Review: The Relational Calculus

What we have learned so far:

- There are many ways to describe databases
\leadsto named perspective, unnamed perspective, interpretations, ground fracts,
(hyper)graphs
- There are many ways to describe query languages:
\leadsto relational algebra, domain independent FO queries,
safe-range FO queries, actice domain FO queries,
Codd's tuple calculus
\leadsto either under named or under unnamed perspetive
All of these are largely equivalent: The Relational Calculus

Next question: How hard is it to answer such queries?

- Complexity classes often for decision problems (yes/no answer) \leadsto database queries return many results (no decision problem)
- The size of a query result can be very large
\leadsto it would not be fair to measure this as "complexity"
- In practice, database instances are much larger than queries \leadsto can we take this into account?

Query Answering as Decision Problem

We consider the following decision problems:

- Boolean query entailment: given a Boolean query q and a database instance I, does $I \vDash q$ hold?
- Query of tuple problem: given an n-ary query q, a database instance I and a tuple $\left\langle c_{1}, \ldots, c_{n}\right\rangle$, does $\left\langle c_{1}, \ldots, c_{n}\right\rangle \in M[q](I)$ hold?
- Query emptiness problem: given a query q and a database instance I, does $M[q](\mathcal{I}) \neq \emptyset$ hold?
\leadsto Computationally equivalent problems (exercise)

The Size of the Input

Combined Complexity

Input: Boolean query q and database instance I
Output: Does $I \vDash q$ hold?
\leadsto estimates complexity in terms of overall input size
\leadsto "2KB query/2TB database" = "2TB query/2KB database"

The Size of the Input

Combined Complexity
 Input: Boolean query q and database instance I
 Output: Does $I \vDash q$ hold?

\leadsto estimates complexity in terms of overall input size
\leadsto "2KB query/2TB database" = "2TB query/2KB database"
\leadsto study worst-case complexity of algorithms for fixed queries:

```
Data Complexity
Input: database instance I
Output: Does I\vDashq hold? (for fixed q)
```

The Size of the Input

```
Combined Complexity
Input: Boolean query q and database instance I
Output: Does I}\vDashq\mathrm{ hold?
```

\leadsto estimates complexity in terms of overall input size
\leadsto "2KB query/2TB database" = "2TB query/2KB database"
\leadsto study worst-case complexity of algorithms for fixed queries:

```
Data Complexity
Input: database instance I
Output: Does }I\vDashq\mathrm{ hold? (for fixed q)
```

\leadsto we can also fix the database and vary th

Query Complexity
Input: Boolean query q
Output: Does $I \vDash q$ hold? (for fixed I)

Query Complexity

Output: Does $I \vDash q$ hold? (for fixed I)

The Turing Machine (1)

Computation is usually modelled with Turing Machines (TMs
\leadsto "algorithm" = "something implemented on a TM"
A TM is an automaton with (unlimited) working memory

- It has a finite set of states Q
- Q includes a start state $q_{\text {start }}$ and an accept state $q_{\text {ace }}$
- The memory is a tape with numbered cells $0,1,2 \ldots$
- Each tape cell holds one symbol from the set of tape symbols I
- There is a special symbol u for empty tape cells
- The TM has a transition relation $\Delta \subseteq(Q \times \Gamma) \times(Q \times \Gamma \times\{l, r, s\}$
- Δ might be a partial function $(Q \times \Gamma) \rightarrow(Q \times \Gamma \times\{l, r, s\})$
\leadsto deterministic TM (DTM); otherwise nondeterministic TM
There are many different but equivalent ways of defining TMs.

Languages Accepted by TMs

The (nondeterministic) TM accepts an input $\sigma_{1} \cdots \sigma_{n} \in(\Gamma \backslash\{\cup\})^{*}$ if, when started on the tape $\sigma_{1} \cdots \sigma_{n \sqcup \sqcup} \cdots$
(1) the TM halts on every computation path and
(2) there is at least one computation path that halts in the accepting state $q_{\text {acc }} \in Q$.
accept:

reject:

reject (not halting):

Solving Computation Problems with TMs

A decision problem is a language \mathcal{L} of words over $\Sigma=\Gamma \backslash\{\sqcup\}$
\leadsto the set of all inputs for which the answer is "yes"
A TM decides a decision problem \mathcal{L} if it halts on all inputs and accepts exactly the words in \mathcal{L}
TMs take time (number of steps) and space (number of cells):

