

COMPLEXITY THEORY

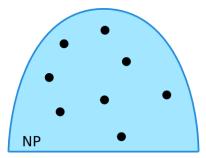
Lecture 7: NP Completeness

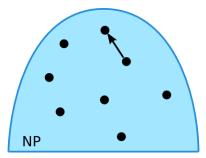
Markus Krötzsch Knowledge-Based Systems

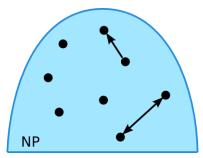
TU Dresden, 8th Nov 2017

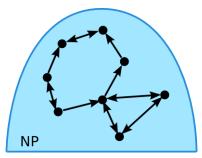
Review

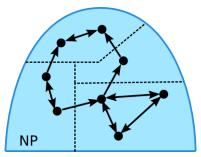
Are NP Problems Hard?











NP-Hardness and NP-Completeness

Definition 7.1:

- (1) A language **H** is NP-hard, if $\mathbf{L} \leq_p \mathbf{C}$ for every language $\mathbf{L} \in NP$.
- (2) A language **C** is NP-complete, if **C** is NP-hard and $\mathbf{C} \in NP$.

NP-Completeness

- NP-complete problems are the hardest problems in NP.
- They constitute the maximal class (wrt. \leq_p) of problems within NP.
- They are all equally difficult an efficient solution to one would solve them all.

Theorem 7.2: If **L** is NP-hard and $\mathbf{L} \leq_p \mathbf{L}'$, then \mathbf{L}' is NP-hard as well.

Proving NP-Completeness

Proving NP-Completeness

How to show NP-completeness

To show that L is NP-complete, we must show that every language in NP can be reduced to L in polynomial time.

Alternative approach

Given an NP-complete language C, we can show that another language L is NP-complete just by showing that

- $\mathbf{C} \leq_p \mathbf{L}$
- $\bullet \ L \in \mathsf{NP}$

Proving NP-Completeness

How to show NP-completeness

To show that L is NP-complete, we must show that every language in NP can be reduced to L in polynomial time.

Alternative approach

Given an NP-complete language C, we can show that another language L is NP-complete just by showing that

- $\mathbf{C} \leq_p \mathbf{L}$
- $L \in NP$

However: Is there any NP-complete problem at all?

The First NP-Complete Problems

Is there any NP-complete problem at all?

Of course there is: the word problem for polynomial time NTMs!

POLYTIME NTM	
Input:	A polynomial p , a p -time bounded NTM \mathcal{M} , and an input word w .
Problem:	Does \mathcal{M} accept w (in time $p(w)$)?

The First NP-Complete Problems

Is there any NP-complete problem at all?

Of course there is: the word problem for polynomial time NTMs!

POLYTIME NTM Input: A polynomial *p*, a *p*-time bounded NTM *M*, and an input word *w*. Problem: Does *M* accept *w* (in time *p*(|*w*|))?

Theorem 7.3: POLYTIME NTM is NP-complete.

Proof: See exercise.

Further NP-Complete Problem?

POLYTIME NTM is NP-complete, but not very interesting:

- not most convenient to work with
- not of much interest outside of complexity theory

Are there more natural NP-complete problems?

Further NP-Complete Problem?

POLYTIME NTM is NP-complete, but not very interesting:

- not most convenient to work with
- not of much interest outside of complexity theory

Are there more natural NP-complete problems?

Yes, thousands of them!

Theorem 7.4 (Cook 1970, Levin 1973): SAT is NP-complete.

Theorem 7.4 (Cook 1970, Levin 1973): SAT is NP-complete.

Proof:

(1) SAT $\in NP$

Take satisfying assignments as polynomial certificates for the satisfiability of a formula.

Theorem 7.4 (Cook 1970, Levin 1973): SAT is NP-complete.

Proof:

(1) SAT $\in NP$

Take satisfying assignments as polynomial certificates for the satisfiability of a formula.

