

PRACTICAL USES OF EXISTENTIAL RULES IN KNOWLEDGE REPRESENTATION

Part 3: Implementing a Calculus for Horn-ALC using Existential Rules

<u>David Carral</u>, ¹ Markus Krötzsch, ¹ and Jacopo Urbani²

- 1. TU Dresden
- 2. VU University Amsterdam

Special thanks to Irina Dragoste, Ceriel Jacobs, and Maximilian Marx for their invaluable contributions to the software used in this tutorial

ECAI, September 4, 2020

The Description Logic Horn-ALC: Syntax

Definition. A Horn- \mathcal{ALC} ontology is a set of Horn- \mathcal{ALC} axioms:

 $A \sqsubseteq \bot \qquad \top \sqsubseteq B \qquad A \sqsubseteq B \qquad A \sqcap E \sqsubseteq B \qquad \exists R.A \sqsubseteq B \qquad A \sqsubseteq \forall R.B \qquad A \sqsubseteq \exists R.B$

In the above; A, B, and E are concept names; and R is a role name.

Remark. Note the axioms of the form $A \sqsubseteq \forall R.B$, which are not \mathcal{EL} , such as: CheesePizza $\sqsubseteq \forall \mathsf{HasTopping}.\mathsf{Cheese}$

The axiom states that "all toppings in a cheese pizza are cheese toppings".

Even though Horn- \mathcal{ALC} is not much more expressive than \mathcal{EL} , (Krötzsch, Rudolph, and Hitzler 2013) have showed that:

Theorem. Solving classification over Horn- \mathcal{ALC} is ExpTime-complete.

The Description Logic Horn-ALC: Semantics

Definition. We define the semantics of Horn- \mathcal{ALC} axioms via translation into equivalent first-order logic formulas:

$$A \sqsubseteq \bot \qquad \mapsto \qquad \forall x.(A(x) \to \bot)$$

$$\top \sqsubseteq B \qquad \mapsto \qquad \forall x.B(x)$$

$$A \sqsubseteq B \qquad \mapsto \qquad \forall x.(A(x) \to B(x))$$

$$A \sqcap E \sqsubseteq B \qquad \mapsto \qquad \forall x.(A(x) \land E(x) \to B(x))$$

$$\exists R.A \sqsubseteq B \qquad \mapsto \qquad \forall x.(R(x,y) \land A(y) \to B(x))$$

$$A \sqsubseteq \forall R.B \qquad \mapsto \qquad \forall x.(A(x) \land R(x,y) \to B(y))$$

$$A \sqsubseteq \exists R.B \qquad \mapsto \qquad \forall x.(A(x) \to \exists y.R(x,y) \land B(y))$$

In the above; A, B, and E are concept names, and R is a role name.

The Description Logic Horn-ALC: Semantics

Definition. We define the semantics of Horn- \mathcal{ALC} axioms via translation into equivalent first-order logic formulas:

$$A \sqsubseteq \bot \qquad \mapsto \qquad \forall x.(A(x) \to \bot)$$

$$\top \sqsubseteq B \qquad \mapsto \qquad \forall x.B(x)$$

$$A \sqsubseteq B \qquad \mapsto \qquad \forall x.(A(x) \to B(x))$$

$$A \sqcap E \sqsubseteq B \qquad \mapsto \qquad \forall x.(A(x) \land E(x) \to B(x))$$

$$\exists R.A \sqsubseteq B \qquad \mapsto \qquad \forall x.(R(x,y) \land A(y) \to B(x))$$

$$A \sqsubseteq \forall R.B \qquad \mapsto \qquad \forall x.(A(x) \land R(x,y) \to B(y))$$

$$A \sqsubseteq \exists R.B \qquad \mapsto \qquad \forall x.(A(x) \to \exists y.R(x,y) \land B(y))$$

In the above; A, B, and E are concept names, and R is a role name.

Often, we remove universal quantifiers from first-order logic formulas.

