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About this Lecture

§ Mondays, 14:50 – 16:20, APB E005 
(until further notice: virtually only, check webpage)

§ content: algorithmic aspects of practically deployed deduction
systems
§ tableau and hypertableau systems for reasoning in description logics
§ reasoning algorithms in answer set programming

§ lecture and tutorial sessions (will be announced)

§ webpage with material, schedule, and announcements:
https://ddll.inf.tu-dresden.de/web/Deduction_Systems_%28SS2020%29
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Description Logics

Description Logics (DLs) one of today‘s main
KR paradigms
influenced standardization of Semantic Web 
languages, in particular the web ontology
language OWL

comprehensive tool support available

Fact++
Pellet

HermiT
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Description Logics

origin of DLs: semantic networks and frame-based systems
downside of the former: only intuitive semantics – diverging
interpretations
DLs provide a formal semantics on logical grounds
can be seen as decidable fragments of first-order logic (FOL), 
closely related to modal logics
significant portion of DL-related research devoted to clarifying the
computational effort of reasoning tasks in terms of their worst-case
complexity
despite high complexities, even for expressive DLs exist optimized
reasoning algorithms with good average case behaviour
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DL Building Blocks
individual names: markus, rhine, sun, excalibur

aka: constants (FOL), resources (RDF)
concept names: Female, Mammal, Country

aka: unary predicates (FOL), classes (RDFS)
role names: married, fatherOf, locatedIn

aka: binary predicates (FOL), properties (RDFS)
ma
rr
ie
d

ma
rr
ie
d

The set of all individual, concept
and role names is commonly

referred to as signature or
vocabulary.
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Constituents of a DL Knowledge Base

RBox R

TBox T

ABox A

information about roles and their
dependencies

information about concepts
and their taxonomic
dependencies

information about individuals and 
their concept and role
memberships
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Roles and Role Inclusion Axioms

A role can be
a role name r or
an inverted role name r- or
the universal role u.

A role inclusion axiom (RIA) is a statement of the form

r1 ± ... ± rn v r

where r1,...,rn,r are roles.
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Role Simplicity

Given a set of RIAs, roles are divided into simple and non-
simple roles.
Roughly, roles are non-simple if they may occur on the rhs
of a complex RIA.
More precisely,

for any RIA r1 ± r2 ± ... ± rn v r with n>1, r is non-simple,
for any RIA s v r with s non-simple, r is non-simple, and
all other roles are simple.

Example:
q ± p v r        r ± p v r        r v s p v r        q v s
non-simple: r, s simple: p, q
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For technical reasons, the set of all RIAs of a knowledge base is required
to be regular. 
regularity restriction:

there must be a strict linear order ≺ on the roles such that
every RIA has one of the following forms with si≺ r for all i=1,2,...,n:
r ± r v r r- v r s1 ± s2 ± ... ± sn v r
r ± s1 ± s2 ± ... ± sn v r s1 ± s2 ± ... ± sn ± r v r

Example 1: r ± s v r s ± s v s r ± s ± r v t
regular with order s ≺ r ≺ t

Example 2: r ± t ± s v t
not regular because form not admissible

Example 3: r ± s v s s ± r v r
not regular because no adequate order exists

The Regularity Condition on RIA sets
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RBox

A role disjointness statement has the form

Dis(s1,s2)

where s1 and s2 are simple roles.

An RBox consists of regular set of RIAs and a set of role
disjointness statements.

RBox R
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Concept Expressions

We define concept expressions inductively as follows:
every concept name is a concept expression,
> and ? are concept expressions,
for a1,...,an individual names, {a1,...,an} is a concept expression,
for C and D concept expressions, ¬C and C uD and C tD are
concept expressions,
for r a role and C a concept expression, 9r.C and 8r.C are concept
expressions,
for s a simple role, C a concept expression and n a natural number, 
9s.Self and ≤ns.C and ≥ns.C are concept expressions.
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TBox

A general concept inclusion (GCI) has the form

C vD
where C and D are concept expressions.