(2) SAT is hard for NP

Proof by reduction from the word problem for NTMs.

Proving the Cook-Levin Theorem

Given:

- a polynomial *p*
- a *p*-time bounded 1-tape NTM $\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}})$
- a word w

Intended reduction

Define a propositional logic formula $\varphi_{p,\mathcal{M},w}$ such that $\varphi_{p,\mathcal{M},w}$ is satisfiable if and only if \mathcal{M} accepts w in time p(|w|).

Proving the Cook-Levin Theorem

Given:

- a polynomial *p*
- a *p*-time bounded 1-tape NTM $\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}})$
- a word w

Intended reduction

Define a propositional logic formula $\varphi_{p,\mathcal{M},w}$ such that $\varphi_{p,\mathcal{M},w}$ is satisfiable if and only if \mathcal{M} accepts w in time p(|w|).

Note

On input *w* of length n := |w|, every computation path of \mathcal{M} is of length $\leq p(n)$ and uses $\leq p(n)$ tape cells.

Idea

Use logic to describe a run of \mathcal{M} on input w by a formula.

Markus Krötzsch, 8th Nov 2017

Proving Cook-Levin: Encoding Configurations

Use propositional variables for describing configurations:

- Q_q for each $q \in Q$ means " \mathcal{M} is in state $q \in Q$ "
- P_i for each $0 \le i < p(n)$ means "the head is at Position *i*"
- $S_{a,i}$ for each $a \in \Gamma$ and $0 \le i < p(n)$ means "tape cell *i* contains Symbol *a*"

Proving Cook-Levin: Encoding Configurations

Use propositional variables for describing configurations:

- Q_q for each $q \in Q$ means " \mathcal{M} is in state $q \in Q$ "
- P_i for each $0 \le i < p(n)$ means "the head is at Position *i*"
- $S_{a,i}$ for each $a \in \Gamma$ and $0 \le i < p(n)$ means "tape cell *i* contains Symbol *a*"

Represent configuration $(q, p, a_0 \dots a_{p(n)})$ by assigning truth values to variables from the set

$$\overline{C} := \{Q_q, P_i, S_{a,i} \mid q \in Q, \quad a \in \Gamma, \quad 0 \le i < p(n)\}$$

using the truth assignment β defined as

$$\beta(Q_s) := \begin{cases} 1 & s = q \\ 0 & s \neq q \end{cases} \qquad \qquad \beta(P_i) := \begin{cases} 1 & i = p \\ 0 & i \neq p \end{cases} \qquad \qquad \beta(S_{a,i}) := \begin{cases} 1 & a = a_i \\ 0 & a \neq a_i \end{cases}$$

Markus Krötzsch, 8th Nov 2017

We define a formula $Conf(\overline{C})$ for a set of configuration variables $\overline{C} = \{Q_q, P_i, S_{a,i} \mid q \in Q, a \in \Gamma, 0 \le i < p(n)\}$ as follows:

 $\begin{array}{ll} \operatorname{Conf}(\overline{C}) := & \text{"the assignment is a valid configuration":} \\ & \bigvee_{q \in \mathcal{Q}} \left(\mathcal{Q}_q \wedge \bigwedge_{q' \neq q} \neg \mathcal{Q}_{q'} \right) & \text{"TM in exactly one state } q \in \mathcal{Q}" \\ & \wedge \bigvee_{p < p(n)} \left(P_p \wedge \bigwedge_{p' \neq p} \neg P_{p'} \right) & \text{"head in exactly one position } p \leq p(n)" \\ & \wedge \bigwedge_{0 \leq i < p(n)} \bigvee_{a \in \Gamma} \left(S_{a,i} \wedge \bigwedge_{b \neq a \in \Gamma} \neg S_{b,i} \right) & \text{"exactly one } a \in \Gamma \text{ in each cell"} \end{array}$

For an assignment β defined on variables in \overline{C} define

$$\mathsf{conf}(\overline{C},\beta) := \begin{cases} \beta(Q_q) = 1, \\ (q,p,w_0 \dots w_{p(n)}) \mid & \beta(P_p) = 1, \\ & \beta(S_{w_i,i}) = 1 \text{ for all } 0 \le i < p(n) \end{cases}$$

Note: β may be defined on other variables besides those in \overline{C} .

