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Agenda

1 Introduction
2 Uninformed Search versus Informed Search (Best First Search, A*

Search, Heuristics)
3 Local Search, Stochastic Hill Climbing, Simulated Annealing
4 Tabu Search
5 Answer-set Programming (ASP)
6 Constraint Satisfaction (CSP)
7 Structural Decomposition Techniques (Tree/Hypertree Decompositions)
8 Evolutionary Algorithms/ Genetic Algorithms
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Tabu Search

Main Idea
• A memory forces the search to explore new areas of the search space
• Memorize solutions that have been examined recently. They become

tabu points in next steps
• Tabu search is deterministic
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Tabu Search and SAT

• SAT problem with n = 8 variables
• Initial (random) assignment x = (0, 1, 1, 1, 0, 0, 0, 1)
• Evaluation function: weighted sum of number of satisfied clauses.

Weights depend on the number of variables in the clause
• Maximize evaluation function (i.e. we’re trying to satisfy all clauses)
• Random assignment provides eval(x) = 27
• Neighborhood of x consists of 8 solutions. Evaluate them and select best
• At this stage, it is the same as hill-climbing
• Suppose flipping 3rd variable generates best evaluation (eval(x′) = 31)
• Memory keeps track of actions
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Recency-based Memory

• Index of flipped variable + time when it was flipped
• Differentiate between older and more recent flips
• SAT: time stamp for each position of solution vector M (initialized to 0)
• Value of time stamp provides information on recency of flip at position

Memory Vector
M(i) = j (when j 6= 0)

j is most recent iteration when i-th bit was flipped
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Recency-based Memory

• Index of flipped variable + time when it was flipped
• Differentiate between older and more recent flips
• SAT: time stamp for each position of solution vector M (initialized to 0)
• Value of time stamp provides information on recency of flip at position

Memory Vector
M(i) = j (when j 6= 0)

j is most recent iteration when i-th bit was flipped

Assume information is stored for at most 5 iterations.

Alternative Interpretation
M(i) = j (when j 6= 0)

i-th bit was flipped 5− j iterations ago
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Recency-based Memory

• Index of flipped variable + time when it was flipped
• Differentiate between older and more recent flips
• SAT: time stamp for each position of solution vector M (initialized to 0)
• Value of time stamp provides information on recency of flip at position

Memory Vector
M(i) = j (when j 6= 0)

j is most recent iteration when i-th bit was flipped

Assume information is stored for at most 5 iterations.

Alternative Interpretation
M(i) = j (when j 6= 0)

i-th bit was flipped 5− j iterations ago

Example
0 0 5 0 0 0 0 0

Memory after one iteration. 3rd bit is tabu for next 5 iterations.
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Different Interpretations

1st Variant
• Stores iteration number of most recent flip
• Requires a current iteration counter t which is compared with memory

values
• If t −M(i) > 5 forget
• Only requires updating a single entry, and increase the counter
• Used in most implementations
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Different Interpretations

1st Variant
• Stores iteration number of most recent flip
• Requires a current iteration counter t which is compared with memory

values
• If t −M(i) > 5 forget
• Only requires updating a single entry, and increase the counter
• Used in most implementations

2nd Variant
• Values are interpreted as number of iterations for which a position is not

available
• All nonzero entries are decreased by one at every iteration
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Example ctd.

• Initial assignment x = (0, 1, 1, 1, 0, 0, 0, 1)
• After 4 additional iterations M :

3 0 1 5 0 4 2 0

• Most recent flip M(4) = 5
• Current solution: x = (1, 1, 0, 0, 0, 1, 1, 1) with eval(x) = 33
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Example ctd.

