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Measuring Complexity

Complexity Theory

Study the fine structure of decidable languages.

Goal
Classify languages by the amount of resources needed to solve them.

Resources
When dealing with Turing machines, we will primarily consider

time: the running time of algorithms (steps on a Turing-machine)

space: the amount of additional memory needed
(cells on the Turing-tapes)
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Time and Space Bounded Turing Machines

Definition 6.1

LetM be a Turing machine and let f : N→ R+ be a function.

M is f -time bounded if it halts on every input w ∈ Σ∗ after ≤f(|w |)
steps.

M is f -space bounded if it halts on every input w ∈ Σ∗ using ≤f(|w |)
cells on its tapes.

(Here we typically assume that Turing machines have a separate
input tape that we do not count in measuring space complexity.)

Notation

Sometimes notations like “f(n)-time bounded” are used, assuming inputs
to be of length n
{ we can use this when convenient, e.g., to write “n3-bounded”
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Big-O and Small-o

Recall: Big-O notation

Classify functions by an asymptotic bound that hides linear factors:

f(n) = O(g(n)) iff ∃c > 0 ∃n0 ∈ N ∀n > n0 : f(n) ≤ c · g(n)

In words:
f is asymptotically bounded by g up to a constant factor

Small-o notation
Classify functions by a function that dominates them:

f(n) = o(g(n)) iff ∀c > 0 ∃n0 ∈ N ∀n > n0 : f(n) ≤ c · g(n)

In words:
f is asymptotically dominated by g
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Relaxed Time and Space Bounds

We can use Big-O notation to generalise bounded TMs:

M is O(g(n))-time bounded if it is f -time bounded for some f with
f(n) = O(g(n)).

M is O(g(n))-space bounded if it is f -space bounded for some f with
f(n) = O(g(n)).

Notation

We generally allow the use of O(g(n)) in place of a function f(n) with
analogous meaning.
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Deterministic Complexity Classes

Definition 6.2

Let f : N→ R+ be a function.

DTime(f(n)) is the class of all languages L for which there is an
O(f(n))-time bounded Turing machine deciding L.

DSpace(f(n)) is the class of all languages L for which there is an
O(f(n))-space bounded Turing machine deciding L.

Notation

Sometimes Time(f(n)) is used instead of DTime(f(n)).
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Some Important Complexity Classes

P = PTime =
⋃
d≥1

DTime(nd) polynomial time

Exp = ExpTime =
⋃
d≥1

DTime(2nd
) exponential time

2Exp = 2ExpTime =
⋃
d≥1

DTime(22nd

) double-exponential time

E = ETime =
⋃
d≥1

DTime(2dn) exp. time with linear exponent

L = LogSpace = DSpace(log n) logarithmic space

PSpace =
⋃
d≥1

DSpace(nd) polynomial space

ExpSpace =
⋃
d≥1

DSpace(2nd
) exponential space
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Time Complexity Classes

P = PTime =
⋃
d≥1

DTime(nd) polynomial time

Exp = ExpTime =
⋃
d≥1

DTime(2nd
) exponential time

2Exp = 2ExpTime =
⋃
d≥1

DTime(22nd

) double-exponential time

Note
Complexity classes are classes of languages.

Time Complexity

P ⊆ ExpTime ⊆ 2ExpTime ⊆ 3ExpTime ⊆ 4ExpTime ⊆ . . .
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A Hierarchy of Complexity Classes?

Can we always solve more problems if we have more resources?

If not, how much more resources do we need to be able to solve
strictly more problems?

How do the complexity classes relate to each other?

Are there any tools by which we can show that a problem is in any of
these classes but not in another?

{ discussed in future lectures

How do we classify “efficient” in terms of complexity classes?

{ coming up next
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Different Definitions of Complexity Classes?

Other models of computation?

Is DTime(f) the same for multi-tape TMs?

And how about non-deterministic TMs?

Or TMs with a two-way infinite tape?

Or random access machines?

. . .

Many complexity classes are robust against many such variations
{ coming up next
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Polynomial Time
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Polynomial Time

“Intuitive” definition of “efficient”:
Any linear time computation is “efficient”.

Any program that
performs “efficient” operations (e.g. linear number of iterations)
and
only uses “efficient” subprograms

is “efficient”.

