1
2 + |w|−c

• Then E[
%k

i=1 Xi] = pk

David Carral, February 1, 2021 Foundations of Complexity Theory slide 22 of 47

Much better error bounds (continued)
We can now show that even a small, input-dependent probability of finding correct
answers is enough to construct an algorithm whose certainty is exponentially close to 1:

Theorem 17.14: Consider a language L and a polynomially time-bounded PTM
M for which there is a constant c > 0 such that, for every word w ∈ Σ∗,
Pr
!M classifies w correctly

" ≥ 1
2 + |w|−c.

Then, for every constant d > 0, there is a polynomially time-bounded PTM M′
such that Pr

!M′ classifies w correctly
" ≥ 1 − 2−|w|

d
.

Proof (continued): We are interested in the probability that at least half of the runs are
correct. This can be achieved by setting δ = 1

2 · |w|−c.

Our Chernoff bound then yields:

Pr

&
''''''(

)))))))

k*

i=1

Xi − pk

)))))))
≥ δpk

+
,,,,,,- ≤ e

−δ2pk/4 = e
−(1

2 ·|w|−c)2pk/4 ≤ e
− 1

4|w|2c · 12 ·8|w|2c+d

≤ e
−|w|d ≤ 2−|w|

d

(where the estimations are dropping some higher-order terms for simplification).
David Carral, February 1, 2021 Foundations of Complexity Theory slide 23 of 47

BPP is robust

Theorem 17.14 gives a massive improvement in certainty at only polynomial cost. As a
special case, we can apply this to BPP (where probabilities are fixed):

Corollary 17.15: Defining the class BPP with any bounded error probability < 1
2

instead of 1
3 leads to the same class of languages.

Corollary 17.16: For any language in BPP, there is a polynomial time algorithm
with exponentially low probability of error.

BPP might be better than P for describing what is “tractable in practice.”

David Carral, February 1, 2021 Foundations of Complexity Theory slide 24 of 47

Understanding BPP

David Carral, February 1, 2021 Foundations of Complexity Theory slide 25 of 47

BPP is practical

We found (Theorem 21.12):

• If a polytime PTM produces the correct output with probability ≥ 1
2 + |w|−c,

• then some polytime PTM produces the correct output with probability ≥ 1 − 2−|w|
d
.

In words: even a weak bound on the error is enough to obtain almost arbitrary certainty
in polynomial time!

Corollary 21.15: Defining the class BPP with any bounded error probability < 1
2

instead of 1
3 leads to the same class of languages.

Corollary 21.16: For any language in BPP, there is a polynomial time algorithm
with exponentially low probability of error.

BPP might be better than P for describing what is “tractable in practice”!

David Carral, February 1, 2021 Foundations of Complexity Theory slide 26 of 47

Summary and open questions

We have already seen that BPP is robust against the actual error bound

Moreover, it is not hard to show the following:

• BPP is closed under complement (exercise)

• BPPBPP = BPP (exercise)

We have not discussed several important questions:

• What happens if we assume unfair coins? (Pr [heads] " 1
2)

• How does BPP relate to other complexity classes?

• Which problems are in BPP and which are BPP-complete?

David Carral, February 1, 2021 Foundations of Complexity Theory slide 27 of 47

BPP is practical

We found (Theorem 21.12):

• If a polytime PTM produces the correct output with probability ≥ 1
2 + |w|−c,

• then some polytime PTM produces the correct output with probability ≥ 1 − 2−|w|
d
.

In words: even a weak bound on the error is enough to obtain almost arbitrary certainty
in polynomial time!

Corollary 21.15: Defining the class BPP with any bounded error probability < 1
2

instead of 1
3 leads to the same class of languages.

Corollary 21.16: For any language in BPP, there is a polynomial time algorithm
with exponentially low probability of error.

BPP might be better than P for describing what is “tractable in practice”!

David Carral, February 1, 2021 Foundations of Complexity Theory slide 26 of 47

Summary and open questions

We have already seen that BPP is robust against the actual error bound

Moreover, it is not hard to show the following:

• BPP is closed under complement (exercise)

• BPPBPP = BPP (exercise)

We have not discussed several important questions:

• What happens if we assume unfair coins? (Pr [heads] " 1
2)

• How does BPP relate to other complexity classes?

• Which problems are in BPP and which are BPP-complete?

