
DEDUCTION SYSTEMS

Optimizations for Tableau Procedures

Sebastian Rudolph

Agenda

• Optimizations
– Unfolding
– Absorption
– Dependency-Directed Backtracking
– Further Optimizations

• Classification
• Summary

TU Dresden Deduction Systems

Optimizations

• Naïve implementation not performant enough
– T -regel adds one disjunction per axiom to the corresponding node
– ontologies may contain > 1.000 axioms and tableaux may contain

thousands of nodes

• realistic implementations use many optimizations
– (Lazy) unfolding
– Absorbtion
– Dependency directed backtracking
– Simplification and Normalization
– Caching
– Heuristics
– . . .

TU Dresden Deduction Systems

Optimizations

• Naïve implementation not performant enough
– T -regel adds one disjunction per axiom to the corresponding node
– ontologies may contain > 1.000 axioms and tableaux may contain

thousands of nodes
• realistic implementations use many optimizations

– (Lazy) unfolding
– Absorbtion
– Dependency directed backtracking
– Simplification and Normalization
– Caching
– Heuristics
– . . .

TU Dresden Deduction Systems

Optimizations

• Naïve implementation not performant enough
– T -regel adds one disjunction per axiom to the corresponding node
– ontologies may contain > 1.000 axioms and tableaux may contain

thousands of nodes
• realistic implementations use many optimizations

– (Lazy) unfolding
– Absorbtion
– Dependency directed backtracking
– Simplification and Normalization
– Caching
– Heuristics
– . . .

TU Dresden Deduction Systems

Agenda

• Optimizations
– Unfolding
– Absorption
– Dependency-Directed Backtracking
– Further Optimizations

• Classification
• Summary

TU Dresden Deduction Systems

Unfolding

• T -rule is not necessary if T is unfoldable, i.e., every axiom is:
– definitorial: form A v C or A ≡ C for A a concept name

(A ≡ C corresponds to A v C and C v A)
– acyclic: C uses A neither directly nor indirectly
– unique: only one such axiom exists for every concept name A

• If T is unfoldable, the TBox can be (unfolded) into a concept

TU Dresden Deduction Systems

Unfolding

• T -rule is not necessary if T is unfoldable, i.e., every axiom is:
– definitorial: form A v C or A ≡ C for A a concept name

(A ≡ C corresponds to A v C and C v A)
– acyclic: C uses A neither directly nor indirectly
– unique: only one such axiom exists for every concept name A

• If T is unfoldable, the TBox can be (unfolded) into a concept

TU Dresden Deduction Systems

Unfolding Example

• We check satisfiability of A w.r.t. the TBox T

T :

A

A v B u ∃r.C

 A u B u ∃r.C

B ≡ C t D

 A u (C t D) u ∃r.C

C v ∃r.D

 A u ((C u ∃r.D) t D) u ∃r.(C u ∃r.D)

• A is satisfiable w.r.t. T iff

A u ((C u ∃r.D) t D) u ∃r.(C u ∃r.D)

is satisfiable w.r.t. the empty TBox

TU Dresden Deduction Systems

Unfolding Example

• We check satisfiability of A w.r.t. the TBox T

T :
A A v B u ∃r.C

 A u B u ∃r.C

B ≡ C t D

 A u (C t D) u ∃r.C

C v ∃r.D

 A u ((C u ∃r.D) t D) u ∃r.(C u ∃r.D)

• A is satisfiable w.r.t. T iff

A u ((C u ∃r.D) t D) u ∃r.(C u ∃r.D)

is satisfiable w.r.t. the empty TBox

TU Dresden Deduction Systems

Unfolding Example

• We check satisfiability of A w.r.t. the TBox T

T :
A A v B u ∃r.C

 A u B u ∃r.C B ≡ C t D

 A u (C t D) u ∃r.C

C v ∃r.D

 A u ((C u ∃r.D) t D) u ∃r.(C u ∃r.D)