A TBox consists of a set of GCIs.

N.B.: Definition of TBox
presumes already known
RBox due to role simplicity
constraints.

TBox T
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ABox

An individual assertion can have any of the following forms
C (a), called concept assertion,
r (a,b), called role assertion,
¬r (a,b), called negated role assertion,
a ≈ b, called equality statement, or
a 6≈ b, called inequality statement. 

An ABox consists of a set of 
individual assertions.

ABox A
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An Example Knowledge Base
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!"#$%&%$#'()" 

!I  

aI CI 
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individual names NI role names NR class names NC 

...a... ...C... ...r... 

!I 

*)+',-.'%/ 
Interpretations

Semantics for DLs is defined in a model theoretic way, i.e. based on 
„abstract possible worlds“, called interpretations.
A DL interpretation I fixes a domain set ΔI and a mapping .I

associating a „semantic counterpart“ to every name.

N.B.: Different names can
be mapped to the same
semantic counterpart: no
unique name assumption.
N.B.: ΔI can be infinite.
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Example 14. Consider the following signature:

– NI = {sun, morning star, evening star, moon, home}.
– NC = {Planet, Star}.
– NR = {orbitsAround, shinesOn}.

We now define an interpretation I = (�I
, ·I) as follows: Let our domain �

I

contain the following elements: �, ', ⇡, &, $, ⇢, X, Y, Z, [, \. We define the interpre-
tation function by

sunI = �
morning starI = ⇡
evening starI = ⇡

moonI = $
homeI = &

PlanetI = {', ⇡, &, ⇢, X, Y, Z, [}
StarI = {�}

orbitsAroundI = {h',�i, h⇡,�i, h&,�i, h⇢,�i, hX,�i,
hY,�i, hZ,�i, h[,�i, h\,�i, h$, &i}

shinesOnI = {h�, 'i, h�, ⇡i, h�, &i, h�, $i, h�, ⇢i,
h�, Xi, h�, Yi, h�, Zi, h�, [i, h�, \i}

For a better understanding, it is often helpful to display an interpretation as a
directed graph with labeled nodes and arcs. Thereby, the nodes correspond to
the domain individuals �

I where a node � 2 �
I gets labeled by the individual

names assigned to it (i.e. those a 2 NI for which aI = �) as well as the concept
names A in the extensions of which � lies (i.e. � 2 AI). Moreover, whenever a pair
of two domain individuals �, �

0 2 �
I is in the extension of a role name r (that

is, if h�, �0i 2 rI), a directed arc is drawn from � to �
0 and labeled with r. The

graphical representation of the interpretation I defined above would then look like
this (where we abbreviate orbitsAround by o and shinesOn by s):

Planet⇡

o

⌫⌫

morning star
evening star home

Planet

&

o

↵↵

Planet

'

o

&&

$

o
dd

moon

\
o

11
Star

�
sun

s

�� s

↵↵

s

⇠⇠

s

&&

s

ee
s

WW

s

KK

s

??

s
qq

s
11
Planet

⇢
o

qq

[
Planet

o

??

X
Planet

o

ff

Z
Planet

o

KK

Y
Planet

o

XX

18

Example 14. Consider the following signature:

– NI = {sun, morning star, evening star, moon, home}.
– NC = {Planet, Star}.
– NR = {orbitsAround, shinesOn}.