David Carral, February 1, 2021 Foundations of Complexity Theory slide 27 of 47

Robustness using unfair coins (1)
Would a PTM have greater power if its random number generator would output 1 with
probability ρ " 1

2 ?

Proposition 17.17: A coin with Pr [heads] = ρ can be simulated by a PTM in
expected time O(1) provided that the ith bit of ρ is computable in polynomial time
w.r.t. i.

Proof: Let 0.ρ1ρ2ρ3 · · · be the binary expansion of ρ. Starting with i = 1, do:
• Compute a random bit bi ∈ {0, 1}
• If ρi > bi, return “heads”
• If ρi < bi, return “tails”
• If ρi = bi, increment i and repeat procedure.

Analysis:
• The simulation reaches step i + 1 with probability (1

2)i

• Combined probability of “heads”:
%

i ρi
1
2i = ρ

• The expected runtime is O(
%

i i
c 1

2i), where c is a constant degree capturing the
polynomial effort of computing ρi – this can be shown to be in O(1). □

David Carral, February 1, 2021 Foundations of Complexity Theory slide 28 of 47

Robustness using unfair coins (2)

Note: Proposition 17.17 requires ρ to be efficiently computable. Unfair coins with hard to
compute probabilities would indeed increase the computational power.

Conversely, we may ask if a PTM with unfair coin could simulate a fair coin:

Proposition 17.18: A coin with Pr [heads] = 1
2 can be simulated by a TM that

may use a coin with heads-probability ρ in time O(1
ρ(1−ρ)).

Proof: See exercise (for the basic technique of simulating fair coins with arbitrary ones)

Note that the previous result does not require ρ to be computable.

Conclusion: BPP is rather robust against the use of different coins.

David Carral, February 1, 2021 Foundations of Complexity Theory slide 29 of 47

Polynomial Identity Testing

David Carral, February 1, 2021 Foundations of Complexity Theory slide 30 of 47

A problem in BPP

We give an example of a problem in BPP that is not known to be in P.

Polynomial Identity Testing (PIT):

• Task: Determine if two polynomial functions are equal, i.e., have the same results
on all inputs

• The polynomials can be multivariate (i.e., contain more than two variables)

• Challenge: The polynomials are not given in their normal form (as a sum of
monomials)

Approach: Reduce the question “f = g?” to the question “f − g = 0?,” i.e., to the
question if a given polynomial is equal to zero.

Example 17.19: We may ask if (x+y)(x−y) equals x
2−y

2. To answer this, we can
test if the polynomial function (x + y)(x − y) − (x2 − y

2) equals zero.

David Carral, February 1, 2021 Foundations of Complexity Theory slide 31 of 47

Algebraic circuits and ZeroP

The representation we assume for polynomials in PIT are algebraic circuits:

• Algebraic circuits are like Boolean circuits but operate on integer numbers

• Gates perform arithmetic operations +, −, and ×, or have constant output 1
• There is one output

Note: it is easy to express the difference of the functions encoded in two algebraic
circuits

ZeroP

Input: Algebraic circuit C

Problem: Does C return 0 on all inputs?

David Carral, February 1, 2021 Foundations of Complexity Theory slide 32 of 47

How difficult is ZeroP?

Observation:

• Algebraic circuits can encode polynomials very efficiently:
a small circuit can express a polynomial that is large when written in the usual form

Example 17.20: It is easy to find a circuit of size 2k for
.k

i=1(xi + yi) (assuming
binary fan-in for multiplication gates), but writing this function as a sum of mono-
mials requires 2k monomials of the form z1 · z2 · · · zk where zi ∈ {xi, yi}.

• Nevertheless, the output of a circuit is easy to compute

Surprisingly (?): There is an efficient probabilistic algorithm for ZeroP

David Carral, February 1, 2021 Foundations of Complexity Theory slide 33 of 47

How frequently do non-zero polynomials compute zero?

The total degree of a (multivariate) monomial is the sum of the degrees of all of its
variables, and the total degree of a polynomial is the maximal degree of its monomials.

The following property is the key to showing ZeroP ∈ BPP:

Lemma 17.21 (Schwartz-Zippel Lemma): Consider a non-zero multivariate poly-
nomial p(x1, . . . , xm) of total degree ≤ d, and a finite set S of integers. If a1, . . . , am

are chosen randomly (with replacement) from S, then

Pr
!
p(a1, . . . , am) = 0

" ≤ d

|S|

Proof: See Exercise.