• Initial assignment x = (0, 1, 1, 1, 0, 0, 0, 1)
• After 4 additional iterations M :

3 0 1 5 0 4 2 0

• Most recent flip M(4) = 5
• Current solution: x = (1, 1, 0, 0, 0, 1, 1, 1) with eval(x) = 33

Neighborhood of x

x1 = (0, 1, 0, 0, 0, 1, 1, 1) x5 = (1, 1, 0, 0, 1, 1, 1, 1)

x2 = (1, 0, 0, 0, 0, 1, 1, 1) x6 = (1, 1, 0, 0, 0, 0, 1, 1)

x3 = (1, 1, 1, 0, 0, 1, 1, 1) x7 = (1, 1, 0, 0, 0, 1, 0, 1)

x4 = (1, 1, 0, 1, 0, 1, 1, 1) x8 = (1, 1, 0, 0, 0, 1, 1, 0)
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Example ctd.

• Initial assignment x = (0, 1, 1, 1, 0, 0, 0, 1)
• After 4 additional iterations M :

3 0 1 5 0 4 2 0

• Most recent flip M(4) = 5
• Current solution: x = (1, 1, 0, 0, 0, 1, 1, 1) with eval(x) = 33

Neighborhood of x

x1 = (0, 1, 0, 0, 0, 1, 1, 1) x5 = (1, 1, 0, 0, 1, 1, 1, 1)

x2 = (1, 0, 0, 0, 0, 1, 1, 1) x6 = (1, 1, 0, 0, 0, 0, 1, 1)

x3 = (1, 1, 1, 0, 0, 1, 1, 1) x7 = (1, 1, 0, 0, 0, 1, 0, 1)

x4 = (1, 1, 0, 1, 0, 1, 1, 1) x8 = (1, 1, 0, 0, 0, 1, 1, 0)

TABU, best evaluation eval(x5) = 32, decrease!
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Example ctd.

• Current solution: x = (1, 1, 0, 0, 0, 1, 1, 1) with eval(x) = 33
• New solution: x5 = (1, 1, 0, 0, 1, 1, 1, 1) with eval(x5) = 32

3 0 1 5 0 4 2 0

changes to:

2 0 0 4 5 3 1 0
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Example ctd.

• Current solution: x = (1, 1, 0, 0, 0, 1, 1, 1) with eval(x) = 33
• New solution: x5 = (1, 1, 0, 0, 1, 1, 1, 1) with eval(x5) = 32

3 0 1 5 0 4 2 0

changes to:

2 0 0 4 5 3 1 0

Policy might be too restrictive
• What if tabu neighbor x6 provides excellent evaluation score?
• Make search more flexible: override tabu classification if solution is

outstanding

=⇒ aspiration criterion
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Long-term Memory

Question
1 What is stored in long-term memory (think of SAT as an example)?
2 How can we escape local optima with help of a long-term memory?
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Frequency-based Memory

• Operates over a longer horizon
• SAT: vector H serves as long-term memory.

– Initialized to 0, at any stage of the search

H(i) = j

interpreted as: during last h (horizon) iterations, the i-th bit was
flipped j times

– Usually horizon is large
– After 100 iterations with h = 50, long-term memory H might have

the following values
5 7 11 3 9 8 1 6

– Shows distribution of moves throughout the last 50 iterations

Diversity of Search
Frequency-based memory provides information about which flips have been
under-represented or not represented.
=⇒ we can diversify the search by exploring these possibilities
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Use of Long-term Memory

Special Circumstances
• Situations where all non-tabu moves lead to worse solution
• To make a meaningful decision about which direction to explore next
• Typically: most frequent moves are less attractive
• Value of evaluation score is decreased by some penalty measure that

depends on frequency, final score implies the winner
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Example SAT

• Assume value of current solution is eval(x) = 35
• Non-tabu flips 2, 3 and 7 have values 30, 33, 31
• None of tabu moves provides value greater than 37 (highest value so far)

=⇒ we can’t apply aspiration criterion
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Example SAT

• Assume value of current solution is eval(x) = 35
• Non-tabu flips 2, 3 and 7 have values 30, 33, 31
• None of tabu moves provides value greater than 37 (highest value so far)

=⇒ we can’t apply aspiration criterion
• Frequency based-memory and evaluation function for new solution x′ is

eval(x′)− penalty(x′)

• penalty(x′) = 0.7× H(i), where 0.7 coefficient, H(i) value from long-term
memory H :

