

Fakultät Informatik, Institut für Künstliche Intelligenz, Professur Computational Logic

# SEMINAR LOGIC-BASED KNOWLEDGE REPRESENTATION

Logic Recap

Hannes Straß

https://iccl.inf.tu-dresden.de/web/LBKR2022

TU Dresden, 11th April, 2022

#### Outline

We review some key concepts of classical logic:

- Syntax and Semantics of Propositional Logic
- Model Theory vs. Proof Theory
- Soundness and Completeness
- Syntax and Semantics of First-Order Logic

## Current Seminar Plan

| Date   | Торіс                      | Presenter                      |
|--------|----------------------------|--------------------------------|
| 25.04. | Modal Logic – Semantics    | Hesham Morgan                  |
| 02.05. | Modal Logic – Proof Theory | Anna Schuldt                   |
| 09.05. | Temporal Reasoning         | Florian Emmrich                |
| 16.05. | Epistemic Logics           | Rajab Aghamov                  |
| 23.05. | NMR Introduction           | Puneetha Jangir Lok Ram Jangir |
| 30.05. | Default Logic              | Diksha Chawla                  |
| 13.06. | Autoepistemic Logic        | Avtar Singh                    |
| 20.06. | NMR Recap                  | Syed Muhammad Mahmudul Haque   |
| 27.06. | Theorem Proving            | Alexej Popovic                 |
| 04.07. | SAT                        | Tom Friese                     |
| 11.07. | ASP                        | Rutuja Mohekar                 |

Note: Register seminar with examination office.

#### Motivation

#### In Knowledge Representation and Reasoning we want to ...

... formally represent a collection of **propositions** believed by some **agent**, and to **derive** new information from these propositions by applying reasoning techniques.

Logic allows us to ...

- ... formally represent information in various logical systems,
- and to draw logical inferences from given information.

Quiz: For each of the following statements, decide whether it holds.

- 1. In propositional logic (PL),  $P \rightarrow Q$  is equivalent to  $P \lor \neg Q$ .
- 2. In PL, if  $\varphi$  is a tautology and I is an interpretation, then  $\varphi^{I} = true$ .
- 3. In PL, if  $\Delta$  and  $\Gamma$  are sets of formulas and  $\varphi$  is a formula, then  $\Delta \models \varphi$  implies  $\Delta \cup \Gamma \models \varphi$ .
- 4. In first-order logic,  $\neg \forall x.(P(x) \lor Q(x))$  is equivalent to  $(\exists x. \neg P(x)) \land (\exists x. \neg Q(x))$ .
- 5. In first-order logic, there is a proof system with a derivation relation ⊢ that coincides with the entailment relation ⊨.

# **Propositional Logic**

#### Propositional Logic – Overview

- It is one of the simplest logics
- · It can be used to write simple representations of a domain
- · There exist reasoning algorithms that exhibit excellent performance in practice
- (Most of) you are already familiar with it.

## Syntax: Propositional Alphabet

1. Propositional variables (**PL**):

basic statements that can be true or false

- 2. The symbols  $\top$  ("truth") and  $\perp$  ("falsehood")
- 3. Propositional connectives:
  - ¬ negation (not)
  - ∧ conjunction (and)
  - ∨ disjunction (or)
  - $\rightarrow$  implication (if ... then)
  - $\leftrightarrow \ \text{bi-directional implication (if and only if)}$
- 4. Punctuation symbols "(" and ")" can be used to avoid ambiguity

#### Semantics: Interpretations

**Definition 1.1 (Interpretation):** An **interpretation**  $\mathcal{I}$  assigns truth values to propositional variables:

 $\mathcal{I} : \mathsf{PL} \to \{true, false\}$ 

An interpretation for a (set of) formulas X interprets the propositional variables occurring in X.

**Example:** An interpretation I for the formula  $R \rightarrow ((Q \lor R) \rightarrow R)$ :  $R^{I} = true$  $Q^{I} = false$ 

A formula with n propositional variables has  $2^n$  interpretations.

