

Artificial Intelligence, Computational Logic

PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE

Lecture 2 Constraint Satisfaction Problems

Sarah Gaggl

Agenda

- Introduction
- Constraint Satisfaction Problems (CSP)
- Uninformed Search versus Informed Search (Best First Search, A* Search, Heuristics)
- 4 Local Search, Stochastic Hill Climbing, Simulated Annealing
- Tabu Search
- 6 Answer-set Programming (ASP)
- Evolutionary Algorithms/ Genetic Algorithms
- 8 Structural Decomposition Techniques (Tree/Hypertree Decompositions)

Constraint satisfaction problems (CSPs)

- Standard search problem:
 - state is a "black box"—any old data structure that supports goal test, eval, successor
- CSP:
 - state is defined by variables X_i with values from domain D_i
 - goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Simple example of a formal representation language
- Allows useful general-purpose algorithms with more power than standard search algorithms
- Main idea: eliminate large portions of search space all at once by identifying variable/value combinations that violate constraints

Defining CSPs

Constraint Satisfaction Problem (CSP)

A CSP is defined as a tuple $C = \langle X, D, C \rangle$, with

- X a set of variables, $\{X_1, \ldots, X_n\}$.
- D a set of domains, $\{D_1, \ldots, D_n\}$, for each variable.
- C a set of constraints that specify allowable combinations of values.
- Each domain D_i consists of a set of allowable values, {ν₁,...,ν_k} for variable X_i.
- Each constraint C_i consists of a pair (scope, rel), where scope is a tuple of variables in the constraint, and rel defines the possible values.
- A relation can be
 - an explicit list of all tuples of values satisfying the constraint, or
 - an abstract relation.

Defining CSPs ctd.

If X_1 and X_2 both have domain $\{A, B\}$, the constraint saying they have different values can be written as:

- $\langle (X_1, X_2), [(A, B), (B, A)] \rangle$, or
- $\langle (X_1, X_2), X_1 \neq X_2 \rangle$.

To solve a CSP, we define a state space and the notion of a solution.

- Each state in a CSP is defined by an assignment of values to some (or all variables), {X_i = v_i, X_i = v_i,...}.
- An assignment is consistent if it does not violate any constraints.
- A complete assignment has a value assigned to each variable.
- A solution is a consistent, complete assignment.
- A partial assignment is one that assigns values to only some of the variables.

Example: Map-Coloring


```
Variables WA, NT, Q, NSW, V, SA, T
```

Domains
$$D_i = \{red, green, blue\}$$

Constraints: adjacent regions must have different colors e.g., $\mathit{W\!A} \neq \mathit{NT}$ (if the

language allows this), or

 $(\mathit{WA},\mathit{NT}) \in \{(\mathit{red},\mathit{green}),(\mathit{red},\mathit{blue}),(\mathit{green},\mathit{red}),(\mathit{green},\mathit{blue}),\ldots\}$

Example: Map-Coloring ctd.

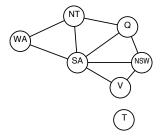


Solutions are assignments satisfying all constraints, e.g.,

 $\{WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green\}$

Constraint Graph

Binary CSP: each constraint relates at most two variables Constraint graph: nodes are variables, arcs show constraints



General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent sub-problem!

Varieties of CSPs

Discrete variables

- finite domains; size $d \implies O(d^n)$ complete assignments
 - e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)
- infinite domains (integers, strings, etc.)
 - e.g., job scheduling, variables are start/end days for each job
 - need a constraint language, e.g., $StartJob_1 + 5 \le StartJob_3$
 - linear constraints solvable, nonlinear undecidable

Continuous variables

- e.g., start/end times for Hubble Telescope observations
- linear constraints solvable in poly time by LP methods

Varieties of constraints

Unary constraints involve a single variable,

e.g., $SA \neq green$

Binary constraints involve pairs of variables,

e.g., $SA \neq WA$

Higher-order constraints involve 3 or more variables,

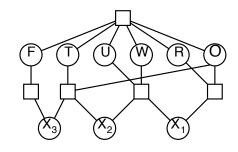
e.g., cryptarithmetic column constraints

Preferences (soft constraints), e.g., red is better than green

often representable by a cost for each variable assignment

→ constrained optimization problems

Example: Cryptarithmetic



Variables: $F T U W R O X_1 X_2 X_3$ Domains: $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Constraints all diff(F, T, U, W, R, O), $O + O = R + 10 \cdot X_1$, etc.