• A is satisfiable w.r.t. T iff

A u ((C u ∃r.D) t D) u ∃r.(C u ∃r.D)

is satisfiable w.r.t. the empty TBox

TU Dresden Deduction Systems

Unfolding Example

• We check satisfiability of A w.r.t. the TBox T

T :
A A v B u ∃r.C

 A u B u ∃r.C B ≡ C t D

 A u (C t D) u ∃r.C C v ∃r.D

 A u ((C u ∃r.D) t D) u ∃r.(C u ∃r.D)

• A is satisfiable w.r.t. T iff

A u ((C u ∃r.D) t D) u ∃r.(C u ∃r.D)

is satisfiable w.r.t. the empty TBox

TU Dresden Deduction Systems

Unfolding Example

• We check satisfiability of A w.r.t. the TBox T

T :
A A v B u ∃r.C

 A u B u ∃r.C B ≡ C t D

 A u (C t D) u ∃r.C C v ∃r.D
 A u ((C u ∃r.D) t D) u ∃r.(C u ∃r.D)

• A is satisfiable w.r.t. T iff

A u ((C u ∃r.D) t D) u ∃r.(C u ∃r.D)

is satisfiable w.r.t. the empty TBox

TU Dresden Deduction Systems

Unfolding Example

• We check satisfiability of A w.r.t. the TBox T

T :
A A v B u ∃r.C

 A u B u ∃r.C B ≡ C t D

 A u (C t D) u ∃r.C C v ∃r.D
 A u ((C u ∃r.D) t D) u ∃r.(C u ∃r.D)

• A is satisfiable w.r.t. T iff

A u ((C u ∃r.D) t D) u ∃r.(C u ∃r.D)

is satisfiable w.r.t. the empty TBox

TU Dresden Deduction Systems

Tableau Algorithm Example with Unfolding

We obtain the following contradiction-free tableau for the satisfiability of
U = A u ((C u ∃r.D) t D) u ∃r.(C u ∃r.D):

v0

v1 v2

v3

r r

r

L(v0) = {U, A, (C u ∃r.D) t D,
∃r.(C u ∃r.D), C u ∃r.D,
C,∃r.D}

L(v1) = {C u ∃r.D, C,∃r.D}
L(v2) = {D}
L(v3) = {D}

Only one disjunctive decision left!

TU Dresden Deduction Systems

Tableau Algorithm Example with Unfolding

We obtain the following contradiction-free tableau for the satisfiability of
U = A u ((C u ∃r.D) t D) u ∃r.(C u ∃r.D):

v0

v1 v2

v3

r r

r

L(v0) = {U, A, (C u ∃r.D) t D,
∃r.(C u ∃r.D), C u ∃r.D,
C,∃r.D}

L(v1) = {C u ∃r.D, C,∃r.D}
L(v2) = {D}
L(v3) = {D}

Only one disjunctive decision left!

TU Dresden Deduction Systems

Lazy Unfolding

• computation of NNF together with unfolding may decrease performance,
e.g.:

– satisfiability of C u ¬C w.r.t. T = {C v A u B}
– unfolding: C u A u B u ¬(C u A u B)
– NNF + unfolding: C u A u B u (¬C t ¬A t ¬B)

• better: apply NNF and unfolding if needed, via corresponding tableau
rules:

– A ≡ C A v C and A w C

v-rule: For v ∈ V such that A v C ∈ T , A ∈ L(v) and C /∈ L(v)
let L(v) := L(v) ∪ C.

w-rule: For v ∈ V such that A w C ∈ T , ¬A ∈ L(v) and ¬C /∈ L(v)
let L(v) := L(v) ∪ {¬C}.

¬-rule: For v ∈ V such that ¬C ∈ L(v) and NNF(¬C) /∈ L(v),
let L(v) := L(v) ∪ {NNF(¬C)}.

TU Dresden Deduction Systems

Lazy Unfolding

• computation of NNF together with unfolding may decrease performance,
e.g.:

– satisfiability of C u ¬C w.r.t. T = {C v A u B}
– unfolding: C u A u B u ¬(C u A u B)
– NNF + unfolding: C u A u B u (¬C t ¬A t ¬B)

• better: apply NNF and unfolding if needed, via corresponding tableau
rules:

– A ≡ C A v C and A w C

v-rule: For v ∈ V such that A v C ∈ T , A ∈ L(v) and C /∈ L(v)
let L(v) := L(v) ∪ C.

w-rule: For v ∈ V such that A w C ∈ T , ¬A ∈ L(v) and ¬C /∈ L(v)
let L(v) := L(v) ∪ {¬C}.