#### Semantics of Formulas

The truth value of the propositional variables in a formula  $\alpha$  determines the truth value of  $\alpha$ .



**Definition 1.2 (Model):** We say that I is a **model** of  $\alpha$  iff I makes  $\alpha$  true.

## Using Propositional Logic for KR

Propositional Logic provides a simple KR language.

To write down a representation of our domain do the following:

1. Identify the relevant propositions:

| Benign     | The tumour is benign      |
|------------|---------------------------|
| Metastasis | The tumour has metastasis |
| Stage4     | The tumour is in Stage 4  |

2. Express our knowledge using a set of formulas (knowledge base):

. . .

Benign Benign ↔ ¬Metastasis Stage4 → Metastasis

. . .

## Reasoning with a Knowledge Base

Knowledge Base  $\mathcal{K}_1$ :

 $Benign \land Stage4$  $Benign \leftrightarrow \neg Metastasis$  $Stage4 \rightarrow Metastasis$ 

Knowledge Base  $\mathcal{K}_2$ :

Benign Benign ↔ ¬Metastasis Stage4 → Metastasis

We would like to answer the following questions:

. . .

1. Do our KBs make sense?

 $\mathcal{K}_1$  seems contradictory

2. What is the implicit knowledge we can derive from our KBs?  $K_2$  seems to imply the formula  $\neg$ *Stage*4

## Model Theory – Reasoning

**Definition 1.3 (Semantic Consequence):** Let  $\Gamma$  be a set of formulas and  $\alpha$  a formula. We write  $\Gamma \models \alpha$  if and only if every model of  $\Gamma$  is also a model of  $\alpha$ .

**Definition 1.4 (Tautology):** Let  $\alpha$  be some formula. We write  $\models \alpha$  if and only if  $\alpha$  is true in every interpretation.

**Example from**  $\mathcal{K}_2$ :

$$\{B, B \leftrightarrow \neg M, S4 \rightarrow M\} \models \neg S4$$

- Let I be a model of  $\{B, B \leftrightarrow \neg M, S4 \rightarrow M\}$ .
- Then  $(B)^{\mathcal{I}} = true$ ,  $(M)^{\mathcal{I}} = false$ .
- Since  $(S4 \rightarrow M)^{\mathcal{I}} = true$  and  $(M)^{\mathcal{I}} = false$ , it must hold that  $(S4)^{\mathcal{I}} = false$ .
- Thus  $(\neg S4)^I = true$ .

#### **Proof Theory**

In proof theory:

- We do not consider the semantical interpretation of logical formulas.
- Rather, we are concerned with a syntactic description of our logical system ...
- that allows to put our logic on an axiomatic foundations and to
- syntactically derive formulas from a set of axioms and inference rules.
- Some well-known systems include: Hilbert Systems, Natural Deduction and Tableau Calculi.

**Definition 1.5 (Syntactic Consequence):** Let  $\Gamma$  be a set of formulas and  $\alpha$  a formula. We write  $\Gamma \vdash \alpha$  if and only if there is a derivation with conclusion  $\alpha$  from  $\Gamma$ .

**Definition 1.6 (Theorem):** If  $\Gamma = \emptyset$ , we write  $\vdash \alpha$  and we say that  $\alpha$  is a **theorem**.

#### Proof Theory – Hilbert System

#### Axioms:

Axiom 1. 
$$\phi \to (\psi \to \phi)$$
  
Axiom 2.  $(\phi \to (\psi \to \chi)) \to ((\phi \to \psi) \to (\phi \to \chi))$   
Axiom 3.  $(\neg \phi \to \neg \psi) \to ((\neg \phi \to \psi) \to \phi)$ 