Real-world CSPs

- Assignment problems
 - e.g., who teaches what class
- Timetabling problems
 - e.g., which class is offered when and where?
- Hardware configuration
- Spreadsheets
- Transportation scheduling
- Factory scheduling
- Floorplanning

Notice that many real-world problems involve real-valued variables

Constraint Propagation: Inference in CSPs

In regular state-space search, an algorithm can only perform search. In CSPs there is a choice

- an algorithm can search (choose a new variable assignment form several possibilities), or
- do a specific type of inference called constraint propagation:
 - using the constraints to reduce the number of legal values for a variable
 - this can reduce the legal values for another variable.
 - and so on.

Constraint propagation may be

- intertwined with search, or
- done as a pre-processing step (could solve the whole problem; no search is required).

Constraint Propagation

The key idea is local consistency.

- Treat each variable as a node in a graph.
- Each binary constraint represents an arc.
- Enforcing local consistency in each part of the graph eliminates inconsistent values throughout the graph.

Different types of local consistency:

- Node consistency
- Arc consistency
- Path consistency

Node Consistency

Node consistency

A variable X is node-consistent if all values in the domain of X satisfy the unary constraints of X. A CSP is node-consistent if every variable is node consistent.

Example

South Australia dislikes green.

- Variable SA starts with {red, green, blue},
- make it node consistent by eliminating green,
- reduced domain of SA is {red, blue}.

Arc Consistency

Arc consistency

A variable is arc-consistent if every value in its domain satisfies the variable's binary constraints. X_i is arc-consistent wrt. X_j if for every value in D_i there is some value in D_j that satisfies the binary constraint on the arc (X_i, X_j) . A CSP is arc-consistent if every variable is arc-consistent with every other variable.

Example

Consider the constraint $Y = X^2$, where the domain of both X and Y is the set of digits. We can write the constraint explicitly as

$$\langle (X,Y), \{(0,0), (1,1), (2,4), (3,9)\} \rangle.$$

To make X arc-consistent wrt. Y, we reduce X's domain to $\{0,1,2,3\}$. We also reduce Y's domain to $\{0,1,4,9\}$ and the CSP is arc-consistent.

Path Consistency

- Arc consistency can reduce domains of variables and sometimes find a solution (or failure).
- But for other networks, arc consistency fails to make enough inferences.
- Example of map coloring of Australia with two colors.

Path consistency

A two-variable set $\{X_i, X_j\}$ is path-consistent wrt. a third variable X_m if, for every assignment $\{X_i = a, X_j = b\}$ consistent with constraints on $\{X_i, X_j\}$, there is an assignment to X_m that satisfies the constraints on $\{X_i, X_m\}$ and $\{X_m, X_i\}$.

Example: Path Consistency

Consider two-coloring of Australia. We make $\{WA, SA\}$ path consistent wrt. NT.

- Start by enumerating the consistent assignments to the set.
 - $\{WA = red, SA = blue\}$ $- \{WA = blue, SA = red\}$
- With both assignments NT can be neither red nor blue.
- Eliminate both assignments.
- Thus, there is no solution to the problem.

Standard search formulation (incremental)

- Let's start with the straightforward, dumb approach, then fix it
- States are defined by the values assigned so far

Initial state: the empty assignment, {}

Successor function: assign a value to an unassigned variable that does not conflict with current assignment.

⇒ fail if no legal assignments (not fixable!)

Goal test: the current assignment is complete

1 This is the same for all CSPs! ©

Every solution appears at depth n with n variables

⇒ use depth-first search

3 Path is irrelevant, so can also use complete-state formulation

 $b = (n - \ell)d$ at depth ℓ , hence $n!d^n$ leaves!!!! \odot

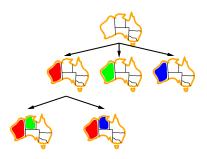
Backtracking search

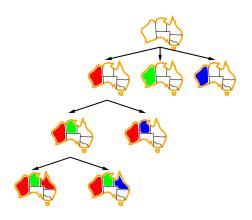
- Variable assignments are commutative, i.e.,
 [WA = red then NT = green] same as [NT = green then WA = red]
- Only need to consider assignments to a single variable at each node
 b = d and there are dⁿ leaves
- Depth-first search for CSPs with single-variable assignments is called backtracking search
- Backtracking search is the basic uninformed algorithm for CSPs
- Can solve *n*-queens for $n \approx 25$