David Carral, February 1, 2021 Foundations of Complexity Theory slide 34 of 47

How difficult is ZeroP?

Observation:

• Algebraic circuits can encode polynomials very efficiently:
a small circuit can express a polynomial that is large when written in the usual form

Example 17.20: It is easy to find a circuit of size 2k for
.k

i=1(xi + yi) (assuming
binary fan-in for multiplication gates), but writing this function as a sum of mono-
mials requires 2k monomials of the form z1 · z2 · · · zk where zi ∈ {xi, yi}.

• Nevertheless, the output of a circuit is easy to compute

Surprisingly (?): There is an efficient probabilistic algorithm for ZeroP

David Carral, February 1, 2021 Foundations of Complexity Theory slide 33 of 47

How frequently do non-zero polynomials compute zero?

The total degree of a (multivariate) monomial is the sum of the degrees of all of its
variables, and the total degree of a polynomial is the maximal degree of its monomials.

The following property is the key to showing ZeroP ∈ BPP:

Lemma 17.21 (Schwartz-Zippel Lemma): Consider a non-zero multivariate poly-
nomial p(x1, . . . , xm) of total degree ≤ d, and a finite set S of integers. If a1, . . . , am

are chosen randomly (with replacement) from S, then

Pr
!
p(a1, . . . , am) = 0

" ≤ d

|S|

Proof: See Exercise.

David Carral, February 1, 2021 Foundations of Complexity Theory slide 34 of 47

A probabilistic algorithm for ZeroP (1)

By Schwartz-Zippel, we just need to randomly sample numbers from a large enough set
S to find a non-zero value with high probability, namely 1 − d

|S| .

What is the degree d of a polynomial encoded in an algebraic circuit?
A circuit of size n can compute degrees of at most 2n.

! for a set S of size 3 · 2n, we expect a non-zero value with probability ≥ 1 − 2n

3·2n =
2
3

Algorithm: For a polynomial p(x1, . . . , xm)
• Randomly select a1, . . . , am ∈ {1, . . . , 3 · 2n} (a total of O(n · m) random bits)

• Evaluate the circuit to compute p(a1, . . . , am)
• Accept if p(a1, . . . , am) = 0 and reject otherwise.

Analysis: If p ∈ ZeroP, the algorithm will always accept. Otherwise, if p # ZeroP, it will
reject with probability ≥ 2

3 .

David Carral, February 1, 2021 Foundations of Complexity Theory slide 35 of 47

A probabilistic algorithm for ZeroP (2)

Did we show ZeroP ∈ BPP?

There is a problem with our algorithm:

• We can sample the numbers ai in polynomial time (polynomial number of bits)

• But if the degree of the polynomial is as high as 2n, then the output can be as high
as (3 · 2n)2n

, requiring O(2n) bits to store!

One can solve this problem as follows:

Algorithm: For a polynomial p(x1, . . . , xm)
• Randomly select a number k ∈ {1, . . . , 22n}
• Randomly select a1, . . . , am ∈ {1, . . . , 10 · 2n} (a total of O(n · m) random bits)

• Evaluate the circuit modulo k to compute p(a1, . . . , am) mod k

• Repeat this experiment for 4n times and accept if and only if the outcome is
0 in all cases

David Carral, February 1, 2021 Foundations of Complexity Theory slide 36 of 47

ZeroP ∈ BPP
Algorithm (with fingerprinting): For a polynomial p(x1, . . . , xm)
• Randomly select a number k ∈ {1, . . . , 22n}
• Randomly select a1, . . . , am ∈ {1, . . . , 10 · 2n} (a total of O(n · m) random bits)

• Evaluate the circuit modulo k to compute p(a1, . . . , am) mod k

• Repeat this experiment for 4n times and accept if and only if the outcome is
0 in all cases

Analysis: (additional details in Arora & Barak, Section 7.2.3)

• If p(a1, . . . , am) = 0 then p(a1, . . . , am) = 0 mod k, so the algorithm surely accepts
• If p(a1, . . . , am) " 0 then p(a1, . . . , am) " 0 mod k if k does not divide p(a1, . . . , am)
• Claim: the probability of k dividing p(a1, . . . , am) is ≤ 1