**Inference Rule**: (Modus Ponens): From  $\phi \rightarrow \psi$  and  $\phi$ , infer  $\psi$ .

| <b>Example</b> : Show $\phi \rightarrow \psi, \psi \rightarrow \chi \vdash \phi \rightarrow \chi$ |                                            |
|---------------------------------------------------------------------------------------------------|--------------------------------------------|
| $(\psi \to \chi) \to (\phi \to (\psi \to \chi))$                                                  | $Ax1[\phi/\psi  ightarrow \chi;\psi/\phi]$ |
| $(\phi \to (\psi \to \chi)) \to ((\phi \to \psi) \to (\phi \to \chi))$                            | Ax2                                        |
| $\psi 	o \chi$                                                                                    | Premise                                    |
| $\phi \to (\psi \to \chi)$                                                                        | <i>MP</i> (1, 3)                           |
| $(\phi \to \psi) \to (\phi \to \chi)$                                                             | <i>MP</i> (2, 4)                           |
| $\phi  ightarrow \psi$                                                                            | Premise                                    |
| $\phi  ightarrow \chi$                                                                            | <i>MP</i> (5, 6)                           |

For propositional logic (and other logical systems) we can show that the **semantic** and **syntactic entailment** coincide. That is: the relations "F" and "F" coincide.

We distinguish both directions:

**Theorem 1.7 (Soundness):**  $\Gamma \vdash \alpha \Rightarrow \Gamma \models \alpha$ 

**Theorem 1.8 (Completeness):**  $\Gamma \models \alpha \Rightarrow \Gamma \vdash \alpha$ 

[For proofs, see for instance: Dirk van Dalen, Logic and Structure (2008)]

#### Monotonicity

What does it mean for a logic to be monotone? Monotonicity is a property of the consequence relation:

**Definition 1.9 (Monotonicity):** Let  $\Sigma$  and  $\Delta$  be sets of formulas and H be a formula. If  $\Sigma \models H$  and  $\Sigma \subseteq \Delta$  then  $\Delta \models H$ .

**Example**: Let  $\Sigma = \{p, q\}, H = p, \Delta = \{p, q, r\}$ . What if  $\Delta = \{p, q, \neg p\}$ ?

What would we have to do to show that some entailment relation is non-monotonic? Find an example where:

- $\Sigma \models H$
- $\Sigma \subseteq \Delta$
- But: ∆ ⊭ *H*

#### Limitations of Propositional Logic

Consider the following argument:

All men are mortal Socrates is a man

.:. Socrates is mortal

The argument seems to be valid.

However, in propositional logic:



## First-Order Logic

## FOL Syntax: Symbols

A first-order alphabet consists of

• Predicate Symbols, each with a fixed arity

ArthritisUnary PredicateAffectsBinary Predicate

• Function symbols, each with a fixed arity

ssnOf Unary Function Symbol

- Constants: JohnSmith, MaryJones, JRA
- Variables: x, y, z
- Propositional connectives  $\{\neg, \lor, \land, \rightarrow, \leftrightarrow\}$
- Symbols  $\top$  and  $\bot$
- The universal and existential quantifiers:  $\forall$ ,  $\exists$

## FOL Syntax: Terms

Terms stand for specific objects:

- Variables are terms
- Constants are terms
- The application of a function symbol to terms leads to a term

| JohnSmith        | stands for | the person named John Smith    |
|------------------|------------|--------------------------------|
| ssnOf(JohnSmith) | stands for | the ssn number of John Smith   |
| x                | stands for | some object (undetermined)     |
| ssnOf(x)         | stands for | some ssn number (undetermined) |

## FOL Syntax: Formulas

An atomic formula (atom) is of the form

 $P(t_1, \ldots, t_n)$  *P* is an *n*-ary predicate,  $t_i$  are terms

| Examples:               |                               |
|-------------------------|-------------------------------|
| Child(JohnSmith)        | John Smith is a child         |
| JuvenileArthritis(JRA)  | JRA is a juvenile arthritis   |
| Affects(JRA, JohnSmith) | John Smith is affected by JRA |

An atom represents a simple statement:

- similar to atoms in propositional logic,
- but first-order atoms have finer-grained structure.