We now define an interpretation I = (�I
, ·I) as follows: Let our domain �

I

contain the following elements: �, ', ⇡, &, $, ⇢, X, Y, Z, [, \. We define the interpre-
tation function by

sunI = �
morning starI = ⇡
evening starI = ⇡

moonI = $
homeI = &

PlanetI = {', ⇡, &, ⇢, X, Y, Z, [}
StarI = {�}

orbitsAroundI = {h',�i, h⇡,�i, h&,�i, h⇢,�i, hX,�i,
hY,�i, hZ,�i, h[,�i, h\,�i, h$, &i}

shinesOnI = {h�, 'i, h�, ⇡i, h�, &i, h�, $i, h�, ⇢i,
h�, Xi, h�, Yi, h�, Zi, h�, [i, h�, \i}

For a better understanding, it is often helpful to display an interpretation as a
directed graph with labeled nodes and arcs. Thereby, the nodes correspond to
the domain individuals �

I where a node � 2 �
I gets labeled by the individual

names assigned to it (i.e. those a 2 NI for which aI = �) as well as the concept
names A in the extensions of which � lies (i.e. � 2 AI). Moreover, whenever a pair
of two domain individuals �, �

0 2 �
I is in the extension of a role name r (that

is, if h�, �0i 2 rI), a directed arc is drawn from � to �
0 and labeled with r. The

graphical representation of the interpretation I defined above would then look like
this (where we abbreviate orbitsAround by o and shinesOn by s):

Planet⇡

o

⌫⌫

morning star
evening star home

Planet

&

o

↵↵

Planet

'

o

&&

$

o
dd

moon

\
o

11
Star

�
sun

s

�� s

↵↵

s

⇠⇠

s

&&

s

ee
s

WW

s

KK

s

??

s
qq

s
11
Planet

⇢
o

qq

[
Planet

o

??

X
Planet

o

ff

Z
Planet

o

KK

Y
Planet

o

XX

18

Interpretations: an Example
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vocabulary
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Remark 15. One should keep in mind that the domain �
I is not required to be

finite, but can also be an infinite set. It is also possible to consider only interpreta-
tions with finite domains, but then one explicitly talks about finite models or finite
satisfiability. There are logics where infinite interpretations are “dispensable” as
there are always finite ones that do the same job, these logics are said to have the
finite model property. SROIQ does not have this property. However, since DLs
are normally fragments of first-order logic, we can safely restrict our attention to
interpretations with countable domains (that is, domains having at most as many
individuals as there are natural numbers). This is a consequence of the downward
part of the Theorem of Löwenheim-Skolem, according to which every FOL theory
that has an arbitrary infinite model also has a countable one.

Example 16. As an example of an interpretation, this time with an infinite do-
main, consider the following vocabulary:

– NI = {zero}.
– NC = {Prime, Positive}.
– NR = {hasSuccessor, lessThan, multipleOf}.

Now, we define I as follows: let �
I = N = {0, 1, 2, . . .}, i.e., the set of all natural

numbers including zero. Furthermore, we let zeroI = 0, as well as PrimeI = {n |
n is a prime number} and PositiveI = {n | n > 0}. For the roles, we define

– hasSuccessorI = {hn, n + 1i | n 2 N}
– lessThanI = {hn, n

0i | n < n
0
, n, n

0 2 N}
– multipleOfI = {hn, n

0i | 9k.n = k · n0
, n, n

0
, k 2 N}

Note that this interpretation is well defined, although it has an infinite domain. For
space reasons, we refrain from providing the corresponding graph representation.

Remark 17. Note that the definition of an interpretation does not require that
di↵erent individual names denote di↵erent individuals, that is, it may happen
that for two individual names a and b, we have aI = bI . A stronger definition
of DL interpretations that excludes such cases is usually referred to as unique
name assumption (short: UNA). Note also, that not every domain element � 2 �

needs to be named, i.e., there may be � for which no individual name a with
aI = � exists. For obvious reasons, such individuals are usually referred to as
anonymous individuals.

3.2 Satisfaction of Axioms

By now, we have seen that an interpretation determines the semantic
counterparts of vocabulary elements. However, in order to finally deter-
mine the truth of complex axioms, it is necessary to also find the coun-
terparts of complex concepts and roles. We provide a definition according
to which the semantics of a complex language construct can be obtained
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interpretation of individual names

interpretation of concept names

Example 14. Consider the following signature:

– NI = {sun, morning star, evening star, moon, home}.
– NC = {Planet, Star}.
– NR = {orbitsAround, shinesOn}.

