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Outline

Goal
Show some example where either rules or related ideas were crucial to achieve the
state of the art

• Horn-ALC reasoning

• PLP

• Data integration

• Stream reasoning
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1st Scenario: Horn-ALC reasoning
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The Description Logic Horn-ALC: Syntax

Definition. A Horn-ALC ontology is a set of Horn-ALC axioms:

A v ⊥ > v B A v B A u E v B ∃R.A v B A v ∀R.B A v ∃R.B

In the above; A, B, and E are concept names; and R is a role name.

Remark. Note the axioms of the form A v ∀R.B, which are not EL, such as:

CheesePizza v ∀HasTopping.Cheese

The axiom states that “all toppings in a cheese pizza are cheese toppings”.

Even though Horn-ALC is not much more expressive than EL, (Krötzsch, Rudolph, and
Hitzler 2013) have showed that:

Theorem. Solving classification over Horn-ALC is ExpTime-complete.
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A Consequence-Based Calculus to Solve Classification

RC
A

)
A v A

: A ∈ Concepts(O) R+
∃

) C v A
C v ∃R.B

: A v ∃R.B ∈ O

R∃A
) C v ∃R.D D ∈ D

D v D
R−
∃

) C v ∃R.D D v A
C v B

: ∃R.A v B ∈ O

R1
u

) C v A
C v B

: > v B ∈ O R⊥
∃

) C v ∃R.D D v ⊥

C v ⊥

R1
u

) C v A
C v B

: A v B ∈ O R∀
) C v ∃R.D C v A
C v ∃R.(D u B)

: A v ∀R.B ∈ O

R2
u

) C v A C v E
C v B

: A u E v B ∈ O

Figure: Classification Calculus for Horn-ALC. Where A, B, and E are concept names; R
is a role name; and C and D are conjunctions of concept names

Remark. The above procedure is based on the work of (Kazakov 2009).
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Consequence-Based Calculus: Complexity

Theorem. The Horn-ALC classification calculus runs in exponential time in the
size of the input ontology O.

Remark. Note that this calculus produces inferences of the form

(1) C v B and (2) C v ∃R.D

where B is a concept name, R is a role name, and C and D are conjunctions of
concept names. Therefore, on input O, the calculus may produce at most

2|Concepts(O)| × |Concepts(O)| and 2 × 2|Concepts(O)| × |Roles(O)|

inferences of type (1) and (2), respectively.

Remark. Since classification over Horn-ALC is an ExpTime-complete problem,
the calculus is worst-case optimal.
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Implementing the Classification Calculus: Datalog

Because of the following result, we can not implement the Horn-ALC classification
calculus using a fixed Datalog rule set:

Theorem. The data complexity of fact entailment over Datalog is in P.

Assume that we can implement the Horn-ALC classification calculus with a fixed
Datalog rule set (as we did for the EL classification calculus). Then:

1. By the above theorem, we could solve Horn-ALC classification in polynomial time.

2. By (1), we could solve an ExpTime-hard problem in polynomial time.

3. By (2), P = ExpTime ( )

Remark. To implement the Horn-ALC classification calculus (or any other proce-
dure that solves Horn-ALC classification), we need a rule-based language with
ExpTime-hard data complexity!
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Implementing the Classification Calculus: Datalog(S)

We study Datalog(S), an extension of Datalog that can model exponential computations.

Example. Consider the following Datalog(S) rule set:

Person(x)→ LikesAll(x, ∅)

LikesAll(x, S) ∧ Likes(x, y)→ LikesAll(x, S ∪ {y})

LikesAll(x, S)→ AllLikeAll({x}, S)

AllLikeAll(S, T) ∧ LikesAll(x, T)→ AllLikeAll(X ∪ {x}, T)

AllLikeAll(S, S) ∧ alice ∈ S→ CliqueOfAlice(S)

Theorem. Checking fact entailment for Datalog(S) is ExpTime-complete for both
data and combined complexity.

See (Carral et al. 2019) for a complete proof of the above result.
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Implementing the Classification Calculus: Datalog(S)

Using a function to encode the axioms and entities in an input ontology as facts and a
fixed Datalog(S) rule set, we can implement the Horn-ALC classification calculus.

Example. For an ontology O, let Facts(O) be the fact set such that:

A v ⊥ 7→ nf:axiomv(cA, c⊥) ∃R.A v B 7→ nf:axiom∃v(cA, cR, cB)

> v B 7→ nf:axiomv(c>, cB) A v ∀R.B 7→ nf:axiomv∀(cA, cR, cB)

A v B 7→ nf:axiomv(cA, cB) A v ∃R.B 7→ nf:axiomv∃(cA, cR, cB)

A u E v B 7→ nf:axiomuv(cA, cE, cB) A ∈ Concepts(O) 7→ nf:concept(cE)

In the above; cA, cB, cE, c>, and c⊥ are fresh constants unique for A, B, E, >, and
⊥, respectively; and cR is a fresh constant unique R.
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Implementing the Classification Calculus: Datalog(S)

We translate the production rules in the Horn-ALC classification calculus (left) into
analogous Datalog(S) rules (right):

A v A
: A ∈ Concepts(O)

nf:concept(a)
→ SC({a}, a)

C v ∃R.D

D v D
: D ∈ D

Ex(C, r, D) ∧ d ∈ D
→ SC(D, d)

C v A
C v B

: > v B ∈ O
SC(C, a) ∧ nf:axiomv(c>, b)

→ SC(C, b)