A Consequence-Based Calculus to Solve Classification

$$R_{A}^{C}) \frac{1}{A \sqsubseteq A} : A \in \mathsf{Concepts}(O) \qquad R_{\exists}^{+}) \frac{\mathbb{C} \sqsubseteq A}{\mathbb{C} \sqsubseteq \exists R.B} : A \sqsubseteq \exists R.B \in O$$

$$R_{A}^{\exists}) \frac{\mathbb{C} \sqsubseteq \exists R.\mathbb{D}}{\mathbb{D} \sqsubseteq D} : D \in \mathbb{D} \qquad R_{\exists}^{-}) \frac{\mathbb{C} \sqsubseteq \exists R.\mathbb{D} \mathbb{D} \sqsubseteq A}{\mathbb{C} \sqsubseteq B} : \exists R.A \sqsubseteq B \in O$$

$$R_{\Box}^{1}) \frac{\mathbb{C} \sqsubseteq A}{\mathbb{C} \sqsubseteq B} : T \sqsubseteq B \in O \qquad R_{\exists}^{\perp}) \frac{\mathbb{C} \sqsubseteq \exists R.\mathbb{D} \mathbb{D} \sqsubseteq \bot}{\mathbb{C} \sqsubseteq \bot}$$

$$R_{\Box}^{1}) \frac{\mathbb{C} \sqsubseteq A}{\mathbb{C} \sqsubseteq B} : A \sqsubseteq B \in O \qquad R_{\forall}) \frac{\mathbb{C} \sqsubseteq \exists R.\mathbb{D} \mathbb{C} \sqsubseteq A}{\mathbb{C} \sqsubseteq \exists R.\mathbb{D} \mathbb{D} \sqsubseteq \bot} : A \sqsubseteq \forall R.B \in O$$

$$R_{\Box}^{2}) \frac{\mathbb{C} \sqsubseteq A \mathbb{C} \sqsubseteq E}{\mathbb{C} \sqsubseteq B} : A \Box E \sqsubseteq B \in O$$

Figure: Classification Calculus for Horn- \mathcal{ALC} . Where A, B, and E are concept names; R is a role name; and $\mathbb C$ and $\mathbb D$ are conjunctions of concept names

Remark. Original calculus by (Kazakov 2009).

Consequence-Based Calculus: Soundness

Soundness. Show via induction that each rule only produces sound inferences.

For instance, let us show that the following production rule is indeed sound:

$$(R_{\forall}) \ \frac{\mathbb{C} \sqsubseteq \exists R.\mathbb{D} \ \mathbb{C} \sqsubseteq A}{\mathbb{C} \sqsubseteq \exists R.(\mathbb{D} \sqcap B)} : A \sqsubseteq \forall R.B \in O$$

Proof:

- 1. By IH: $O \models \bigwedge_{C \in \mathbb{C}} C(x) \to \exists y. (R(x, y) \land \bigwedge_{D \in \mathbb{D}} D(y))$
- 2. By IH: $O \models \bigwedge_{C \in \mathbb{C}} C(x) \rightarrow A(x)$
- 3. By the precondition of the rule: $O \models A(x) \land R(x, y) \rightarrow B(y)$
- 4. By (1-3) and the semantics of first-order logic:

$$O \models \bigwedge_{C \in \mathbb{C}} C(x) \to \exists y. (R(x, y) \land \bigwedge_{D \in \mathbb{D}} D(y) \land B(y))$$

Consequence-Based Calculus: Completeness

To show **completeness**, we verify the following theorem:

Theorem. If an axiom of the form $A \sqsubseteq B$ is not derived by the previously proposed calculus on input O, then $O \not\models A \sqsubseteq B$.

Proof Sketch: Using the output of the calculus on input O, we can construct a model for this ontology that contains an element that is in the domain of A but not in the domain of B. Therefore, $O \not\models A \sqsubseteq B$.

Remark. For a complete proof, check the following references:

- (Kazakov 2009)
- (Simancik, Kazakov, and Horrocks 2011)

Consequence-Based Calculus: Complexity

Theorem. The Horn- \mathcal{ALC} classification calculus runs in exponential time in the size of the input ontology O.