Backtracking search

```
function Backtracking-Search(csp) returns solution/failure
return Recursive-Backtracking({ } , csp)

function Recursive-Backtracking(assignment, csp) returns soln/failure
if assignment is complete then return assignment
var ← Select-Unassigned-Variable(Variables[csp], assignment, csp)
for each value in Order-Domain-Values(var, assignment, csp) do
    if value is consistent with assignment given Constraints[csp] then
    add (var = value) to assignment
    result ← Recursive-Backtracking(assignment, csp)
    if result ≠ failure then return result
    remove (var = value) from assignment
return failure
```



Improving backtracking efficiency

General-purpose methods can give huge gains in speed:

- Which variable should be assigned next?
- 2 In what order should its values be tried?
- 3 Can we detect inevitable failure early?
- Can we take advantage of problem structure?

Minimum remaining values

Minimum remaining values (MRV):

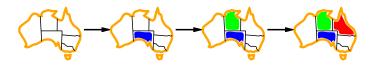
choose the variable with the fewest legal values

Degree heuristic

Tie-breaker among MRV variables

Degree heuristic:

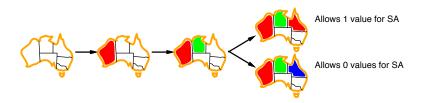
• choose the variable with the most constraints on remaining variables



Least constraining value

Given a variable, choose the least constraining value:

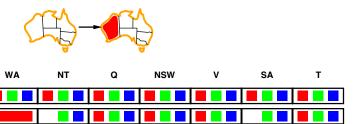
• the one that rules out the fewest values in the remaining variables



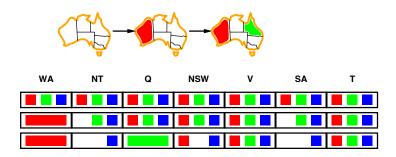
Combining these heuristics makes 1000 queens feasible

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

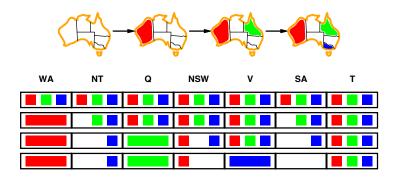
- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values



- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

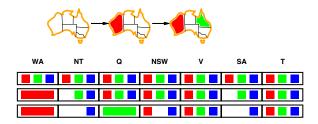


- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values



Constraint propagation

Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:



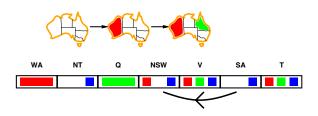
- NT and SA cannot both be blue!
- Constraint propagation repeatedly enforces constraints locally

Arc consistency

Simplest form of propagation makes each arc consistent

$X \rightarrow Y$ is consistent iff

for **every** value *x* of *X* there is **some** allowed *y*

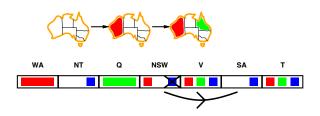


Arc consistency

Simplest form of propagation makes each arc consistent

$X \rightarrow Y$ is consistent iff

for **every** value *x* of *X* there is **some** allowed *y*

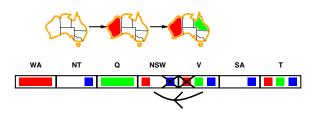


Arc consistency

Simplest form of propagation makes each arc consistent

$X \rightarrow Y$ is consistent iff

for **every** value *x* of *X* there is **some** allowed *y*



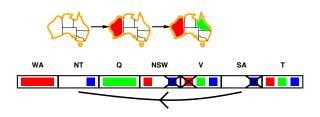
• If X loses a value, neighbors of X need to be rechecked

Arc consistency

Simplest form of propagation makes each arc consistent

$X \rightarrow Y$ is consistent iff

for **every** value x of X there is **some** allowed y



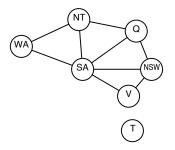
- If *X* loses a value, neighbors of *X* need to be rechecked
- Arc consistency detects failure earlier than forward checking
- Can be run as a pre-processor or after each assignment