- Time $(f(n))$: Problems that can be decided by a DTM in $O(f(n))$ steps, where f is a function of the input length n
- Space $(f(n))$: Problems that can be decided by a DTM using $O(f(n))$ tape cells, where f is a function of the input length n
- NTime($f(n)$): Problems that can be decided by a TM in at most $O(f(n))$ steps on any of its computation paths
- NSpace($(f(n))$: Problems that can be decided by a TM using at most $O(f(n))$ tape cells on any of its computation paths

NP = Problems for which a possible solution can be verified in P:

- for every $w \in \mathcal{L}$, there is a certificate $c_{w} \in \Sigma^{*}$, such that
- the length of c_{w} is polynomial in the length of w, and
- the language $\left\{w \# \# c_{w} \mid w \in \mathcal{L}\right\}$ is in P

Equivalent to definition with nondeterministic TMs:

- \Rightarrow nondeterministically guess certificate; then run verifier DTM
- \Leftarrow use accepting polynomial run as certificate; verify TM steps

Some Common Complexity Classes

$$
\begin{aligned}
& \mathrm{P}=\mathrm{PTime}=\bigcup_{k \geq 1} \operatorname{Time}\left(n^{k}\right) \\
& \operatorname{Exp}=\operatorname{ExpTime}=\bigcup_{k \geq 1} \operatorname{Time}\left(2^{n^{k}}\right) \\
& 2 \operatorname{Exp}=2 \operatorname{ExpTime}=\bigcup_{k \geq 1} \operatorname{Time}\left(2^{2^{n^{k}}}\right) \\
& \text { ETime }=\bigcup_{k \geq 1} \operatorname{Time}\left(2^{n k}\right) \\
& \text { L }=\text { LogSpace }=\text { Space }(\log n) \\
& \text { NL }=\text { NLogSpace }=\text { NSpace }(\log n) \\
& \text { PSpace }=\bigcup_{k \geq 1} \operatorname{Space}\left(n^{k}\right) \\
& \text { ExpSpace }=\bigcup_{k \geq 1} \operatorname{Space}\left(2^{n^{k}}\right)
\end{aligned}
$$

Examples:

- Sudoku solvability (certificate: filled-out grid)
- Composite (non-prime) number (certificate: factorization)
- Prime number (certificate: see Wikipedia "Primality certificate")
- Propositional logic satisfiability (certificate: satisfying assignment)
- Graph colourability (certificate: coloured graph)

NP and coNP

Note: Definition of NP is not symmetric

- there does not seem to be any polynomial certificate for Sudoku unsolvability or logic unsatisfiability
- converse of an NP problem is coNP
- similar for NExpTime and N2ExpTime

Other classes are symmetric:

- Deterministic classes (coP = P etc.)
- Space classes mentioned above (esp. coNL = NL)

Reductions

Observation: some problems can be reduced to others
Example: 3-colouring can be reduced to propositional satisfiability

Reductions

Observation: some problems can be reduced to others
Example: 3-colouring can be reduced to propositional satisfiability

Encoding colours in propositions:

- r_{i} means "'vertex i is red"'
- g_{i} means "'vertex i is green"'
- b_{i} means "'vertex i is blue"'

Reductions

Observation: some problems can be reduced to others

Example: 3-colouring can be reduced to propositional satisfiability

Encoding colours in propositions:

- r_{i} means "'vertex i is red"'
- g_{i} means "'vertex i is green"'
- b_{i} means "'vertex i is blue"'

Colouring conditions on vertices: $\left(r_{1} \wedge \neg g_{1} \wedge \neg b_{1}\right) \vee\left(\neg r_{1} \wedge g_{1} \wedge \neg b_{1}\right) \vee\left(\neg r_{1} \wedge \neg g_{1} \wedge b_{1}\right)$ (and so on for all vertices)

Colouring conditions for edges:
$\neg\left(r_{1} \wedge r_{2}\right) \wedge \neg\left(g_{1} \wedge g_{2}\right) \wedge \neg\left(b_{1} \wedge b_{2}\right)$
(and so on for all edges)

David Carral, 16th Apr 2019

Reductions

Observation: some problems can be reduced to others
Example: 3-colouring can be reduced to propositional satisfiability

Encoding colours in propositions

- r_{i} means "'vertex i is red"'
- g_{i} means "'vertex i is green"'
- b_{i} means "'vertex i is blue"'