Remark. Note that this calculus produces inferences of the form

(1)
$$\mathbb{C} \sqsubseteq B$$
 and (2) $\mathbb{C} \sqsubseteq \exists R.\mathbb{D}$

where B is a concept name, R is a role name, and $\mathbb C$ and $\mathbb D$ are conjunctions of concept names. Therefore, the calculus may produce at most

$$2^{|\mathsf{Concepts}(O)|} \times |\mathsf{Concepts}(O)| \quad \text{and} \quad 2 \times 2^{|\mathsf{Concepts}(O)|} \times |\mathsf{Roles}(O)|$$

inferences of type (1) and (2), respectively.

Implementing the Consequence-Based Calculus: Datalog

Because of the following result, we can not implement the Horn- \mathcal{ALC} classification calculus using a fixed Datalog rule set:

Theorem. The data complexity of fact entailment over Datalog is in P.

Proof:

- 1. Consider a Datalog rule set \mathcal{R} , a fact set \mathcal{F} , and a fact φ .
- 2. Let \mathcal{R}' be the grounding of \mathcal{R} using the constants in \mathcal{F} .
- 3. We have that $\mathcal{R}' \cup \mathcal{F} \models \varphi$ if and only if $\mathcal{R} \cup \mathcal{F} \models \varphi$.
- 4. Checking if $\mathcal{R}' \cup \mathcal{F} \models \varphi$ can be reduced to fact entailment over propositional logic, which can be solved in polynomial time.
- 5. If \mathcal{R} is fixed, then \mathcal{R}' is polynomial in the number of constants in \mathcal{F} .
- 6. By (3) and (4): if \mathcal{R} is fixed, we can decide if $\mathcal{R} \cup \mathcal{F} \models \varphi$ in polynomial time.

Implementing the Consequence-Based Calculus: Datalog

Because of the following result, we can not implement the Horn- \mathcal{ALC} classification calculus using a fixed Datalog rule set:

Theorem. The data complexity of fact entailment over Datalog is in P.

Assume that we can implement the Horn- \mathcal{ALC} classification calculus with a fixed Datalog rule set (as done with the \mathcal{EL} classification calculus). Then:

- 1. By Theorem 3.4: we could solve Horn- \mathcal{ALC} classification in polynomial time.
- 2. By (1): we could solve an ExpTime-hard problem in polynomial time.
- 3. By (2): P = ExpTime (إ)

Remark. To implement the Horn- \mathcal{ALC} classification calculus (or any other procedure that solves Horn- \mathcal{ALC} classification), we need a rule-based language with ExpTime-hard data complexity!

We study Datalog(S), an extension of Datalog that can model exponential computations.

```
Example. Consider the following Datalog(S) rule set: \operatorname{Person}(x) \to \operatorname{LikesAll}(x,\emptyset) \operatorname{LikesAll}(x,X) \wedge \operatorname{Likes}(x,y) \to \operatorname{LikesAll}(x,X \cup \{y\}) \operatorname{LikesAll}(x,X) \to \operatorname{AllLikeAll}(\{x\},X) \operatorname{AllLikeAll}(X,Y) \wedge \operatorname{LikesAll}(x,Y) \to \operatorname{AllLikeAll}(X \cup \{x\},Y) \operatorname{AllLikeAll}(X,X) \wedge \operatorname{alice} \in X \to \operatorname{CliqueOfAlice}(X)
```

Theorem. Checking fact entailment for Datalog(S) is ExpTime-complete for both data and combined complexity.

See (Carral et al. 2019) for a complete proof of the above result.

Using a function to encode the axioms and entities in an input ontology as facts and a fixed Datalog(S) rule set, we can implement the $Horn-\mathcal{ALC}$ classification calculus.

Example. For an ontology *O*, let Facts(*O*) be the fact set such that:

$$A \sqsubseteq \bot \in O \mapsto \mathsf{ax}_{\sqsubseteq}(c_A, c_L) \qquad \exists R.A \sqsubseteq B \in O \mapsto \mathsf{ax}_{\exists \sqsubseteq}(c_A, c_R, c_B) \\ T \sqsubseteq B \in O \mapsto \mathsf{ax}_{\sqsubseteq}(c_\top, c_B) \qquad A \sqsubseteq B \in O \mapsto \mathsf{ax}_{\sqsubseteq \forall}(c_A, c_R, c_B) \\ A \sqcap E \sqsubseteq B \in O \mapsto \mathsf{ax}_{\sqcap \sqsubseteq}(c_A, c_E, c_B) \qquad A \in \mathsf{Concepts}(O) \mapsto \mathsf{Concept}(c_E)$$

In the above; c_A , c_B , c_E , c_{\top} , and c_{\perp} are fresh constants unique for A, B, E, \top , and \perp , respectively; and c_R is a fresh constant unique R.