We now define an interpretation I = (�I
, ·I) as follows: Let our domain �

I

contain the following elements: �, ', ⇡, &, $, ⇢, X, Y, Z, [, \. We define the interpre-
tation function by
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For a better understanding, it is often helpful to display an interpretation as a
directed graph with labeled nodes and arcs. Thereby, the nodes correspond to
the domain individuals �
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interpretation of role names



Chair for Computational Logic
Institute for Artificial Intelligence

18 Sebastian Rudolph Foundations of Description Logics
Lecture: Deduction Systems

Example 14. Consider the following signature:

– NI = {sun, morning star, evening star, moon, home}.
– NC = {Planet, Star}.
– NR = {orbitsAround, shinesOn}.

We now define an interpretation I = (�I
, ·I) as follows: Let our domain �

I

contain the following elements: �, ', ⇡, &, $, ⇢, X, Y, Z, [, \. We define the interpre-
tation function by

sunI = �
morning starI = ⇡
evening starI = ⇡

moonI = $
homeI = &

PlanetI = {', ⇡, &, ⇢, X, Y, Z, [}
StarI = {�}

orbitsAroundI = {h',�i, h⇡,�i, h&,�i, h⇢,�i, hX,�i,
hY,�i, hZ,�i, h[,�i, h\,�i, h$, &i}

shinesOnI = {h�, 'i, h�, ⇡i, h�, &i, h�, $i, h�, ⇢i,
h�, Xi, h�, Yi, h�, Zi, h�, [i, h�, \i}

For a better understanding, it is often helpful to display an interpretation as a
directed graph with labeled nodes and arcs. Thereby, the nodes correspond to
the domain individuals �

I where a node � 2 �
I gets labeled by the individual

names assigned to it (i.e. those a 2 NI for which aI = �) as well as the concept
names A in the extensions of which � lies (i.e. � 2 AI). Moreover, whenever a pair
of two domain individuals �, �

0 2 �
I is in the extension of a role name r (that

is, if h�, �0i 2 rI), a directed arc is drawn from � to �
0 and labeled with r. The

graphical representation of the interpretation I defined above would then look like
this (where we abbreviate orbitsAround by o and shinesOn by s):
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Interpretations: an Example

Example 14. Consider the following signature:

– NI = {sun, morning star, evening star, moon, home}.
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vocabulary

domain
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Remark 15. One should keep in mind that the domain �
I is not required to be

finite, but can also be an infinite set. It is also possible to consider only interpreta-
tions with finite domains, but then one explicitly talks about finite models or finite
satisfiability. There are logics where infinite interpretations are “dispensable” as
there are always finite ones that do the same job, these logics are said to have the
finite model property. SROIQ does not have this property. However, since DLs
are normally fragments of first-order logic, we can safely restrict our attention to
interpretations with countable domains (that is, domains having at most as many
individuals as there are natural numbers). This is a consequence of the downward
part of the Theorem of Löwenheim-Skolem, according to which every FOL theory
that has an arbitrary infinite model also has a countable one.

Example 16. As an example of an interpretation, this time with an infinite do-
main, consider the following vocabulary:

– NI = {zero}.
– NC = {Prime, Positive}.
– NR = {hasSuccessor, lessThan, multipleOf}.

Now, we define I as follows: let �
I = N = {0, 1, 2, . . .}, i.e., the set of all natural

numbers including zero. Furthermore, we let zeroI = 0, as well as PrimeI = {n |
n is a prime number} and PositiveI = {n | n > 0}. For the roles, we define

– hasSuccessorI = {hn, n + 1i | n 2 N}
– lessThanI = {hn, n

0i | n < n
0
, n, n

0 2 N}
– multipleOfI = {hn, n

0i | 9k.n = k · n0
, n, n

0
, k 2 N}

Note that this interpretation is well defined, although it has an infinite domain. For
space reasons, we refrain from providing the corresponding graph representation.