## FOL Syntax: Formulas

Complex formulas:

• Every atom is a formula

#### *Child*(*JohnSmith*), *Affects*(*x*, *JohnSmith*)

- $\top$  and  $\bot$  are formulas
- If  $\alpha$  is a formula, then  $\neg \alpha$  is a formula

 $\neg$ *Affects*(*JRA*, *JohnSmith*),  $\neg$ *Child*(*y*)

• If  $\alpha, \beta$  are formulas,  $(\alpha \circ \beta)$  is a formula for  $\{ \circ \in \land, \lor, \rightarrow, \leftrightarrow \}$ 

 $Affects(JRA, y) \rightarrow Child(y) \lor Teenager(y)$ 

• If  $\alpha$  a formula and x a variable,  $(\forall x.\alpha)$ ,  $(\exists x.\alpha)$  are formulas

 $\forall y. (Affects(JRA, y)) \rightarrow Child(y) \lor Teenager(y))$ 

 $\neg(\exists x. \exists y(JuvArthritis(x) \land Affects(x, y) \land Adult(y)))$ 

## FOL Syntax: Formulas

Intuitively, a free variable occurrence in a formula is one that does not appear in the scope of a quantifier:

 $\begin{aligned} &Affects(JRA,\underline{y}) \to Child(\underline{y}) \lor Teenager(\underline{y}) \\ &\exists x. (JuvArthritis(x) \land Affects(x,\underline{y}) \land Adult(\underline{y})) \\ &\exists x. (JuvArthritis(x)) \land Affects(\underline{x},y) \land Adult(y) \end{aligned}$ 

A variable occurrence is bound if it is not free.

A sentence is a formula with no free variable occurrences.

A juvenile disease affects only children or teenagers:

 $\forall x. \forall y. ((JuvDisease(x) \land Affects(x, y)) \rightarrow Child(y) \lor Teenager(y))$ 

Children and teenagers are not adults:

 $\forall x.((Child(x) \lor Teenager(x)) \rightarrow \neg Adult(x))$ 

Hannes Straß, TU Dresden

## **FOL** Interpretations

As in PL, the meaning of sentences is given by interpretations.

An interpretation is a pair  $I = \langle D, \cdot^I \rangle$  where:

• *D* is a non-empty set, called the interpretation domain.

 $D = \{u, v, w, s\}$ 

- $\cdot^{I}$  is the interpretation function and it associates:
  - With each constant *c* an object  $c^{I} \in D$ .

 $JohnSmith^{I} = u \quad MaryWilliams^{I} = v \quad JRA^{I} = w \quad \dots$ 

- With each *n*-ary function symbol f, a function  $f^{\mathcal{I}} : D^n \to D$ .

$$ssnOf^{\mathcal{I}} = \{u \mapsto s, \ldots\}$$

- With each *n*-ary predicate symbol *P*, a relation  $P^{\mathcal{I}} \subseteq D^n$ .

$$Child^{\mathcal{I}} = \{u, v\} \quad Adult^{\mathcal{I}} = \emptyset \quad Affects^{\mathcal{I}} = \{\langle w, u \rangle, \ldots\}$$

#### **Evaluation of Terms**

Terms are interpreted as elements of the interpretation domain.

We have already seen how to interpret constants

$$JohnSmith^{I} = u \quad MaryWilliams^{I} = v \quad JRA^{I} = w \quad \dots$$

To interpret terms, we need to interpret (free) variables by means of a mapping from variables to domain elements (an assignment)

Given I and assignment **a**, we can interpret any term. Let I be as before and **a** map x to u:

 $JohnSmith^{I,a} = u$  $x^{I,a} = u$  $(ssnOf(x))^{I,a} = ssnOf^{I}(u) = s$ 

#### **Evaluation of Formulas**

#### Given $\mathcal{I}$ and $\mathbf{a}$ , a formula is interpreted as either true or false.

Atomic formulas:

$$P(t_i,\ldots,t_n)^{\mathcal{I},\mathbf{a}} = \mathbf{true} \quad \text{iff} \quad \langle t_i^{\mathcal{I},\mathbf{a}},\ldots,t_n^{\mathcal{I},\mathbf{a}} \rangle \in P^{\mathcal{I}}$$