C v A
C v B

: A v B ∈ O
SC(C, a) ∧ nf:axiomv(a, b)

→ SC(C, b)

C v A C v E
C v B

: A u E v B ∈ O
SC(C, a) ∧ SC(C, e) ∧ nf:axiomuv(a, e, b)

→ SC(C, b)
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Implementing the Classification Calculus: Datalog(S)

We translate the production rules in the Horn-ALC classification calculus (left) into
analogous Datalog(S) rules (right):

C v A
C v ∃R.B

: A v ∃R.B ∈ O
SC(C, a) ∧ nf:axiomv∃(a, r, b)

→ Ex(C, r, {b})

C v ∃R.D D v A
C v B

: ∃R.A v B ∈ O
Ex(C, r, D) ∧ SC(D, a) ∧ nf:axiom∃v(r, a, b)

→ SC(C, b)

C v ∃R.D D v ⊥

C v ⊥

Ex(C, r, D) ∧ SC(D, c⊥)
→ SC(C, c⊥)

C v ∃R.D C v A
C v ∃R.(D u B)

: A v ∀R.B ∈ O
Ex(C, r, D) ∧ SC(C, a) ∧ nf:axiomv∀(a, r, b)

→ Ex(C, r, D ∪ {b})
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Implementing the Classification Calculus: Datalog(S)

Definition. Let RHALC be the rule set containing all of the above rules:

nf:concept(a)→ SC({a}, a) SC(C, a) ∧ nf:axiomv(c>, b)→ SC(C, b)

Ex(C, r, D) ∧ d ∈ D→ SC(D, d) SC(C, a) ∧ nf:axiomv(a, b)→ SC(C, b)

SC(C, a) ∧ SC(C, e) ∧ nf:axiomuv(a, e, b)→ SC(C, b)

SC(C, a) ∧ nf:axiomv∃(a, r, b)→ Ex(C, r, {b})

Ex(C, r, D) ∧ SC(D, a) ∧ nf:axiom∃v(r, a, b)→ SC(C, b)

Ex(C, r, D) ∧ SC(D, c⊥)→ SC(C, c⊥)

Ex(C, r, D) ∧ SC(C, a) ∧ nf:axiomv∀(a, r, b)→ Ex(C, r, D ∪ {b})

Theorem. Consider a Horn-ALC ontology O and an axiom of the form A v B.
Then, O |= A v B if and only if RHALC ∪ Facts(O) |= SC(cA, cB).
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Implementing the Classification Calculus: ∃-Rules

Alas, VLog does not support Datalog(S) reasoning. But there maybe some other
rule-based language with ExpTime-hard data complexity that we can use!

The following result is a recent finding by (Krötzsch, Marx, and Rudolph 2019):

Theorem. The data complexity of fact entailment over rule sets that terminate
with respect to the restricted chase is ExpTime-hard.

Remark. Note that the data complexity of fact entailment over existential rule sets
that terminate with respect to the Skolem chase is in P.

(Carral et al. 2019) have proposed a translation from Datalog(S) into ∃-rules such that:

• The resulting rule sets terminate w.r.t. the Datalog-first restricted chase.

• Fact entailment is “preserved”.
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From Datalog(S) to Existential Rules

Person(x)→ LikesAll(x, ∅) LikesAll(x, S) ∧ Likes(x, y)→ LikesAll(x, S ∪ {y})
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Solving ExpTime-hard Problems

Step-by-step procedure to implement an ExpTime algorithm with VLog:

1. Encode input using a set of facts F .

2. Encode ExpTime algorithm using a fixed Datalog(S) rule set R.

3. Apply the translation by (Carral et al. 2019) to R to obtain a set R′ of existential
rules such that:

– The rule set R′ “preserves” fact entailment over R.
– The rule set R′ terminates w.r.t. the Datalog-first restricted chase.

4. Use VLog to compute all of the consequences of R′ ∪ F .

Remark. For a detailed explanation of the above procedure, see (Carral,
Dragoste, and Rudolph 2020).
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Evaluation: Classification

ID #Ax. #SC VLog Konclude

00040 223K 1051K 432s 5s

00048 142K 718K 387s 3s

00477 318K 162K 1s 3s

00533 159K 965K 132s 2s

00786 152K 2283K 549s 14s

Figure: Ontologies and results for classification showing: axiom count, number of SC
facts derived, and reasoning times for VLog and Konclude

Remark. Presented in (Carral et al. 2019).
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Evaluation: Class Retrieval

Definition. A Horn-ALC ontology is a set of Horn-ALC axioms:

A v ⊥ > v B A v B A u E v B

∃R.A v B A v ∀R.B A v ∃R.B A(a) R(a, b)

Where A, B, and E are concepts; R is a role; and a and b are individuals.

Definition. Class retrieval is the reasoning task of computing all axioms of the
form A(a) that are logically entailed by some input ontology O.

Remark. The Horn-ALC classification calculus can be extended with 3 rules (as
done by (Carral et al. 2019)) to solve class retrieval.
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Evaluation: Class Retrieval

sec
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Number of assertions
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sec
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103
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UOBM

Experimental results for class retrieval for VLog (pink/grey) and Konclude (black)

Remark. Presented in (Carral et al. 2019).
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Conclusions and Future Work

Remark. We can use VLog to solve (ExpTime-)hard problems!

Future work:

• Rulewerk Extension: translate Datalog(S) to existential rules

• VLog Extension: native support for Datalog(S)

• Implement existing calculi using our approach
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