4n . Proof sketch:
– We can restrict to cases where k (by random chance) is prime: for large n,

there are at least 22n

2n prime numbers ≤ 22n (Prime Number Theorem)
– A number has only logarithmically many prime factors (O(n · 2n) in our case)
– One can estimate that k with probability ≥ 1

4n is both (i) a prime number and
(ii) not among the prime factors of p(a1, . . . , am) □

Note: This does not yield a probability of error ≤ 1
3 , but error probability ≤ 1

10 +
9

10 (1 − 1
4n)4n ≤ 1

10 +
9

10
1
e ≤ 0.44, which suffices.

David Carral, February 1, 2021 Foundations of Complexity Theory slide 37 of 47

A probabilistic algorithm for ZeroP (2)

Did we show ZeroP ∈ BPP?

There is a problem with our algorithm:

• We can sample the numbers ai in polynomial time (polynomial number of bits)

• But if the degree of the polynomial is as high as 2n, then the output can be as high
as (3 · 2n)2n

, requiring O(2n) bits to store!

One can solve this problem as follows:

Algorithm: For a polynomial p(x1, . . . , xm)
• Randomly select a number k ∈ {1, . . . , 22n}
• Randomly select a1, . . . , am ∈ {1, . . . , 10 · 2n} (a total of O(n · m) random bits)

• Evaluate the circuit modulo k to compute p(a1, . . . , am) mod k

• Repeat this experiment for 4n times and accept if and only if the outcome is
0 in all cases

David Carral, February 1, 2021 Foundations of Complexity Theory slide 36 of 47

ZeroP ∈ BPP
Algorithm (with fingerprinting): For a polynomial p(x1, . . . , xm)
• Randomly select a number k ∈ {1, . . . , 22n}
• Randomly select a1, . . . , am ∈ {1, . . . , 10 · 2n} (a total of O(n · m) random bits)

• Evaluate the circuit modulo k to compute p(a1, . . . , am) mod k

• Repeat this experiment for 4n times and accept if and only if the outcome is
0 in all cases

Analysis: (additional details in Arora & Barak, Section 7.2.3)

• If p(a1, . . . , am) = 0 then p(a1, . . . , am) = 0 mod k, so the algorithm surely accepts
• If p(a1, . . . , am) " 0 then p(a1, . . . , am) " 0 mod k if k does not divide p(a1, . . . , am)
• Claim: the probability of k dividing p(a1, . . . , am) is ≤ 1

4n . Proof sketch:
– We can restrict to cases where k (by random chance) is prime: for large n,

there are at least 22n

2n prime numbers ≤ 22n (Prime Number Theorem)
– A number has only logarithmically many prime factors (O(n · 2n) in our case)
– One can estimate that k with probability ≥ 1

4n is both (i) a prime number and
(ii) not among the prime factors of p(a1, . . . , am) □

Note: This does not yield a probability of error ≤ 1
3 , but error probability ≤ 1

10 +
9

10 (1 − 1
4n)4n ≤ 1

10 +
9

10
1
e ≤ 0.44, which suffices.

David Carral, February 1, 2021 Foundations of Complexity Theory slide 37 of 47

Further problems in BPP

Other algorithms in BPP include:

• Testing for perfect matching in a bipartite graph
Informally: checking whether every member of two equal-sized populations of heterosexual men and women can engage in monogamous
partnerships according to their expressed preferences.

– Can be reduced to checking if a variable matrix has non-zero determinant
– Similar to ZeroP, one can use Schwartz-Zippel here

• Primality testing (Primes)
– A classical probabilistic algorithm discovered in the 1970s
– In 2002, Agrawal, Kayal, and Saxena found a deterministic polynomial

algorithm
• “Monte-Carlo algorithms”

– These are a general class of algorithms with “probably correct” output
– BPP contains polynomial-time Monte-Carlo algorithms

David Carral, February 1, 2021 Foundations of Complexity Theory slide 38 of 47

Further probabilistic classes

David Carral, February 1, 2021 Foundations of Complexity Theory slide 39 of 47

Types of errors

We have defined BPP by restricting the probability of error to ≤ 1
3 .