Remark 17. Note that the definition of an interpretation does not require that
di↵erent individual names denote di↵erent individuals, that is, it may happen
that for two individual names a and b, we have aI = bI . A stronger definition
of DL interpretations that excludes such cases is usually referred to as unique
name assumption (short: UNA). Note also, that not every domain element � 2 �

needs to be named, i.e., there may be � for which no individual name a with
aI = � exists. For obvious reasons, such individuals are usually referred to as
anonymous individuals.

3.2 Satisfaction of Axioms

By now, we have seen that an interpretation determines the semantic
counterparts of vocabulary elements. However, in order to finally deter-
mine the truth of complex axioms, it is necessary to also find the coun-
terparts of complex concepts and roles. We provide a definition according
to which the semantics of a complex language construct can be obtained
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interpretation of individual names

interpretation of concept names

Example 14. Consider the following signature:

– NI = {sun, morning star, evening star, moon, home}.
– NC = {Planet, Star}.
– NR = {orbitsAround, shinesOn}.

We now define an interpretation I = (�I
, ·I) as follows: Let our domain �

I

contain the following elements: �, ', ⇡, &, $, ⇢, X, Y, Z, [, \. We define the interpre-
tation function by

sunI = �
morning starI = ⇡
evening starI = ⇡

moonI = $
homeI = &

PlanetI = {', ⇡, &, ⇢, X, Y, Z, [}
StarI = {�}

orbitsAroundI = {h',�i, h⇡,�i, h&,�i, h⇢,�i, hX,�i,
hY,�i, hZ,�i, h[,�i, h\,�i, h$, &i}

shinesOnI = {h�, 'i, h�, ⇡i, h�, &i, h�, $i, h�, ⇢i,
h�, Xi, h�, Yi, h�, Zi, h�, [i, h�, \i}

For a better understanding, it is often helpful to display an interpretation as a
directed graph with labeled nodes and arcs. Thereby, the nodes correspond to
the domain individuals �

I where a node � 2 �
I gets labeled by the individual

names assigned to it (i.e. those a 2 NI for which aI = �) as well as the concept
names A in the extensions of which � lies (i.e. � 2 AI). Moreover, whenever a pair
of two domain individuals �, �

0 2 �
I is in the extension of a role name r (that

is, if h�, �0i 2 rI), a directed arc is drawn from � to �
0 and labeled with r. The

graphical representation of the interpretation I defined above would then look like
this (where we abbreviate orbitsAround by o and shinesOn by s):
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interpretation of role names
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Interpretation of Concept Expressions

Given an interpretation, we can determine the semantic
counterparts for concept expressions along the following
inductive definitions: 

>I = ∆I
?I = {}

{a1,...,an}I = {a1
I ,...,an

I}
(¬C )I = ∆I \ C I

(C uD )I = C I \ D I

(C tD )I = C I [ D I 

( 9r.C )I = { x | 9y.(x,y)2r I ^ y2C I }
( 8r.C )I = { x | 8y.(x,y)2r I → y2C I }

( 9s.Self )I = { x | (x,x)2s I }
(≥ns.C )I = { x | #{ y | (x,y)2s I ^ y2C I } ≥ n }
(≤ns.C )I = { x | #{ y | (x,y)2s I ^ y2C I } ≤ n }
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Semantics of Axioms

Given a way to determine a semantic counterpart for all 
expressions, we now define the criteria for checking if an 
interpretation I satisfies an axiom α (written: I ⊨ α).