¬-rule: For v ∈ V such that ¬C ∈ L(v) and NNF(¬C) /∈ L(v),
let L(v) := L(v) ∪ {NNF(¬C)}.

TU Dresden Deduction Systems

Agenda

• Optimizations
– Unfolding
– Absorption
– Dependency-Directed Backtracking
– Further Optimizations

• Classification
• Summary

TU Dresden Deduction Systems

Absorption

• What if T is not unfoldable?
– Separate T into Tu (unfoldable part) and Tg (GCIs, not unfoldable)
– Tu is treated via v- and w-rules
– Tg is treated via the T -rule

• absorption decreases Tg and increases Tu

1 take an axiom from Tg, e.g., A u B v C
2 transform the axiom: A v C t ¬B
3 if Tu contains an axiom of the form A ≡ D (A v D and D w A),

then A v C t ¬B cannot be absorbed;
A v C t ¬B remains in Tg

4 otherwise, if Tu contains an axiom of the form A v D,
then absorb A v C t ¬B resulting in A v D u (C t ¬B)

5 otherwise move A v C t ¬B to Tu

• If A ≡ D ∈ Tu, try rewriting/absorption with other axioms in Tu

• nondeterministic: B v C t ¬A also possible

TU Dresden Deduction Systems

Absorption

• What if T is not unfoldable?
– Separate T into Tu (unfoldable part) and Tg (GCIs, not unfoldable)
– Tu is treated via v- and w-rules
– Tg is treated via the T -rule

• absorption decreases Tg and increases Tu

1 take an axiom from Tg, e.g., A u B v C
2 transform the axiom: A v C t ¬B
3 if Tu contains an axiom of the form A ≡ D (A v D and D w A),

then A v C t ¬B cannot be absorbed;
A v C t ¬B remains in Tg

4 otherwise, if Tu contains an axiom of the form A v D,
then absorb A v C t ¬B resulting in A v D u (C t ¬B)

5 otherwise move A v C t ¬B to Tu

• If A ≡ D ∈ Tu, try rewriting/absorption with other axioms in Tu

• nondeterministic: B v C t ¬A also possible

TU Dresden Deduction Systems

Absorption

• What if T is not unfoldable?
– Separate T into Tu (unfoldable part) and Tg (GCIs, not unfoldable)
– Tu is treated via v- and w-rules
– Tg is treated via the T -rule

• absorption decreases Tg and increases Tu

1 take an axiom from Tg, e.g., A u B v C
2 transform the axiom: A v C t ¬B
3 if Tu contains an axiom of the form A ≡ D (A v D and D w A),

then A v C t ¬B cannot be absorbed;
A v C t ¬B remains in Tg

4 otherwise, if Tu contains an axiom of the form A v D,
then absorb A v C t ¬B resulting in A v D u (C t ¬B)

5 otherwise move A v C t ¬B to Tu

• If A ≡ D ∈ Tu, try rewriting/absorption with other axioms in Tu

• nondeterministic: B v C t ¬A also possible

TU Dresden Deduction Systems

Absorption

• What if T is not unfoldable?
– Separate T into Tu (unfoldable part) and Tg (GCIs, not unfoldable)
– Tu is treated via v- and w-rules
– Tg is treated via the T -rule

• absorption decreases Tg and increases Tu

1 take an axiom from Tg, e.g., A u B v C
2 transform the axiom: A v C t ¬B
3 if Tu contains an axiom of the form A ≡ D (A v D and D w A),

then A v C t ¬B cannot be absorbed;
A v C t ¬B remains in Tg

4 otherwise, if Tu contains an axiom of the form A v D,
then absorb A v C t ¬B resulting in A v D u (C t ¬B)

5 otherwise move A v C t ¬B to Tu

• If A ≡ D ∈ Tu, try rewriting/absorption with other axioms in Tu

• nondeterministic: B v C t ¬A also possible

TU Dresden Deduction Systems

Agenda

• Optimizations
– Unfolding
– Absorption
– Dependency-Directed Backtracking
– Further Optimizations

• Classification
• Summary

TU Dresden Deduction Systems

Dependency-Directed Backtracking

• despite those optimizations, search space often to big
• let v ∈ V with (C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v)

v u -rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A}

t -rule L(v) := L(v) ∪ {C1}
...