Colouring conditions on vertices: $\left(r_{1} \wedge \neg g_{1} \wedge \neg b_{1}\right) \vee\left(\neg r_{1} \wedge g_{1} \wedge \neg b_{1}\right) \vee\left(\neg r_{1} \wedge \neg g_{1} \wedge b_{1}\right)$ (and so on for all vertices)

Colouring conditions for edges:
$\neg\left(r_{1} \wedge r_{2}\right) \wedge \neg\left(g_{1} \wedge g_{2}\right) \wedge \neg\left(b_{1} \wedge b_{2}\right)$
(and so on for all edges)
Satisfying truth assignment \Leftrightarrow valid colouring

Reductions

Observation: some problems can be reduced to others
Example: 3-colouring can be reduced to propositional satisfiability

Encoding colours in propositions:

- r_{i} means "'vertex i is red"'
- g_{i} means "'vertex i is green"'
- b_{i} means "'vertex i is blue"'

Colouring conditions on vertices: $\left(r_{1} \wedge \neg g_{1} \wedge \neg b_{1}\right) \vee\left(\neg r_{1} \wedge g_{1} \wedge \neg b_{1}\right) \vee\left(\neg r_{1} \wedge \neg g_{1} \wedge b_{1}\right)$ (and so on for all vertices)

Colouring conditions for edges:
$\neg\left(r_{1} \wedge r_{2}\right) \wedge \neg\left(g_{1} \wedge g_{2}\right) \wedge \neg\left(b_{1} \wedge b_{2}\right)$
Satisfying truth assignment \Leftrightarrow valid colouring
David Carral, 16th Apr 2019

Defining Reductions

Definition 3.1: Consider languages $\mathcal{L}_{1}, \mathcal{L}_{2} \subseteq \Sigma^{*}$. A computable function $f: \Sigma^{*} \rightarrow$ Σ^{*} is a many-one reduction from \mathcal{L}_{1} to \mathcal{L}_{2} if:
$w \in \mathcal{L}_{1} \quad$ if and only if $f(w) \in \mathcal{L}_{2}$

[^0]The Structure of NP
Idea: polynomial many-one reductions define an order on problems

The Structure of NP
Idea: polynomial many-one reductions define an order on problems

The Structure of NP
Idea: polynomial many-one reductions define an order on problems

The Structure of NP
Idea: polynomial many-one reductions define an order on problems

The Structure of NP

Idea: polynomial many-one reductions define an order on problems

NP-Hardness und NP-Completeness

Theorem 3.2 (Cook 1971; Levin 1973): All problems in NP can be polynomi-

 ally many-one reduced to the propositional satisfiability problem (SAT)- NP has a maximal class that contains a practically relevant problem
- If SAT can be solved in P, all problems in NP can
- Karp discovered 21 further such problems shortly after (1972)
- Thousands such problems have been discovered since ..

NP-Hardness und NP-Completeness

```
Theorem 3.2 (Cook 1971; Levin 1973): All problems in NP can be polynomi-
ally many-one reduced to the propositional satisfiability problem (SAT)
```

- NP has a maximal class that contains a practically relevant problem
- If SAT can be solved in P, all problems in NP can
- Karp discovered 21 further such problems shortly after (1972)
- Thousands such problems have been discovered since .

Definition 3.3: A language is

- NP-hard if every language in NP is polynomially many-one reducible to it
- NP-complete if it is NP-hard and in NP

Comparing Complexity Classes

Is any NP-complete problem in P?

- If yes, then $P=N P$
- Nobody knows \leadsto biggest open problem in computer science
- Similar situations for many complexity classes

Comparing Complexity Classes

Is any NP-complete problem in P?

- If yes, then P = NP
- Nobody knows \leadsto biggest open problem in computer science
- Similar situations for many complexity classes

Some things that are known:

$$
\mathrm{L} \subseteq \mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSpace} \subseteq \text { ExpTime } \subseteq \text { NExpTime }
$$

- None of these is known to be stric
- But we know that $\mathrm{P} \subsetneq$ ExpTime and NL \subsetneq PSpace
- Moreover PSpace = NPSpace (by Savitch's Theorem)
(see TU Dresden course complexity theory for many more details)

Comparing Tractable Problems

Polynomial-time many-one reductions work well for (presumably) super-polynomial problems \leadsto what to use for P and below?