I ⊨ r1 ± ... ± rn v r if r1
I ±... ± rn

I µ rI

I ⊨ Dis(s1,s2) if s1
I \ s2

I = {}
I ⊨ C v D if C I µ D I

I ⊨ C (a) if aI 2 C I

I ⊨ r (a,b) if (aI,bI) 2 r I

I ⊨ ¬r (a,b) if (aI,bI) 62 r I

I ⊨ a ≈ b if aI = bI

I ⊨ a 6≈ b if aI 6= bI
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consistent if it has a model, and it is called unsatisfiable or inconsistent
or contradictory otherwise.

Example 21. The following knowledge base is inconsistent.

Reindeeru9hasNose.Red(rudolph)
8worksFor�.(¬ReindeertFlies)(santa)

worksFor(rudolph, santa)

santa 6⇡ batman

Reindeer v Mammal

MammaluFlies v Bat

Bat v 8worksFor.{batman}

Remark 22. Note that, for determining whether a knowledge base satisfies an
interpretation I, only the value of ·I for those individual, concept, and role names
are relevant, that occur in KB. All vocabulary elements not contained in NI(KB)[
NC(KB)[NR(KB) can be mapped arbitrarily and do not influence the semantics.

3.3 Logical Consequence

So far, we have defined a “modelhood” relation, which for a given inter-
pretation and a given set of axioms determines whether the axiom is true
with respect to the interpretation. Remember that the actual purpose of
a formal semantics is to provide a consequence relation, which tells us
whether an axiom is a logical consequence of a knowledge base. This con-
sequence relation is commonly also denoted by |= and defined as follows:
an axiom ↵ is a consequence of (also entailed by) a knowledge base KB
(written: KB |= ↵) if every model of KB is also a model of ↵, i.e. for every
I with I |= KB also holds I |= ↵.

Remark 23. As a straightforward consequence of this model-theoretic definition
of consequences we obtain the fact that an inconsistent knowledge base entails any
axiom, since the considered set of models which have to satisfy the axiom is empty
and hence the condition is vacuously true. This e↵ect, well-known in many logics,
is called the principle of explosion according to which “anything follows from a
contradiction.”

Exercise 3. Decide whether the following propositions about the knowledge base
KB from Example 12 are true and give evidence:

(a) KB is satisfiable,
(b) KB |= Alive(schrödinger),
(c) KB |= Dead u Alive v ?,
(d) KB |= Alive v Healthy.

24

A KB is satisfiable (also: consistent) if there exists an 
interpretation that satisfies all its axioms (a model of the
KB). Otherwise it is unsatisfiable (also: inconsistent or
contradictory).

Is the following KB satisfiable?

(Un)Satisfiability of Knowledge Bases
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Entailment of Axioms

A KB entails an axiom α if the axiom α is satisfied by every
model of the knowledge base.

!"#$%&%$#'()" 

!I  

aI CI 

rI 

individual names NI role names NR class names NC 

...a... ...C... ...r... 

!I 
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Models of the KB

Interpretations satisfying α
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Decidability of DLs

DLs are decidable, i.e. there exists an 
algorithm that
takes a knowledge base and an 
axiom as input,
terminates after finite time,
provides as output the correct
answer to the question whether
the KB entails the axiom.

YES/NO

KB α
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Naming Scheme for Expressive DLs

S subsumes ALC
SR subsumes S, SH, ALC and ALCH
N makes F obsolete
Q makes N (and F ) obsolete

We treat here the very expressive description logic SROIQ
which subsumes all the other ones in this scheme.