...
...

t-rule L(v) := L(v) ∪ {Cn}
∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash
t -rule L(v) := L(v) ∪ {Dn}
∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash

• exponentially big search space is traversed

TU Dresden Deduction Systems

Dependency-Directed Backtracking

• despite those optimizations, search space often to big
• let v ∈ V with (C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v)

v u -rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A}

t -rule L(v) := L(v) ∪ {C1}
...

...
...

t-rule L(v) := L(v) ∪ {Cn}
∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash
t -rule L(v) := L(v) ∪ {Dn}
∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash

• exponentially big search space is traversed

TU Dresden Deduction Systems

Dependency-Directed Backtracking

• despite those optimizations, search space often to big
• let v ∈ V with (C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v)

v u -rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A}

t -rule L(v) := L(v) ∪ {C1}
...

...
...

t-rule L(v) := L(v) ∪ {Cn}

∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash
t -rule L(v) := L(v) ∪ {Dn}
∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash

• exponentially big search space is traversed

TU Dresden Deduction Systems

Dependency-Directed Backtracking

• despite those optimizations, search space often to big
• let v ∈ V with (C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v)

v

w

r

u -rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A}

t -rule L(v) := L(v) ∪ {C1}
...

...
...

t-rule L(v) := L(v) ∪ {Cn}
∃-rule L(w) := {¬A}

∀-rule L(w) := {¬A, A} clash
t -rule L(v) := L(v) ∪ {Dn}
∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash

• exponentially big search space is traversed

TU Dresden Deduction Systems

Dependency-Directed Backtracking

• despite those optimizations, search space often to big
• let v ∈ V with (C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v)

v

w

r

u -rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A}

t -rule L(v) := L(v) ∪ {C1}
...

...
...

t-rule L(v) := L(v) ∪ {Cn}
∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash

t -rule L(v) := L(v) ∪ {Dn}
∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash

• exponentially big search space is traversed

TU Dresden Deduction Systems

Dependency-Directed Backtracking

• despite those optimizations, search space often to big
• let v ∈ V with (C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v)

v u -rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A}

t -rule L(v) := L(v) ∪ {C1}
...

...
...

t-rule L(v) := L(v) ∪ {Cn}
∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash

t -rule L(v) := L(v) ∪ {Dn}
∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash

• exponentially big search space is traversed

TU Dresden Deduction Systems

Dependency-Directed Backtracking

• despite those optimizations, search space often to big
• let v ∈ V with (C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v)

v u -rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A}

t -rule L(v) := L(v) ∪ {C1}
...

...
...

t-rule L(v) := L(v) ∪ {Cn}
∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash
t -rule L(v) := L(v) ∪ {Dn}

∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash

• exponentially big search space is traversed

TU Dresden Deduction Systems

Dependency-Directed Backtracking

• despite those optimizations, search space often to big
• let v ∈ V with (C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v)

v

w

r

u -rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A}

t -rule L(v) := L(v) ∪ {C1}
...

...
...

t-rule L(v) := L(v) ∪ {Cn}
∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash
t -rule L(v) := L(v) ∪ {Dn}
∃-rule L(w) := {¬A}

∀-rule L(w) := {¬A, A} clash

• exponentially big search space is traversed

TU Dresden Deduction Systems

Dependency-Directed Backtracking

• despite those optimizations, search space often to big
• let v ∈ V with (C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v)

v

w

r

u -rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A}

t -rule L(v) := L(v) ∪ {C1}
...

...
...

t-rule L(v) := L(v) ∪ {Cn}
∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash
t -rule L(v) := L(v) ∪ {Dn}
∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash

• exponentially big search space is traversed

TU Dresden Deduction Systems

Dependency-Directed Backtracking

• despite those optimizations, search space often to big
• let v ∈ V with (C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v)

v

w

r

u -rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A}

t -rule L(v) := L(v) ∪ {C1}
...