For an assignment β defined on variables in \overline{C} define

$$\operatorname{conf}(\overline{C},\beta) := \begin{cases} \beta(Q_q) = 1, \\ (q, p, w_0 \dots w_{p(n)}) \mid & \beta(P_p) = 1, \\ & \beta(S_{w_i,i}) = 1 \text{ for all } 0 \le i < p(n) \end{cases}$$

Note: β may be defined on other variables besides those in \overline{C} .

Lemma 7.5: If β satisfies $\text{Conf}(\overline{C})$ then $|\text{conf}(\overline{C},\beta)| = 1$. We can therefore write $\text{conf}(\overline{C},\beta) = (q,p,w)$ to simplify notation.

For an assignment β defined on variables in \overline{C} define

$$\operatorname{conf}(\overline{C},\beta) := \begin{cases} \beta(Q_q) = 1, \\ (q, p, w_0 \dots w_{p(n)}) \mid & \beta(P_p) = 1, \\ & \beta(S_{w_i,i}) = 1 \text{ for all } 0 \le i < p(n) \end{cases}$$

Note: β may be defined on other variables besides those in \overline{C} .

Lemma 7.5: If β satisfies $\text{Conf}(\overline{C})$ then $|\text{conf}(\overline{C},\beta)| = 1$. We can therefore write $\text{conf}(\overline{C},\beta) = (q,p,w)$ to simplify notation.

Observations:

- conf(C,β) is a potential configuration of M, but it may not be reachable from the start configuration of M on input w.

Proving Cook-Levin: Transitions Between Configurations

Consider the following formula $Next(\overline{C}, \overline{C}')$ defined as

 $\text{Conf}(\overline{C}) \wedge \text{Conf}(\overline{C}') \wedge \text{NoChange}(\overline{C},\overline{C}') \wedge \text{Change}(\overline{C},\overline{C}').$

NoChange :=
$$\bigvee_{0 \le p < p(n)} \left(P_p \land \bigwedge_{i \ne p, a \in \Gamma} (S_{a,i} \to S'_{a,i}) \right)$$

Change := $\bigvee_{0 \le p < p(n)} \left(P_p \land \bigvee_{\substack{q \in Q \\ a \in \Gamma}} (Q_q \land S_{a,p} \land \bigvee_{(q',b,D) \in \delta(q,a)} (Q'_{q'} \land S'_{b,p} \land P'_{D(p)})) \right)$

where D(p) is the position reached by moving in direction D from p.

Proving Cook-Levin: Transitions Between Configurations

Consider the following formula $Next(\overline{C}, \overline{C}')$ defined as

 $\mathrm{Conf}(\overline{C})\wedge\mathrm{Conf}(\overline{C}')\wedge\mathrm{NoChange}(\overline{C},\overline{C}')\wedge\mathrm{Change}(\overline{C},\overline{C}').$

NoChange :=
$$\bigvee_{0 \le p < p(n)} \left(P_p \land \bigwedge_{i \ne p, a \in \Gamma} (S_{a,i} \to S'_{a,i}) \right)$$

Change := $\bigvee_{0 \le p < p(n)} \left(P_p \land \bigvee_{\substack{q \in Q \\ a \in \Gamma}} (Q_q \land S_{a,p} \land \bigvee_{(q',b,D) \in \delta(q,a)} (Q'_{q'} \land S'_{b,p} \land P'_{D(p)})) \right)$

where D(p) is the position reached by moving in direction *D* from *p*.