We translate the production rules in the Horn- \mathcal{FLC} classification calculus (left) into analogous Datalog(S) rules (right):

$$\begin{array}{lll} R_A^C) & \overline{A \sqsubseteq A} : A \in \mathsf{Concepts}(O) & \overset{\mathsf{Concept}(x)}{\to} \mathsf{SC}(\{x\}, x) \\ \\ R_A^\exists) & \overset{\mathbb{C} \sqsubseteq \exists R.\mathbb{D}}{\mathbb{D} \sqsubseteq D} : D \in \mathbb{D} & \overset{\mathsf{Ex}(C, r, D) \land d \in D}{\to} \mathsf{SC}(D, d) \\ \\ R_\square^0) & \overset{\mathbb{C} \sqsubseteq A}{\mathbb{C} \sqsubseteq B} : \top \sqsubseteq B \in O & \overset{\mathsf{SC}(C, a) \land}{\to} \mathsf{SC}(C, b) \\ \\ R_\square^1) & \overset{\mathbb{C} \sqsubseteq A}{\mathbb{C} \sqsubseteq B} : A \sqsubseteq B \in O & \overset{\mathsf{SC}(C, a) \land}{\to} \mathsf{SC}(C, b) \\ \\ R_\square^2) & \overset{\mathbb{C} \sqsubseteq A}{\mathbb{C} \sqsubseteq B} : A \sqcap E \sqsubseteq B \in O & \overset{\mathsf{SC}(C, a) \land}{\to} \mathsf{SC}(C, e) \land \mathsf{ax}_{\sqcap \sqsubseteq}(a, e, b) \\ & \to \mathsf{SC}(C, b) & \\ \end{array}$$

We translate the production rules in the Horn- \mathcal{FLC} classification calculus (left) into analogous Datalog(S) rules (right):

$$R_{\exists}^{+}) \qquad \frac{\mathbb{C} \sqsubseteq A}{\mathbb{C} \sqsubseteq \exists R.B} : A \sqsubseteq \exists R.B \in O \qquad \qquad \text{SC}(C,a) \land \mathsf{ax}_{\boxminus\exists}(a,r,b) \\ \qquad \rightarrow \mathsf{Ex}(C,r,\{B\})$$

$$R_{\exists}^{-}) \qquad \frac{\mathbb{C} \sqsubseteq \exists R.\mathbb{D} \ \mathbb{D} \sqsubseteq A}{\mathbb{C} \sqsubseteq B} : \exists R.A \sqsubseteq B \in O \qquad \qquad \frac{\mathsf{Ex}(C,r,D) \land \mathsf{SC}(D,a) \land \mathsf{ax}_{\exists\sqsubseteq}(r,a,b)}{\rightarrow \mathsf{SC}(C,b)}$$

$$R_{\exists}^{\perp}) \qquad \frac{\mathbb{C} \sqsubseteq \exists R.\mathbb{D} \ \mathbb{D} \sqsubseteq \bot}{\mathbb{C} \sqsubseteq \bot} \qquad \qquad \frac{\mathsf{Ex}(C,r,D) \land \mathsf{SC}(D,c_{\bot})}{\rightarrow \mathsf{SC}(C,c_{\bot})}$$

$$R_{\forall}^{\perp}) \qquad \frac{\mathbb{C} \sqsubseteq \exists R.\mathbb{D} \ \mathbb{C} \sqsubseteq A}{\mathbb{C} \sqsubseteq \exists R.\mathbb{D} \ \mathbb{C} \sqsubseteq A} : A \sqsubseteq \forall R.B \qquad \qquad \frac{\mathsf{Ex}(C,r,D) \land \mathsf{SC}(C,a) \land \mathsf{ax}_{\sqsubseteq\forall}(a,r,b)}{\rightarrow \mathsf{Ex}(C,r,D \cup \{b\})}$$