Such a TM needs a slightly different form of transitions:

- transition function input: state, input tape symbol, working tape symbol
- transition function output: state, working tape write symbol, input tape move working tape move, output tape symbol or \lrcorner to not write anything to the output

```
Definition 3.4: A LogSpace transducer is a deterministic TM with three tapes:
    - a read-only input tape
    - a read/write working tape of size }O(\operatorname{log}n
    - a write-only, write-once output tape
```


Definition 3.4: A LogSpace transducer is a deterministic TM with three tapes:

```
- a read-only input tape
- a read/write working tape of size \(O(\log n)\)
- a write-only, write-once output tape
```


Comparing Tractable Problems

Polynomial-time many-one reductions work well for (presumably) super-polynomial problems \leadsto what to use for P and below?
\qquad slide 20 of 1

The Power of LogSpace

LogSpace transducers can still do a few things:

- store a constant number of counters and increment/decrement the counters
- store a constant number of pointers to the input tape, and locate/read items that start at this address from the input tape
- access/process/compare items from the input tape bit by bit

Example 3.5: Adding and subtracting binary numbers, detecting palindromes,

 comparing lists, searching items in a list, sorting lists, can all be done in L
Joining Two Tables in LogSpace

Input: two relations R and S, represented as a list of tuples

- Use two pointers p_{R} and p_{S} pointing to tuples in R and S, respectively
- Outer loop: iterate p_{R} over all tuples of R
- Inner loop for each position of p_{R} : iterate p_{S} over all tuples of S
- For each combination of p_{R} and p_{S}, compare the tuples:
- Use another two loops that iterate over the columns of R and S
- Compare attribute names bit by bit
- For matching attribute names, compare the respective tuple values bit by bit
- If all joined columns agree, copy the relevant parts of tuples p_{R} and p_{S} to the output (bit by bit)

Output: $R \bowtie S$

David Carral, 16th Apr 2019

LogSpace reductions

LogSpace functions: The output of a LogSpace transducer is the contents of its output tape when it halts \sim a partial function $\Sigma^{*} \rightarrow \Sigma^{*}$

Note: the composition of two LogSpace functions is LogSpace (exercise)

```
Definition 3.6: A many-one reduction \(f\) from \(\mathcal{L}_{1}\) to \(\mathcal{L}_{2}\) is a LogSpace reduction if it is implemented by some LogSpace transducer.
```

\leadsto can be used to define hardness for classes P and NL

Joining Two Tables in LogSpace

Input: two relations R and S, represented as a list of tuples

- Use two pointers p_{R} and p_{S} pointing to tuples in R and S, respectively
- Outer loop: iterate p_{R} over all tuples of R
- Inner loop for each position of p_{R} : iterate p_{S} over all tuples of S
- For each combination of p_{R} and p_{S}, compare the tuples:
- Use another two loops that iterate over the columns of R and S
- Compare attribute names bit by bit
- For matching attribute names, compare the respective tuple values bit by bit
- If all joined columns agree, copy the relevant parts of tuples p_{R} and p_{S} to the output (bit by bit)

Output: $R \bowtie S$
\leadsto Fixed number of pointers and counters
(making this fully formal is still a bit of work; e.g., an additional counter is needed to move the input read head to the target of a pointer (seek))
David Carral, 6 6th Apr 2019 Database Theory ${ }^{\text {silde } 22 \text { of } 1}$

From L to NL

NL: Problems whose solution can be verified in L
Example: Reachability

- Input: a directed graph G and two nodes s and t of G
- Output: accept if there is a directed path from s to t in G

Algorithm sketch:

- Store the id of the current node and a counter for the path length
- Start with s as current node
- In each step, increment the counter and move from the current node to one of its direct successors (nondeterministic)
- When reaching t, accept
- When the step counter is larger than the total number of nodes, reject

Beyond Logarithmic Space

Propositional satisfiability can be solved in linear space:
\leadsto iterate over possible truth assignments and check each in turn
More generally: all problems in NP can be solved in PSpace
\leadsto try all conceivable polynomial certificates and verify each in turn
What is a "typical" (that is, hard) problem in PSpace?
\leadsto Simple two-player games, and other uses of alternating quantifiers

Example: Playing "Geography"

A children's game:

- Two players are taking turns naming cities
- Each city must start with the last letter of the previous.
- Repetitions are not allowed.
- The first player who cannot name a new city looses.