Lemma 7.6: For any assignment β defined on $\overline{C} \cup \overline{C}'$: β satisfies Next $(\overline{C}, \overline{C}')$ if and only if $\operatorname{conf}(\overline{C}, \beta) \vdash_{\mathcal{M}} \operatorname{conf}(\overline{C}', \beta)$

Proving Cook-Levin: Start and End

Defined so far:

- $\operatorname{Conf}(\overline{C})$: \overline{C} describes a potential configuration
- $\operatorname{Next}(\overline{C}, \overline{C}')$: $\operatorname{conf}(\overline{C}, \beta) \vdash_{\mathcal{M}} \operatorname{conf}(\overline{C}', \beta)$

Proving Cook-Levin: Start and End

Defined so far:

- $\operatorname{Conf}(\overline{C})$: \overline{C} describes a potential configuration
- $\operatorname{Next}(\overline{C}, \overline{C}')$: $\operatorname{conf}(\overline{C}, \beta) \vdash_{\mathcal{M}} \operatorname{conf}(\overline{C}', \beta)$

Start configuration:

For an input word $w = w_0 \cdots w_{n-1} \in \Sigma^*$, we define:

$$\mathsf{Start}_{\mathcal{M},w}(\overline{C}) := \mathsf{Conf}(\overline{C}) \land Q_{q_0} \land P_0 \land \bigwedge_{i=0}^{n-1} S_{w_i,i} \land \bigwedge_{i=n}^{p(n)-1} S_{\Box,i}$$

Then an assignment β satisfies $\text{Start}_{\mathcal{M},w}(\overline{C})$ if and only if \overline{C} represents the start configuration of \mathcal{M} on input w.

Proving Cook-Levin: Start and End

Defined so far:

- $\operatorname{Conf}(\overline{C})$: \overline{C} describes a potential configuration
- $\operatorname{Next}(\overline{C}, \overline{C}')$: $\operatorname{conf}(\overline{C}, \beta) \vdash_{\mathcal{M}} \operatorname{conf}(\overline{C}', \beta)$

Start configuration:

For an input word $w = w_0 \cdots w_{n-1} \in \Sigma^*$, we define:

$$\mathsf{Start}_{\mathcal{M},w}(\overline{C}) := \mathsf{Conf}(\overline{C}) \land Q_{q_0} \land P_0 \land \bigwedge_{i=0}^{n-1} S_{w_i,i} \land \bigwedge_{i=n}^{p(n)-1} S_{\Box,i}$$

Then an assignment β satisfies $\text{Start}_{\mathcal{M},w}(\overline{C})$ if and only if \overline{C} represents the start configuration of \mathcal{M} on input w.

Accepting stop configuration:

 $\mathsf{Acc}\text{-}\mathsf{Conf}(\overline{C}) := \mathsf{Conf}(\overline{C}) \land Q_{q_{\mathsf{accept}}}$

Then an assignment β satisfies Acc-Conf(\overline{C}) if and only if \overline{C} represents an accepting configuration of \mathcal{M} .

Markus Krötzsch, 8th Nov 2017

Proving Cook-Levin: Adding Time

Since \mathcal{M} is *p*-time bounded, each run may contain up to p(n) steps \rightsquigarrow we need one set of configuration variables for each

Propositional variables

 $Q_{q,t}$ for all $q \in Q$, $0 \le t \le p(n)$ means "at time t, \mathcal{M} is in state $q \in Q$ "

 $P_{i,t}$ for all $0 \le i, t \le p(n)$ means "at time *t*, the head is at position *i*"

 $S_{a,i,t}$ for all $a \in \Sigma \dot{\cup} \{\Box\}$ and $0 \le i, t \le p(n)$ means

"at time t, tape cell i contains symbol a"

Notation

 $\overline{C}_t := \{ Q_{q,t}, P_{i,t}, S_{a,i,t} \mid q \in Q, 0 \le i \le p(n), a \in \Gamma \}$

Proving Cook-Levin: The Formula

Given:

- a polynomial *p*
- a *p*-time bounded 1-tape NTM $\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}})$
- a word w