Definition. Let \mathcal{R}_{HALC} be the following Datalog(S) rule set:

$$\begin{aligned} &\operatorname{Concept}(x) \to \operatorname{SC}(\{x\},x) & \operatorname{SC}(C,a) \wedge \operatorname{ax}_{\sqsubseteq}(c_{\top},b) \to \operatorname{SC}(C,b) \\ &\operatorname{Ex}(C,r,D) \wedge d \in D \to \operatorname{SC}(D,d) & \operatorname{SC}(C,a) \wedge \operatorname{ax}_{\sqsubseteq}(a,b) \to \operatorname{SC}(C,b) \\ &\operatorname{SC}(C,a) \wedge \operatorname{SC}(C,e) \wedge \operatorname{ax}_{\sqcap \boxminus}(a,e,b) \to \operatorname{SC}(C,b) \\ &\operatorname{SC}(C,a) \wedge \operatorname{ax}_{\boxminus \dashv}(a,r,b) \to \operatorname{Ex}(C,r,\{B\}) \\ &\operatorname{Ex}(C,r,D) \wedge \operatorname{SC}(D,a) \wedge \operatorname{ax}_{\dashv \boxminus}(r,a,b) \to \operatorname{SC}(C,b) \\ &\operatorname{Ex}(C,r,D) \wedge \operatorname{SC}(D,c_{\bot}) \to \operatorname{SC}(C,c_{\bot}) \\ &\operatorname{Ex}(C,r,D) \wedge \operatorname{SC}(C,a) \wedge \operatorname{ax}_{\boxminus \lor}(a,r,b) \to \operatorname{Ex}(C,r,D \cup \{b\}) \end{aligned}$$

Theorem. Consider a Horn- \mathcal{ALC} ontology O and an axiom of the form $A \sqsubseteq B$. Then, $O \models A \sqsubseteq B$ if and only if $\mathcal{R}_{\mathsf{HALC}} \cup \mathsf{Facts}(O) \models \mathsf{SC}(c_A, c_B)$.

Implementing the Classification Calculus with VLog

Alas, VLog does not support Datalog(S) reasoning. There maybe some other rule-based language that we can use...

The following result is a recent finding by (Krötzsch, Marx, and Rudolph 2019):

Theorem. The data complexity of fact entailment over rule sets that terminate with respect to the restricted chase is ExpTime-hard.

Moreover, (Carral et al. 2019) have proposed a translation from Datalog(S) into existential rule programs such that:

- The resulting programs terminate with respect to the restricted chase.
- Fact entailment is preserved.

$$\mathsf{Person}(x) \to \mathsf{LikesAll}(x, \emptyset) \qquad \mathsf{LikesAll}(x, X) \land \mathsf{Likes}(x, y) \to \mathsf{LikesAll}(x, X \cup \{y\})$$

$$\begin{array}{ccc} & \rightarrow \exists V. \, empty(V) & (1.1) \\ person(x) \land empty(Y) \rightarrow likesAll(x,Y) & (1.2) \\ likesAll(x,S) \land likes(x,y) \rightarrow \exists V. \, likesAll(x,V) \land SU(S,y,V) & (2.1) \end{array}$$

$$\mathsf{Person}(x) \to \mathsf{LikesAll}(x, \emptyset)$$
 $\mathsf{LikesAll}(x, X) \land \mathsf{Likes}(x, y) \to \mathsf{LikesAll}(x, X \cup \{y\})$

```
person(eve)
likes(eve, a)
likes(eve, b)
```

$\mathsf{Person}(x) \to \mathsf{LikesAll}(x, \emptyset) \qquad \mathsf{LikesAll}(x, X) \land \mathsf{Likes}(x, y) \to \mathsf{LikesAll}(x, X \cup \{y\})$

$$\rightarrow \exists V. empty(V) \tag{1.1}$$

$$person(x) \land empty(Y) \rightarrow likesAll(x, Y)$$
 (1.2)

$$likesAll(x, S) \land likes(x, y) \rightarrow \exists V. likesAll(x, V) \land SU(S, y, V)$$
 (2.1)

eve

person(eve)

likes(eve, a)

likes(eve, b)