This turns out to be equivalent to PTime.

PTime :=
⋃
d≥1

DTime(nd)

PTime serves as a mathematical model of “efficient” computation.
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Robustness of the Definition

If PTime is to be the mathematical model of efficient computation,
it should not depend on

the exact computation-model we are using,

or how we encode the input (within reason).
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Multi-Tape Turing Machines

Theorem 6.3 (Sipser, Theorem 7.8)

Consider a function f with f(n) ≥ n. Then, for every f(n)-time bounded
k-tape Turing machine (k > 1), there is an equivalent O(f2(n))-time
bounded single-tape Turing machine.

Proof.
Simulate a multi-tape TM with a single-tape TM as shown in Lecture 2:

q . . .

. . .

. . .

a a �

a c b

c � �

p

. . .# a a
•

� # a
•

c b #
•

c
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Multi-Tape Turing Machines

Then analyse how long this simulation really takes:

Observation: the tapes can never have more than f(n) symbols on
them

The simulation scans the whole tape once to find out what to do:
O(f(n)) steps

Then it updates the tapes whole tape in one pass: O(f(n)) steps

Sometimes the whole tape is shifted to make space: at most k times
O(f(n)) steps

Overall: one step is simulated in O(f(n)) steps

Simulating f(n) such steps takes f(n) · O(f(n)) = O(f2(n)) steps

Tape initialisation takes another O(f(n)) (irrelevant)

Total simulation possible in O(f2(n)). �
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P is Robust for Multi-Tape TMs

Let DTimek (f(n)) denote “DTime(f(n)) for a k -tape TM”.

Theorem 6.4⋃
d∈N

DTime(nd) =
⋃
d∈N

DTimek (nd) for every k ≥ 1

Proof.
The inclusion ⊆ is clear. The inclusion ⊇ is immediate from the previous
theorem. �
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Robustness Against Other Models of Computation

P is robust against further models of computation:

We can simulate f(n) steps of a two-way infinite k -tape
Turing-machine with an equivalent standard k -tape TM in O(f(n))
steps.

We can simulate f(n) steps of a RAM-machine with a 3-tape TM in
O(f3(n)) steps. Vice-versa in O(f(n)) steps.

Consequences:

PTime is the same for all these models (unlike linear time)

The exponential time complexity classes are as robust as P

How about non-deterministic TMs?
It is unknown if PTime is robust against this, but most think it is not
{ see next lectures
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Linear Speed-Up

The Big-O notation in DTime hides arbitrary linear factors.
Is it justified to rely on this for defining P?

Yes, it turns out that we can make multi-tape TMs “arbitrarily fast”:

Theorem 6.5 (Linear Speed-Up Theorem)

Consider an f(n)-time bounded k-tape Turing machine
M = (Q ,Σ, Γ, δ, q0, qaccept, qreject) with k > 1.

Then, for every constant c > 0, there is a ( 1
c · f(n) + n + 2)-time bounded

k-tape TMM′ = (Q ′,Σ, Γ′, δ′, q′0, q
′
accept, q

′
reject) that accepts the same

language.
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Linear Speed-Up

Proof sketch.
Let Γ′ := Σ ∪ Γm where m := d6ce. We constructM′ as follows:

Step 1: CompressM’s input.

Copy the input to tape 2, compressing m symbols into one (i.e., each
symbol corresponds to an m-tuple from Γm). This takes n + 2 steps.

Step 2: SimulateM’s computation, m steps at once.

Read (in 4 steps) symbols to the left, right and the current position
and “store” in Q ′, using |Q × {1, . . . ,m}k × Γ3mk | extra states.

Simulate (in 2 steps) the next m steps ofM (asM can only modify
the current position and one of its neighbours)

M′ accepts (rejects) ifM accepts (rejects)

For details see Papadimitriou, Theorem 2.2. �
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Different Encodings

Some simple observations:

For any n ∈ N, the length of the encoding of n in base b1 and base b2

are related by a constant factor, for all b1, b2 ≥ 2.

For any graph G, the length of its encoding as an
adjacency matrix
list of nodes + list of edges
adjacency list
. . .

are all polynomially related.

Consequence:

PTime is the same for all these encodings (unlike linear time).
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Ptime = tractable?