We define the formula $\varphi_{p,\mathcal{M},w}$ as follows:

$$\varphi_{p,\mathcal{M},w} := \mathsf{Start}_{\mathcal{M},w}(\overline{C}_0) \land \bigvee_{0 \le t \le p(n)} \left(\mathsf{Acc-Conf}(\overline{C}_t) \land \bigwedge_{0 \le i < t} \mathsf{Next}(\overline{C}_i, \overline{C}_{i+1}) \right)$$

" C_0 encodes the start configuration" and for some polynomial time *t*: " \mathcal{M} accepts after *t* steps" and " $\overline{C}_0, ..., \overline{C}_t$ encode a computation path"

Lemma 7.7: $\varphi_{p,\mathcal{M},w}$ is satisfiable if and only if \mathcal{M} accepts w in time p(|w|).

Note that an accepting or rejecting stop configuration has no successor.

Markus Krötzsch, 8th Nov 2017

Complexity Theory

Theorem 7.4 (Cook 1970, Levin 1973): SAT is NP-complete.

Proof:

(1) SAT $\in NP$

Take satisfying assignments as polynomial certificates for the satisfiability of a formula.

(2) SAT is hard for NP

Proof by reduction from the word problem for NTMs.

Further NP-complete Problems

Towards More NP-Complete Problems

Starting with **Sat**, one can readily show more problems **P** to be NP-complete, each time performing two steps:

- (1) Show that $\mathbf{P} \in \mathbf{NP}$
- (2) Find a known NP-complete problem \mathbf{P}' and reduce $\mathbf{P}' \leq_p \mathbf{P}$

Thousands of problem have now been shown to be NP-complete. (See Garey and Johnson for an early survey)

Towards More NP-Complete Problems

Starting with **Sat**, one can readily show more problems **P** to be NP-complete, each time performing two steps:

- (1) Show that $\mathbf{P} \in \mathbf{NP}$
- (2) Find a known NP-complete problem \mathbf{P}' and reduce $\mathbf{P}' \leq_p \mathbf{P}$

Thousands of problem have now been shown to be NP-complete. (See Garey and Johnson for an early survey)

In this course:

NP-Completeness of CLIQUE

Theorem 7.8: CLIQUE is NP-complete.

CLIQUE: Given G, k, does G contain a clique of order $\geq k$?

Proof:

(1) CLIQUE $\in NP$

Take the vertex set of a clique of order k as a certificate.

(2) CLIQUE is NP-hard

We show **SAT** \leq_p **CLIQUE**

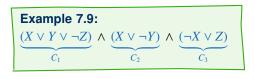
To every CNF-formula φ assign a graph G_{φ} and a number k_{φ} such that

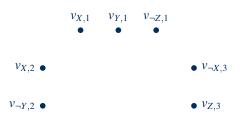
 φ satisfiable $\iff G_{\varphi}$ contains clique of order k_{φ}

To every CNF-formula φ assign a graph G_{φ} and a number k_{φ} such that

 φ satisfiable if and only if G_{φ} contains clique of order k_{φ}

- Set $k_{\varphi} := k$
- For each clause C_j and literal $L \in C_j$ add a vertex $v_{L,j}$
- Add edge $\{v_{L,j}, v_{K,i}\}$ if $i \neq j$ and $L \wedge K$ is satisfiable (that is: if $L \neq \neg K$ and $\neg L \neq K$)

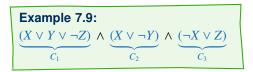


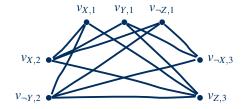


To every CNF-formula φ assign a graph G_{φ} and a number k_{φ} such that

 φ satisfiable if and only if G_{φ} contains clique of order k_{φ}

- Set $k_{\varphi} := k$
- For each clause C_j and literal $L \in C_j$ add a vertex $v_{L,j}$
- Add edge $\{v_{L,j}, v_{K,i}\}$ if $i \neq j$ and $L \wedge K$ is satisfiable (that is: if $L \neq \neg K$ and $\neg L \neq K$)