However, there are two types of errors:

• False positives: the PTM accepts a word that is not in the language

• False negatives: the PTM rejects a word that is in the language

Common BPP algorithms can often avoid one of these errors:

Example 17.22: Our previous algorithm for polynomial identity testing aimed to
decide ZeroP. For inputs w ∈ ZeroP, the algorithm accepted with probability 1 (no
false negatives). Uncertainty only occurred for inputs w # ZeroP (false positives
were possible, though unlikely).

David Carral, February 1, 2021 Foundations of Complexity Theory slide 40 of 47

Randomised Polynomial Time
Excluding false positives/negatives from BPP leads to classes with one-sided error:

Definition 17.23: A language L is in Randomised Polynomial Time (RP) if there
is a PTM M such that:

• there is a polynomial function f such that M will always halt after f (|w|) steps
on all input words w,

• if w ∈ L, then Pr [M accepts w] ≥ 2
3 ,

• if w # L, then Pr [M accepts w] = 0.

Definition 17.24: A language L is in coRP if its complement is in RP, i.e., if there
is a polynomially time-bounded PTM M such that:

• if w ∈ L, then Pr [M accepts w] = 1,

• if w # L, then Pr [M accepts w] ≤ 1
3 .

Example 17.25: ZeroP ∈ coRP.

David Carral, February 1, 2021 Foundations of Complexity Theory slide 41 of 47

Randomised Polynomial Time
Excluding false positives/negatives from BPP leads to classes with one-sided error:

Definition 17.23: A language L is in Randomised Polynomial Time (RP) if there
is a PTM M such that:

• there is a polynomial function f such that M will always halt after f (|w|) steps
on all input words w,

• if w ∈ L, then Pr [M accepts w] ≥ 2
3 ,

• if w # L, then Pr [M accepts w] = 0.

Definition 17.24: A language L is in coRP if its complement is in RP, i.e., if there
is a polynomially time-bounded PTM M such that:

• if w ∈ L, then Pr [M accepts w] = 1,

• if w # L, then Pr [M accepts w] ≤ 1
3 .

Example 17.25: ZeroP ∈ coRP.

David Carral, February 1, 2021 Foundations of Complexity Theory slide 41 of 47

Probability amplification for RP and coRP

It is clear from the definitions that RP ⊆ BPP and coRP ⊆ BPP.

Hence, we can apply Theorem 21.14 to amplify the output probability.

However, the situation for one-sided error classes is actually much simpler:

Theorem 17.26: Consider a language L and a polynomially time-bounded PTM
M for which there is a constant c > 0 such that, for every word w ∈ Σ∗,
• if w ∈ L then Pr [M accepts w] ≥ |w|−c

• if w # L then Pr [M accepts w] = 0

Then, for every constant d > 0, there is a polynomially time-bounded PTM M′
such that

• if w ∈ L then Pr [M′ accepts w] ≥ 1 − 2−|w|
d

• if w # L then Pr [M′ accepts w] = 0.

Proof: Much simpler than for BPP (exercise). □

David Carral, February 1, 2021 Foundations of Complexity Theory slide 42 of 47

Randomised Polynomial Time
Excluding false positives/negatives from BPP leads to classes with one-sided error:

Definition 17.23: A language L is in Randomised Polynomial Time (RP) if there
is a PTM M such that:

• there is a polynomial function f such that M will always halt after f (|w|) steps
on all input words w,

• if w ∈ L, then Pr [M accepts w] ≥ 2
3 ,

• if w # L, then Pr [M accepts w] = 0.

Definition 17.24: A language L is in coRP if its complement is in RP, i.e., if there
is a polynomially time-bounded PTM M such that:

• if w ∈ L, then Pr [M accepts w] = 1,

• if w # L, then Pr [M accepts w] ≤ 1
3 .

Example 17.25: ZeroP ∈ coRP.

David Carral, February 1, 2021 Foundations of Complexity Theory slide 41 of 47

Probability amplification for RP and coRP

It is clear from the definitions that RP ⊆ BPP and coRP ⊆ BPP.

Hence, we can apply Theorem 21.14 to amplify the output probability.

However, the situation for one-sided error classes is actually much simpler:

Theorem 17.26: Consider a language L and a polynomially time-bounded PTM
M for which there is a constant c > 0 such that, for every word w ∈ Σ∗,
• if w ∈ L then Pr [M accepts w] ≥ |w|−c

• if w # L then Pr [M accepts w] = 0

Then, for every constant d > 0, there is a polynomially time-bounded PTM M′
such that

• if w ∈ L then Pr [M′ accepts w] ≥ 1 − 2−|w|
d

• if w # L then Pr [M′ accepts w] = 0.