Chair for Computational Logic
Institute for Artificial Intelligence

25 Sebastian Rudolph Foundations of Description Logics
Lecture: Deduction Systems

DL Syntax – Overview
Ontology (=Knowledge Base)

Atomic A, B

Not ¬C

And C u D

Or C t D

Exists 9 r.C

For all 8 r.C

At least ≥n r.C (≥n r)

At most ≤n r.C (≤n r)

Closed 
class

{i1,…,in}

Self 9 r.Self

Concepts

Roles

Atomic r

Inverse r-

A
L

C
Q

 (
N

)
I

Concept Axioms (TBox)

Subclass C v D

Equivalent C ´ D

Role Axioms (RBox)

Assertional Axioms (ABox)

Instance C(a)

Role r(a,b)

Same a ≈ b

Different a 6≈ b

H

O

S

Subrole r v s

Transitivity Trans(r)

Role Chain r o r’ v s

R. Disjointness Disj(s,r)

S = ALC + Transitivity OWL DL = SROIQ(D) (D: concrete domain)

R

SR
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Concept Equivalences

Two concept expressions C and D are called equivalent
(written: C ´D), if for every interpretation I holds
C I   =D I.
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Negation Normal Form

Iterated rewriting of concept expressions along the mentioned
equivalences allows to convert every concept expression into
one with negation only in front of concept names, nominal 
concepts and Self-restrictions.
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Axiom and KB Equivalences

Lloyd-Topor equivalences

turning GCIs into universally valid concept descriptions

internalisation of ABox into TBox
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Open vs. Closed World Assumption
CWA: Closed World Assumption
The knowledge base contains all information, non-derivable axioms are
assumed to be false.
OWA: Open World Assumption
The knowledge base may be incomplete. The truth of non-derivable
axioms is simply unknown.
With DLs, the OWA is applied (as for FOL in general), certain closed-
world information can be axiomatized via number restrictions and 
nominals

? ² 8child.Man(Bill)
child(bill,bob)
Man(bob) don’t know yes

DL answers Prolog

Are all children of 
Bill male?

No idea, since we do 
not know all children 
of Bill.

If we assume that we 
know everything about 
Bill, then all of his 
children are male.

·1child.>(Bill) ? ² 8child.Man(Bill) yes Now we know everything 
about Bill’s children.
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Standard DL Inference Problems

Given a knowledge base KB, we might want to know:
whether the KB is consistent,
whether the KB entails a certain axiom

( such as Alive(schrödinger) ), 
whether a given concept is (un)satisfiable

( such as Dead u Alive ),
all the individuals known to be instances a certain concept
the subsumption hierarchy of all atomic concepts
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Knowledge Base Consistency

basic inferencing task
directly needed in the process of KB engineering in order to 
detect severe modelling errors
other tasks can be reduced to checking KB (in)consistency
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Entailment Checking

used in the KB modelling process to check, whether the
specified knowledge has the intended consequences
used for querying the KB if certain propositions are
necessarily true
can be reduced to checking KB inconsistency (along the idea
of indirect proof) by

negating the axiom the entailment of which is to be checked
adding the negated axiom to the knowledge base
checking for inconsistency of the KB

if axiom cannot be directly negated within the logic, use
fresh individual names as Skolem constants, e.g., C v D
“negates“ to C u ¬D(c)
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Concept satisfiability

A concept expression C is called satisfiable with respect to a 
knowledge base, if there is a model of this KB where C I is
not empty.
Unsatisfiable atomic concepts normally indicate modeling
errors in the KB.
Checking concept satisfiability can be reduced to checking
(non-)entailment: C is satisfiable wrt. a KB if the KB does
not entail the axiom C v?.
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Instance Retrieval

Asking for all the named individuals known to be in a 
certain concept (role) is a typical querying or retrieval task.
It can be reduced to checking entailment of as many
individual assertions as there are named individuals in the
knowledge base.
Depending on the used system and inferencing algorithm, 
this can be done in a much more efficient way (e.g. by
translation into a database query). 
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Classification

Classification of a knowledge base aims at determining for
any two concept names A, B, whether A v B is a 
consequence of the KB.
This is useful at KB design time for checking the inferred
concept hierarchy. Also, computing this hierarchy once and 
storing it can speed up further queries.
Classification can be reduced to checking entailment of 
GCIs.
While this requires quadratically many checks, one can often
do much better in practice by applying optimizations and 
exploiting that subsumption is a preorder.