The class Ptime is a reasonable mathematical model of the class of
problems which are tractable or solvable in practice.

However:
This correspondence is not exact.

When the degree of polynomials is very high, the time grows so
quickly that in practice the problem is not solvable.

The constants may also be very large

And yet:

For many concrete PTime-problems arising in practice, algorithms with
moderate exponents and constants have been found.
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Growth Rate of Functions

Time Size n

Complexity 10 20 30 40 50 60

n
.00001 .00002 .00003 .00004 .00005 .00006
seconds seconds seconds seconds seconds seconds

n2 .0001 .0004 .0009 .0016 .0025 .0036
seconds seconds seconds seconds seconds seconds

n3 .001 .008 .027 .064 .125 .216
seconds seconds seconds seconds seconds seconds

n10 166 119 18.7 3.3 31 192
minutes days years centuries centuries centuries

2n .001 1.0 17.9 12.7 35.7 366
seconds seconds minutes days years centuries

3n .059 58 6.5 3855 2 · 108 1.3 · 1013

seconds minutes years centuries centuries centuries
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Polynomial Time: Examples
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Proving a problem is in PTime

The most direct way to show that a problem is in PTime is to exhibit
a polynomial time algorithm that solves it.

Even a naive polynomial-time algorithm often provides a good insight
into how the problem can be solved efficiently.

Because of robustness, we do not generally need to specify all the
details of the machine model or the encoding.

{ pseudo-code is sufficient.
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Example: Satisfiability

Some of the most important problems concern logical formulae

Definition 6.6 (Propositional Logic Syntax)

Formulae of propositional logic are built up inductively

(Propositional) Variables: Xi i ∈ N

Boolean connectives:
If ϕ, ψ are propositional formulae then so are

(ψ ∨ ϕ)
(ψ ∧ ϕ)
¬ϕ

Example 6.7

(X1 ∨ X2 ∨ ¬X5) ∧ (¬X2 ∨ ¬X4 ∨ ¬X5) ∧ (X2 ∨ X3 ∨ X4)
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Conjunctive Normal Form

Definition 6.8 (Conjunctive Normal Form)

A propositional logic formula ϕ is in conjunctive normal form (CNF) if

ϕ = C1 ∧ · · · ∧ Cm

where each Ci is a clause, that is, a disjunction of literals

Ci = (Li1 ∨ · · · ∨ Lik )

and a literal is a variable Xi or a negation ¬Xi thereof.
A CNF ϕ is in k -CNF is it has at most k literals per clause.

Example 6.9

(X1 ∨ X2 ∨ ¬X5) ∧ (¬X2 ∨ ¬X4 ∨ ¬X5) ∧ (X2 ∨ X3 ∨ X4) is in 3-CNF

cba 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2015-11-10 #27

http://lat.inf.tu-dresden.de/~borch
http://korrekt.org/
https://ddll.inf.tu-dresden.de/web/Complexity_Theory_(WS2015)


Time Complexity and Polynomial Time Polynomial Time: Examples

Propositional Logic Semantics

Definition 6.10
A formula ϕ is satisfiable if there is a satisfying assignment for ϕ.

Specifically for formulae in CNF:
An assignment β assigning values 0 or 1 to the variables of ϕ so that every
clause contains at least

one variable to which β assigns 1, or

one negated variable to which β assigns 0.

Example 6.11

(X1 ∨ X2 ∨ ¬X5) ∧ (¬X2 ∨ ¬X4 ∨ ¬X5) ∧ (X2 ∨ X3 ∨ X4)

is satisfied by {X1 7→ 1, X2 7→ 0, X3 7→ 1, X4 7→ 0, X5 7→ 1}
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The Satisfiability Problem

Related to propositional formulae, the following two problems are the most
important:

Sat

Input: Propositional formula ϕ in CNF

Problem: Is ϕ satisfiable?

k -Sat

Input: Propositional formula ϕ in k -CNF

Problem: Is ϕ satisfiable?
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2-Sat is in PTime

Proof.
The following algorithm solves the problem in polynomial time.