#### Examples:

 $Child(JohnSmith)^{I,\mathbf{a}} = \mathbf{true} \quad \text{since} \quad JohnSmith^{I,\mathbf{a}} = u \text{ and } Child^{I} = \{u, v\}$  $Affects(JRA, x)^{I,\mathbf{a}} = \mathbf{true} \quad \text{since} \quad JRA^{I,\mathbf{a}} = w, \quad x^{I,\mathbf{a}} = u \text{ and } Affects^{I} = \{\langle w, u \rangle\}$ 

Propositional connectives are interpreted as usual:

 $(\neg Child(JohnSmith))^{I,a} =$ false  $(Affects(JRA, x) \land Child(JohnSmith))^{I,a} =$ true

$$(Child(JohnSmith) \rightarrow \neg Child(JohnSmith))^{I,a} = false$$

#### **Evaluation of Formulas**

Given  $\mathcal{I}$  and  $\mathbf{a}$ , a formula is interpreted as either true or false.

Existential quantifiers:

$$(\exists x.Affects(JRA, x))^{I, \mathbf{a}_{\emptyset}} =$$
true

since there exists an assignment **a** extending  $\mathbf{a}_{\emptyset}$  such that  $Affects(JRA, x)^{I, \mathbf{a}} = \mathbf{true}$ 

Universal quantifiers:

$$(\forall x.Affects(JRA, x))^{I, \mathbf{a}_{\emptyset}} = \mathsf{false}$$

since it is not true that, for any assignment **a** extending  $\mathbf{a}_{\emptyset}$ , Affects(JRA, x)<sup>*I*,**a**</sup> = true.

#### Evaluation of Sentences

For interpreting a sentence  $\varphi$  under I, **a**, the top-level assignment **a** is irrelevant.

**Theorem 1.10:** For any sentence  $\varphi$  and assignments **a**, **a**', we have  $\varphi^{I,\mathbf{a}} = \varphi^{I,\mathbf{a}'}$ .

Example: Consider the sentence

 $\forall x \forall y. ((JuvDisease(x) \land Affects(x, y)) \rightarrow (Child(y) \lor Teenager(y)))$ 

Assume the interpretation  $\mathcal{I}$  with **D** = {u, v, w} given as follows:

 $JuvDisease^{I} = \{u\}$   $Child^{I} = \{w\}$   $Teenager^{I} = \emptyset$   $Affects^{I} = \{\langle u, w \rangle\}$ 

 $\varphi$  without quantifiers must evaluate to true in I for all valuations  $\mathbf{a} : \{x, y\} \to \mathbf{D}$ . Example for  $\mathbf{a}_1 = \{x \mapsto u, y \mapsto v\}$ :

$$(JuvDisease(x)^{I,\mathbf{a}_{1}} \land Affects(x, y)^{I,\mathbf{a}_{1}}) \rightarrow (Child(y)^{I,\mathbf{a}_{1}} \lor Teenager(y)^{I,\mathbf{a}_{1}})$$
$$(true \land false) \rightarrow (true \lor false)$$

true

## Propositional vs. FOL Interpretations

#### More complicated to give meaning to FOL than to PL formulas:

 $JuvDisease \rightarrow AffectsChild \lor AffectsTeenager \quad (PL)$ 

 $\forall x. \forall y. ((JuvDisease(x) \land Affects(x, y)) \rightarrow (Child(y) \lor Teenager(y))) \quad (FOL)$ 

#### **PL Interpretations**

- Assigns truth values to atoms
- The truth value of complex formulas determined by induction

Example formula has 8 possible interpretations and 7 models

#### FOL interpretations

- Specify the domain for quantifiers to quantify over
- Interpret constants, predicates, functions
- Assign objects to variables

Example formula has  $\infty$  possible interpretations and  $\infty$  models

## Summary and Outlook

We reviewed syntax and semantics of PL and FOL.

Logical systems can be described from two points of view:

- model theory
- proof theory

For PL, FOL, and many other logics these points of view coincide (soundness and completeness).

PL, FOL, and many other logics are monotonic.

#### **Open questions:**

- How can we define systems other than PL and FOL? (Next session)
- What do non-monotonic logics look like? (In a few weeks)