7 for solution created by flipping 2nd bit

11 for solution created by flipping 3nd bit

1 for solution created by flipping 7nd bit
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Example SAT

• Assume value of current solution is eval(x) = 35
• Non-tabu flips 2, 3 and 7 have values 30, 33, 31
• None of tabu moves provides value greater than 37 (highest value so far)

=⇒ we can’t apply aspiration criterion
• Frequency based-memory and evaluation function for new solution x′ is

eval(x′)− penalty(x′)

• penalty(x′) = 0.7× H(i), where 0.7 coefficient, H(i) value from long-term
memory H :

7 for solution created by flipping 2nd bit

11 for solution created by flipping 3nd bit

1 for solution created by flipping 7nd bit

• New scores are:

30− 0.7× 7 = 25.1 2nd bit

33− 0.7× 11 = 25.3 3nd bit

31− 0.7× 1 = 30.3 7th bit
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Example SAT

• Frequency based-memory and evaluation function for new solution x′ is

eval(x′)− penalty(x′)

• penalty(x′) = 0.7× H(i), where 0.7 coefficient, H(i) value from long-term
memory H :

7 for solution created by flipping 2nd bit

11 for solution created by flipping 3nd bit

1 for solution created by flipping 7nd bit

• New scores are:

30− 0.7× 7 = 25.1 2nd bit

33− 0.7× 11 = 25.3 3nd bit

31− 0.7× 1 = 30.3 7th bit

Diversify Search
Including frequency values in a penalty measure for evaluating solutions.
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Further Options to Diversify Search

We migth add additional rules:
• Aspiration by default: select the oldest of all considered
• Aspiration by search direction: memorize whether or not the performed

moves generated any improvement
• Aspiration by influence: measures the degree of change of the new

solution
a) in terms of the distance between old and new solution
b) change in solution’s feasibility, if we deal with a constraint problem
– Intuition: particular move has a larger influence if a larger step was

made from old to new solution
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Tabu Search and the TSP

• Move: swap two cities in a particular solution
• Current solution: (2, 4, 7, 5, 1, 8, 3, 6)

• 28 neighbors
(8

2

)
= 7·8

2 = 28
• Recency-based memory: swap of cities i and j in i-th row and j-th column

(for i < j)
• Maintain number of remaining iterations for which swap stays on tabu list
• Frequency-based memory: same structure; indicate totals of all swaps

within horizon h = 50
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Tabu Search and the TSP
• Move: swap two cities in a particular solution
• Current solution: (2, 4, 7, 5, 1, 8, 3, 6)
• 28 neighbors

(8
2

)
= 7·8

2 = 28
• Recency-based memory: swap of cities i and j in i-th row and j-th column

(for i < j)
• Maintain number of remaining iterations for which swap stays on tabu list
• Frequency-based memory: same structure; indicate totals of all swaps

within horizon h = 50

2 3 4 5 6 7 8
1
2
3
4
5
6
7
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Tabu Search and the TSP ctd.

• Assume both memories initialized to zero and 500 iterations have been
completed

• Current solution: (7, 3, 5, 6, 1, 2, 4, 8) with length: 173, best solution so far
171

2 3 4 5 6 7 8
0 0 1 0 0 0 0 1

0 0 0 5 0 0 2
0 0 0 4 0 3

3 0 0 0 4
0 0 2 5

0 0 6
0 7

2 3 4 5 6 7 8
0 2 3 3 0 1 1 1

2 1 3 1 1 0 2
2 3 3 4 0 3

1 1 2 1 4
4 2 1 5

3 1 6
6 7

left: recency-based memory; right: frequency-based memory
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Summary

• Simulated annealing and tabu search are both design to escape local
optima

• Tabu search makes uphill moves only when it is stuck in local optima
• Simulated annealing can make uphill moves at any time
• Simulated annealing is stochastic, tabu search is deterministic
• Compared to classic algorithms, both work on complete solutions. One

can halt them at any iteration and obtain a possible solution
• Both have many parameters to worry about
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