Main: Input Γ in CNF

bcp(Γ)

if conflict return UNSAT

while Γ , ∅ do
choose var. X from Γ
set Γ′ := Γ
assign(Γ,X , 1)
bcp(Γ)
if conflict

Γ := Γ′

assign(Γ,X , 0)
bcp(Γ)

if conflict
return UNSAT

bcp(Γ) (boolean constraint propagation)

while Γ contains unit-clause C do
if C = {X} assign(Γ,X , 1)
if C = {¬X} assign(Γ,X , 0)

if Γ contains empty clause return conflict

assign(Γ,X , c)

if c = 1
remove from Γ all clauses C with X ∈ C
remove ¬X from all remaining clauses

if c = 0
remove from Γ all clauses C with ¬X ∈ C
remove X from all remaining clauses

�
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Polynomial-Time Reductions

As for decidability we can use reductions to show membership in PTime.

Definition 6.12
A language L1 ⊆ Σ∗ is polynomially many-one reducible to L2 ⊆ Σ∗,
denoted L1 ≤p L2, if there is a polynomial-time computable function f
such that for all w ∈ Σ∗

w ∈ L1 if and only if f(w) ∈ L2.

Theorem 6.13
If L1 ≤p L2 and L2 ∈ PTime then L1 ∈ PTime.

Proof.
The sum and composition of polynomials is a polynomial. �
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Reductions in PTime

All non-trivial members of PTime can be reduced to each other:

Theorem 6.14
If B is any language in P, B , ∅, B , Σ∗, then A ≤p B for any A ∈ P.

Proof.
Choose w ∈ B and w′ < B

Define the function f by setting

f(x) := w x ∈ A

f(x) := w′ x < A

Since A ∈ P, f is computable in polynomial time, and is a reduction from
A to B. �
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Example: Colourability

Definition 6.15 (Vertex Colouring)

A vertex colouring of G with k colours is a function

c : V(G) −→ {1, . . . , k }

such that adjacent nodes have different colours, that is:

{u, v} ∈ E(G) implies c(u) , c(v)

k -Colouring

Input: Graph G, k ∈ N

Problem: Does G have a vertex colour-
ing with k colours?

For k = 2 this is the same as Bipartite.
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Reducing 2-Colourability to 2-Sat

Theorem 6.16
2-Colourability ≤p 2-Sat, and therefore 2-Colourability ∈ P.

Proof.
We define a reduction as follows: Given graph G

For each vertex v ∈ V(G) of the graph introduce new variable Xv

For each {u, v} ∈ E(G) add clauses (Xu ∨ Xv) and (¬Xu ∨ ¬Xv)

This is obviously computable in polynomial time.

We check that it is a reduction:

If G is 2-colourable, use colouring to assign truth values.
(One colour is true, the other false)

If the formula is satisfiable, the truth assignment defines valid
2-colouring.
For every edge {u, v} ∈ E(G), one variable Xu,Xv must be set to true,
the other to false.

�
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Trivially Tractable Problems

A large class of languages is generally tractable:

Theorem 6.17

If L is a finite language, then it is decided by an O(1)-time bounded TM. In
other words, all finite languages are decidable in constant time (and hence
also in polynomial time).

Proof.
As L is finite, there is a maximum length m of words in L.

Read the input up to the first m letters.

The state space contains a table containing the correct result for all
such inputs.

All other inputs are rejected.

�
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A Note on Constructiveness

The previous result is an example of a theorem that proves the existence
of a P algorithm in cases where we do not know what this algorithm is.

Example 6.18

Let L be the language that contains all correct sentences from the
following set:

{“P is the same as NP”, “P is not the same as NP”}

Then L is decidable in constant time. However, we don’t which
constant-time algorithm decides this.

Non-constructiveness:
We can prove that there is a correct polynomial time algorithm.

We cannot construct such an algorithm.

Such solutions are called non-constructive.
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An Interesting Problem in P

Theorem 6.19
It is decidable in polynomial-time (O(n3)) if a graph can knotlessly be
embedded into 3-dimensional space.

Proof sketch.
Robertson & Seymour proved a general result that implies the
existence of a finite set of forbidden structures in knotlessly
embeddable graphs.

For each of these forbidden structures we can test whether a graph
contains one of them in time O(n3).

Hence, to decide if a graph is knotlessly embeddable, we only need to
test for each of the finitely many forbidden structures, whether they
occur in the graph.

This yields a cubic time decision procedure. �

However: We do not currently know what these structures are.
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