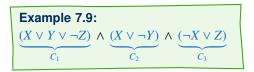


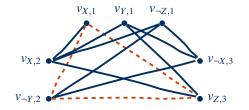


To every CNF-formula φ assign a graph G_{φ} and a number k_{φ} such that

 φ satisfiable if and only if G_{φ} contains clique of order k_{φ}

- Set $k_{\varphi} := k$
- For each clause C_j and literal $L \in C_j$ add a vertex $v_{L,j}$
- Add edge $\{v_{L,j}, v_{K,i}\}$ if $i \neq j$ and $L \wedge K$ is satisfiable (that is: if $L \neq \neg K$ and $\neg L \neq K$)

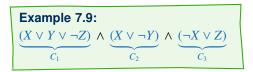


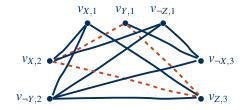


To every CNF-formula φ assign a graph G_{φ} and a number k_{φ} such that

 φ satisfiable if and only if G_{φ} contains clique of order k_{φ}

- Set $k_{\varphi} := k$
- For each clause C_j and literal $L \in C_j$ add a vertex $v_{L,j}$
- Add edge $\{v_{L,j}, v_{K,i}\}$ if $i \neq j$ and $L \wedge K$ is satisfiable (that is: if $L \neq \neg K$ and $\neg L \neq K$)





To every CNF-formula φ assign a graph G_{φ} and a number k_{φ} such that

 φ satisfiable if and only if G_{φ} contains clique of order k_{φ}

Given $\varphi = C_1 \wedge \cdots \wedge C_k$:

- Set $k_{\varphi} := k$
- For each clause C_j and literal $L \in C_j$ add a vertex $v_{L,j}$
- Add edge {*u*_{L,j}, *v*_{K,i}} if *i* ≠ *j* and *L* ∧ *K* is satisfiable (that is: if *L* ≠ ¬*K* and ¬*L* ≠ *K*)

Correctness:

 G_{φ} has clique of order k iff φ is satisfiable.

Complexity:

The reduction is clearly computable in polynomial time.

NP-Completeness of INDEPENDENT SET

INDEPENDENT SET

Input: An undirected graph G and a natural number k

Problem: Does *G* contain *k* vertices that share no edges (independent set)?

Theorem 7.10: INDEPENDENT SET is NP-complete.

NP-Completeness of INDEPENDENT SET

INDEPENDENT SET

Input: An undirected graph G and a natural number k

Problem: Does *G* contain *k* vertices that share no edges (independent set)?

Theorem 7.10: INDEPENDENT SET is NP-complete.

Proof: Hardness by reduction CLIQUE \leq_p INDEPENDENT SET:

• Given G := (V, E) construct $\overline{G} := (V, \{\{u, v\} \mid \{u, v\} \notin E \text{ and } u \neq v\})$

NP-Completeness of INDEPENDENT SET

INDEPENDENT SET

Input: An undirected graph G and a natural number k

Problem: Does *G* contain *k* vertices that share no edges (independent set)?

Theorem 7.10: INDEPENDENT SET is NP-complete.

Proof: Hardness by reduction CLIQUE \leq_p INDEPENDENT SET:

- Given G := (V, E) construct $\overline{G} := (V, \{\{u, v\} \mid \{u, v\} \notin E \text{ and } u \neq v\})$
- A set $X \subseteq V$ induces a clique in G iff X induces an independent set in \overline{G} .
- Reduction: *G* has a clique of order *k* iff \overline{G} has an independent set of order *k*.

Summary and Outlook

NP-complete problems are the hardest in NP

Polynomial runs of NTMs can be described in propositional logic (Cook-Levin)

CLIGE and INDEPENDENT SET are also NP-complete

What's next?

- More examples of problems
- The limits of NP
- Space complexities