Proof: Much simpler than for BPP (exercise). □

David Carral, February 1, 2021 Foundations of Complexity Theory slide 42 of 47

RP and NP

The asymmetric acceptance conditions of RP reminds us of NP, since already “some”
accepting runs are enough to prove acceptance.

Indeed, we get:

Theorem 17.27: RP ⊆ NP

Proof: IfM satisfies the RP acceptance conditions for L, thenM can be considered as
an NTM that accepts L with respect to the usual non-deterministic acceptance
conditions. Indeed,M has an accepting run on input |w| if and only if w ∈ L. □

Similarly, we find coRP ⊆ coNP.

Recall: While RP ⊆ BPP, we do not know whether BPP ⊆ NP.

David Carral, February 1, 2021 Foundations of Complexity Theory slide 43 of 47

Zero-sided error
Instead of admitting a possibly false answer (positive or negative), one can also require
the correct answer while making some concessions on runtime:

Definition 17.28: A PTM M has expected runtime f : N → R if, for any input w,
the expectation E[Tw] of the number Tw of steps taken by M on input w is Tw ≤
f (|w|).
ZPP is the class of all languages for which there is a PTM M that

• returns the correct answer whenever it halts,

• has expected runtime f for some polynomial function f .

ZPP is for zero-error probabilistic polynomial time.

Note: In general, algorithms that produce correct results while giving only prob-
abilistic guarantees on resource usage are called Las Vegas algorithms, as op-
posed to Monte Carlo algorithms, which have guaranteed resource bounds but
probabilistic correctness (as in the case of BPP).

David Carral, February 1, 2021 Foundations of Complexity Theory slide 44 of 47

Zero-sided vs. one-sided error

In spite of the different approaches of expected error vs. expected runtime, we find a
close relation between ZPP, RP, and coRP:

Theorem 17.29: ZPP = RP ∩ coRP

Proof: ZPP ⊆ RP: Given a ZPP algorithmM, construct an RP algorithm by runningM
for three times the expected (polynomial) runtime t. If it stops, return the same answer; if
it times out, reject.

• For any random variable X and c > 0, Markov’s inequality implies:
Pr [X ≥ cE[X]] ≤ E[X]

cE[X] =
1
c

• Hence the probability ofM running for ≥ 3t is ≤ 1
3

• Therefore, the probability of a false negative (due to a timeout) is ≤ 1
3

ZPP ⊆ coRP is dual; we just have to accept after timeout.

David Carral, February 1, 2021 Foundations of Complexity Theory slide 45 of 47

Zero-sided vs. one-sided error

In spite of the different approaches of expected error vs. expected runtime, we find a
close relation between ZPP, RP, and coRP:

Theorem 17.29: ZPP = RP ∩ coRP

Proof: ZPP ⊇ RP ∩ coRP: Assume we have an RP algorithm A and a coRP algorithm
B for the same language L. To obtain a ZPP algorithm, we run A and B on input w:

• If A accepts, accept

• If B rejects, reject

• If A rejects and B accepts, repeat the experiment.

Since RP has no false positives and coRP has no false negatives, this can only return
the correct answer.

The probability of repetition is ≤ 1
3 , since it requires one of the algorithms to be in error.

Hence the probability of k repetitions is ≤ 3−k, for an expected runtime of ≤ %k≥0
(k+1)p

3k ,
where p is the combined (polynomial) runtime of A and B. This is polynomial. □
David Carral, February 1, 2021 Foundations of Complexity Theory slide 46 of 47

Summary and Outlook

Probabilistic TMs can be used to randomness in computation

PP defines a simple “probabilistic” class, but is too powerful in practice.

BPP provides a robust notion of practical probabilistic algorithm

Probabilistic classes with ones-sided error – RP and coRP – are common.

ZPP defines random computations with zero-sided error, but probabilistic runtime.

What’s next?

• Oral Exams: 24th of February

• Deadline for Exam Registration: 15th of February

• Examinations

David Carral, February 1, 2021 Foundations of Complexity Theory slide 47 of 47