$\mathsf{Person}(x) \to \mathsf{LikesAll}(x, \emptyset) \qquad \mathsf{LikesAll}(x, X) \land \mathsf{Likes}(x, y) \to \mathsf{LikesAll}(x, X \cup \{y\})$

$$\rightarrow \exists V. empty(V) \tag{1.1}$$

$$person(x) \land empty(Y) \rightarrow likesAll(x, Y)$$
 (1.2)

$$likesAll(x, S) \land likes(x, y) \rightarrow \exists V. likesAll(x, V) \land SU(S, y, V)$$
 (2.1)

eve

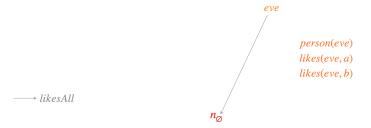
person(eve)

likes(eve, a)

likes(eve,b)

 n_{\varnothing}

$$likesAll(x, S) \land likes(x, y) \rightarrow \exists V. likesAll(x, V) \land SU(S, y, V)$$
 (2.1)

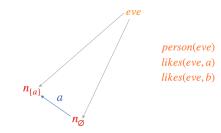


 $\mathsf{Person}(x) \to \mathsf{LikesAll}(x, \emptyset)$ $\mathsf{LikesAll}(x, X) \land \mathsf{Likes}(x, y) \to \mathsf{LikesAll}(x, X \cup \{y\})$

$$\rightarrow \exists V. empty(V) \tag{1.1}$$

$$person(x) \land empty(Y) \rightarrow likesAll(x, Y)$$
 (1.2)

$$likesAll(x, S) \land likes(x, y) \rightarrow \exists V. likesAll(x, V) \land SU(S, y, V)$$
 (2.1)

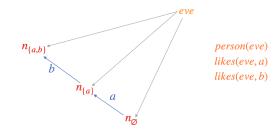


→ likesAll → SU

$$\rightarrow \exists V. empty(V) \tag{1.1}$$

$$person(x) \land empty(Y) \rightarrow likesAll(x, Y)$$
 (1.2)

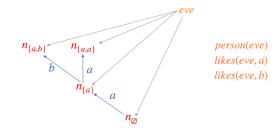
$$likesAll(x, S) \land likes(x, y) \rightarrow \exists V. likesAll(x, V) \land SU(S, y, V)$$
 (2.1)



$$\rightarrow \exists V. empty(V) \tag{1.1}$$

$$person(x) \land empty(Y) \rightarrow likesAll(x, Y)$$
 (1.2)

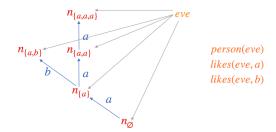
$$likesAll(x, S) \land likes(x, y) \rightarrow \exists V. likesAll(x, V) \land SU(S, y, V)$$
 (2.1)



$$\rightarrow \exists V. empty(V) \tag{1.1}$$

$$person(x) \land empty(Y) \rightarrow likesAll(x, Y)$$
 (1.2)

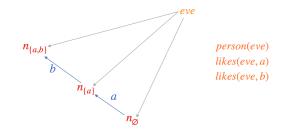
$$likesAll(x, S) \land likes(x, y) \rightarrow \exists V. likesAll(x, V) \land SU(S, y, V)$$
 (2.1)

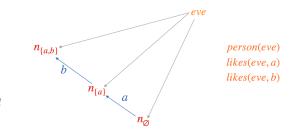


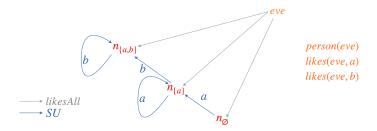
$$\rightarrow \exists V. empty(V) \tag{1.1}$$

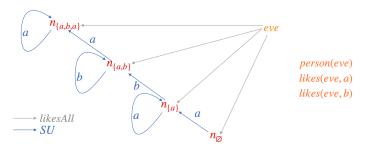
$$person(x) \land empty(Y) \rightarrow likesAll(x, Y)$$
 (1.2)

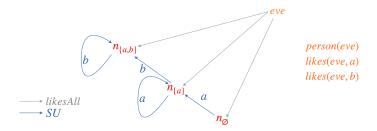
$$likesAll(x, S) \land likes(x, y) \rightarrow \exists V. likesAll(x, V) \land SU(S, y, V)$$
 (2.1)