Arc consistency algorithm

```
\begin{array}{l} \textbf{function AC-3}(\ csp) \ \textbf{returns} \ \textbf{the CSP}, \ \textbf{possibly} \ \textbf{with reduced domains} \\ \textbf{inputs:} \ csp, \ \textbf{a} \ \textbf{binary CSP} \ \textbf{with variables} \ \{X_1, \ X_2, \ \dots, \ X_n\} \\ \textbf{local variables:} \ \textbf{queue}, \ \textbf{a} \ \textbf{queue} \ \textbf{of arcs, initially all the arcs in csp} \\ \\ \textbf{while queue} \ \textbf{is not empty do} \\ (X_i, \ X_j) \leftarrow \text{Remove-Inconsistent-Values}(X_i, \ X_j) \ \textbf{then} \\ \textbf{for each } X_i \ \textbf{in Neighbors}[X_i] \ \textbf{do} \\ \textbf{add } (X_k, \ X_i) \ \textbf{to queue} \\ \\ \hline \textbf{function Remove-Inconsistent-Values}(X_i, \ X_j) \ \textbf{returns} \ \textbf{true} \ \textbf{iff succeeds} \\ \textbf{removed} \leftarrow \text{false} \\ \textbf{for each } x \ \textbf{in Domain}[X_i] \ \textbf{do} \\ \textbf{if no value } y \ \textbf{in Domain}[X_j] \ \textbf{allows} \ (\textbf{x}, \textbf{y}) \ \textbf{to satisfy the constraint} \ X_i \ \leftrightarrow \ X_j \\ \textbf{then delete } x \ \textbf{from Domain}[X_i]; \ \textbf{removed} \leftarrow \textbf{true} \\ \textbf{return removed} \\ \hline \end{array}
```

 $O(n^2d^3)$, can be reduced to $O(n^2d^2)$ (but detecting **all** is NP-hard)

Problem structure

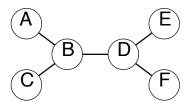


- Tasmania and mainland are independent sub-problems
- Identifiable as connected components of constraint graph

Problem structure ctd.

- Suppose each subproblem has *c* variables out of *n* total
- Worst-case solution cost is $n/c \cdot d^c$, **linear** in n
- E.g., n = 80, d = 2, c = 20
 - -2^{80} = 4 billion years at 10 million nodes/sec
 - $-4 \cdot 2^{20} = 0.4$ seconds at 10 million nodes/sec

Tree-structured CSPs



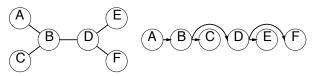
Theorem

If the constraint graph has no loops, the CSP can be solved in $O(n d^2)$ time.

- Compare to general CSPs, where worst-case time is $O(d^n)$
- This property also applies to logical and probabilistic reasoning: an important example of the relation between syntactic restrictions and the complexity of reasoning.

Algorithm for tree-structured CSPs

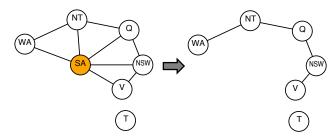
Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering



- 2 For j from n down to 2, apply RemoveInconsistent($Parent(X_i), X_j$)
- 3 For j from 1 to n, assign X_j consistently with $Parent(X_j)$

Nearly tree-structured CSPs

• Conditioning: instantiate a variable, prune its neighbors' domains



- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size $c \implies$ runtime $O(d^c \cdot (n-c)d^2)$, very fast for small c

Iterative algorithms for CSPs

- Hill-climbing, simulated annealing typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
 - allow states with unsatisfied constraints
 - operators reassign variable values
- Variable selection: randomly select any conflicted variable
- Value selection by min-conflicts heuristic:
 - choose value that violates the fewest constraints
 - i.e., hillclimb with h(n) = total number of violated constraints

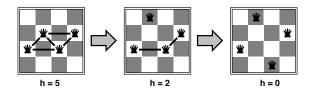
Example: 4-Queens

States: 4 queens in 4 columns ($4^4 = 256$ states)

Operators: move queen in column

Goal test: no attacks

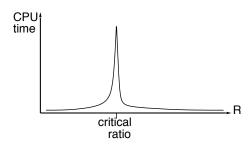
Evaluation: h(n) = number of attacks



Performance of min-conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

$$R = \frac{\text{number of constraints}}{\text{number of variables}}$$



Summary

- CSPs are a special kind of problem:
 - states defined by values of a fixed set of variables
 - goal test defined by constraints on variable values
- Backtracking = depth-first search with one variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- The CSP representation allows analysis of problem structure
- Tree-structured CSPs can be solved in linear time
- Iterative min-conflicts is usually effective in practice

References

Stuart J. Russell and Peter Norvig.

Artificial Intelligence - A Modern Approach (3. edition). Pearson Education, 2010.