A mathematicians' game:

- Two players are marking nodes on a directed graph.
- Each node must be a successor of the previous one.
- Repetitions are not allowed
- The first player who cannot mark a new node looses

Example: Playing "Geography"

A children's game:

- Two players are taking turns naming cities.
- Each city must start with the last letter of the previous.
- Repetitions are not allowed
- The first player who cannot name a new city looses.

Example: Playing "Geography"

A children's game:

- Two players are taking turns naming cities.
- Each city must start with the last letter of the previous.
- Repetitions are not allowed
- The first player who cannot name a new city looses.

A mathematicians' game

- Two players are marking nodes on a directed graph.
- Each node must be a successor of the previous one.
- Repetitions are not allowed
- The first player who cannot mark a new node looses.

Question: given a certain graph and start node, can Player 1 enforce a win (i.e., does he have a winning strategy)?
\leadsto PSpace-complete problem
David Carral, 16 th Apr 2019

Example: Quantified Boolean Formulae (QBF)

We consider formulae of the following form:

$$
\bigcirc_{1} X_{1} \cdot \wp_{2} X_{2} \cdot \cdots \wp_{n} X_{n} \cdot \varphi\left[X_{1}, \ldots, X_{n}\right]
$$

where $\bigcirc_{i} \in\{\exists, \forall\}$ are quantifiers, X_{i} are propositional logic variables, and φ is a propositional logic formula with variables X_{1}, \ldots, X_{n} and constants T (true) and \perp (false)

Semantics:

- Propositional formulae without variables (only constants T and \perp) are evaluated as usual
- $\exists X_{1} \cdot \varphi\left[X_{1}\right]$ is true if either $\varphi\left[X_{1} / \mathrm{T}\right]$ or $\varphi\left[X_{1} / \perp\right]$ are
- $\forall X_{1} \cdot \varphi\left[X_{1}\right]$ is true if both $\varphi\left[X_{1} / \mathrm{T}\right]$ and $\varphi\left[X_{1} / \perp\right]$ are

A Note on Space and Time

How many different configurations does a TM have in space $(f(n))$?

$$
|Q| \cdot f(n) \cdot|\Gamma|^{f(n)}
$$

\leadsto No halting run can be longer than this

\leadsto A time-bounded TM can explore all configurations in time proportional to this

Example: Quantified Boolean Formulae (QBF)

We consider formulae of the following form:

$$
\bigcirc_{1} X_{1} \cdot \bigcirc_{2} X_{2} \cdots \bigcirc_{n} X_{n} \cdot \varphi\left[X_{1}, \ldots, X_{n}\right]
$$

where $\oslash_{i} \in\{\exists, \forall\}$ are quantifiers, X_{i} are propositional logic variables, and φ is a propositional logic formula with variables X_{1}, \ldots, X_{n} and constants T (true) and \perp (false)

Semantics:

- Propositional formulae without variables (only constants T and \perp) are evaluated as usual
- $\exists X_{1} \cdot \varphi\left[X_{1}\right]$ is true if either $\varphi\left[X_{1} / \top\right]$ or $\varphi\left[X_{1} / \perp\right]$ are
- $\forall X_{1} . \varphi\left[X_{1}\right]$ is true if both $\varphi\left[X_{1} / \mathrm{T}\right]$ and $\varphi\left[X_{1} / \perp\right]$ are

Question: Is a given QBF formula true?

\leadsto PSpace-complete problem

David Carral. 16th Apr 2019

A Note on Space and Time

How many different configurations does a TM have in space $(f(n))$?

$$
|Q| \cdot f(n) \cdot|\Gamma|^{f(n)}
$$

\leadsto No halting run can be longer than this
\leadsto A time-bounded TM can explore all configurations in time proportional to this
Applications:

- $\mathrm{L} \subseteq \mathrm{P}$
- PSpace \subseteq ExpTime

Summary and Outlook

The complexity of query languages can be measured in different ways
Relevant complexity classes are based on restricting space and time:

$$
\mathrm{L} \subseteq \mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSpace} \subseteq \text { ExpTime }
$$

Problems are compared using many-one reductions

\leadsto see TU Dresden course Complexity Theory for further details and deeper insights
Open questions:

- Now how hard is it to answer FO queries? (next lecture)
- We saw that joins are in LogSpace - is this tight?
- How can we study the expressiveness of query languages?

[^0]: \rightarrow we can solve problem \mathcal{L}_{1} by reducing it to problem \mathcal{L}_{2}
 \leadsto only useful if the reduction is much easier than solving \mathcal{L}_{1} directly
 \leadsto polynomial many-one reductions