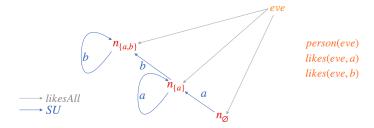






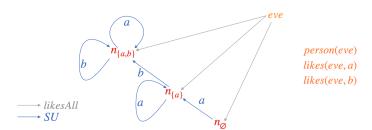






$$person(x) \land empty(Y) \rightarrow likesAll(x, Y)$$
 (1.2)

$$likesAll(x, S) \land likes(x, y) \rightarrow \exists V. likesAll(x, V) \land SU(S, y, V) \land SU(V, y, V)$$
(2.1)
$$SU(U, x, V) \land SU(U, y, U) \rightarrow SU(V, y, V)$$
(2.2)



Experimental Evaluation: Solving Classification

ID	#Ax.	#Set	#SC	#Ex	VLog	Konclude
00040	223K	2K	1051K	334K	432s	5s
00048	142K	19	718K	171K	387s	3s
00477	318K	0	162K	167K	1s	3s
00533	159K	0	965K	351K	132s	2s
00786	152K	12K	2283K	978K	549s	14s

Figure: Ontologies and results for classification (A) showing: axiom count; number of non-singleton "set terms" introduced (#Set); number of SC and Ex facts derived; reasoning time in VLog and Konclude

Experimental Evaluation: Assertion Retrieval

Definition. A Horn- \mathcal{ALC} ontology is a set of Horn- \mathcal{ALC} axioms:

$$A \sqsubseteq \bot \qquad \top \sqsubseteq B \qquad A \sqsubseteq B \qquad A \sqcap E \sqsubseteq B$$

$$\exists R.A \sqsubseteq B \qquad A \sqsubseteq \forall R.B \qquad A \sqsubseteq \exists R.B \qquad A(a) \qquad R(a,b)$$

In the above; A, B, and E are concept names (i.e., unary predicates); and R is a role name (i.e., binary predicate).

Definition. Assertion Retrieval is the reasoning task of computing all axioms of the form A(a) or R(a,b) that ate logically entailed by some input ontology O.

Remark. The Horn- \mathcal{ALC} classification calculus can be extended with 3 rules (as done by (Carral et al. 2019)) to solve assertion retrieval.

Experimental Evaluation: Assertion Retrieval

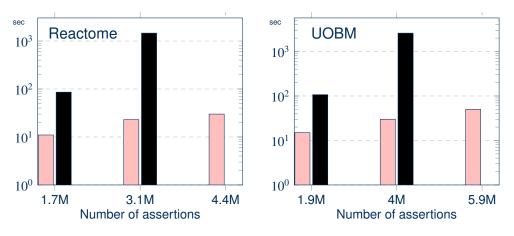


Figure: Experimental results for class retrieval (B) in VLog (pink/grey) and Konclude (black); note the log scale

Conclusions and Future Work

Remark. We can use VLog to solve ExpTime-hard problems!

Future work:

- Rulewerk Extension: translate Datalog(S) to existential rules
- VLog Extension: native support for Datalog(S)
- Implement existing calculi using our approach

Hands on Session!

References I

- Carral, David et al. (2019). "Chasing Sets: How to Use Existential Rules for Expressive Reasoning". In: P. of the 28th Int. Joint Conf. on Al (IJCAI 2019).
- Kazakov, Yevgeny (2009). "Consequence-Driven Reasoning for Horn-SHIQ Ontologies". In: P. of the 21st Int. Joint Conf. on Al (IJCAI 2009).
- Krötzsch, Markus, Maximilian Marx, and Sebastian Rudolph (2019). "The Power of the Terminating Chase (Invited Talk)". In: P. of the 22nd Int. Conf. on Database Theory (ICDT) 2019).
- Krötzsch, Markus, Sebastian Rudolph, and Pascal Hitzler (2013). "Complexities of Horn Description Logics". In: **ACM Trans. Comput. Log.**
- Simancik, Frantisek, Yevgeny Kazakov, and Ian Horrocks (2011). "Consequence-Based Reasoning beyond Horn Ontologies". In: P. of the 22nd Int. Joint Conf. on AI (IJCAI 2011).