...
...

t-rule L(v) := L(v) ∪ {Cn}
∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash
t -rule L(v) := L(v) ∪ {Dn}
∃-rule L(w) := {¬A}
∀-rule L(w) := {¬A, A} clash

• exponentially big search space is traversed
TU Dresden Deduction Systems

Dependency-Directed Backtracking

• goal: recognize bad branching decisions quickly and do not repeat them

• most frequently used: backjumping
• backjumping works roughly as follows:

– concepts in the node label are tagged with a set of integers
(dependency set) allowing to identify the concept’s “origin”

– initially, all concepts are tagged with ∅
– tableau rules combine and extend these tags
– t-rule adds the tag {d} to the existing tag, where d is the t-depth

(number of t-rules applied by now)
– when encountering a contradiction, the labels alow to identify the

origin of the concepts causing the contradiction
– jump back to the last relevant application of a t-rule

• irrelevant part of the search space is not considered

TU Dresden Deduction Systems

Dependency-Directed Backtracking

• goal: recognize bad branching decisions quickly and do not repeat them
• most frequently used: backjumping

• backjumping works roughly as follows:
– concepts in the node label are tagged with a set of integers

(dependency set) allowing to identify the concept’s “origin”
– initially, all concepts are tagged with ∅
– tableau rules combine and extend these tags
– t-rule adds the tag {d} to the existing tag, where d is the t-depth

(number of t-rules applied by now)
– when encountering a contradiction, the labels alow to identify the

origin of the concepts causing the contradiction
– jump back to the last relevant application of a t-rule

• irrelevant part of the search space is not considered

TU Dresden Deduction Systems

Dependency-Directed Backtracking

• goal: recognize bad branching decisions quickly and do not repeat them
• most frequently used: backjumping
• backjumping works roughly as follows:

– concepts in the node label are tagged with a set of integers
(dependency set) allowing to identify the concept’s “origin”

– initially, all concepts are tagged with ∅
– tableau rules combine and extend these tags
– t-rule adds the tag {d} to the existing tag, where d is the t-depth

(number of t-rules applied by now)
– when encountering a contradiction, the labels alow to identify the

origin of the concepts causing the contradiction
– jump back to the last relevant application of a t-rule

• irrelevant part of the search space is not considered

TU Dresden Deduction Systems

Dependency-Directed Backtracking

• goal: recognize bad branching decisions quickly and do not repeat them
• most frequently used: backjumping
• backjumping works roughly as follows:

– concepts in the node label are tagged with a set of integers
(dependency set) allowing to identify the concept’s “origin”

– initially, all concepts are tagged with ∅
– tableau rules combine and extend these tags
– t-rule adds the tag {d} to the existing tag, where d is the t-depth

(number of t-rules applied by now)
– when encountering a contradiction, the labels alow to identify the

origin of the concepts causing the contradiction
– jump back to the last relevant application of a t-rule

• irrelevant part of the search space is not considered

TU Dresden Deduction Systems

Dependency-Directed Backtracking
Example

(C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v) tagged with ∅

v

w

r

u -rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A} all with ∅

t -rule L(v) := L(v) ∪ {C1} C1 tagged with {1}
...

...
...

t -rule L(v) := L(v) ∪ {Cn} Cn tagged with {n}
∃-rule L(w) := {¬A} A, r tagged with ∅
∀-rule L(w) := {¬A, A}

clash

¬A tagged with mit ∅

• tag(A) ∪ tag(¬A) = ∅
• None of the t-rules has contributed to the cotradiction
• Output false (unsatisfiable)

TU Dresden Deduction Systems

Dependency-Directed Backtracking
Example

(C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v) tagged with ∅

v

w

r

u -rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A} all with ∅

t -rule L(v) := L(v) ∪ {C1} C1 tagged with {1}
...

...
...

t -rule L(v) := L(v) ∪ {Cn} Cn tagged with {n}
∃-rule L(w) := {¬A} A, r tagged with ∅
∀-rule L(w) := {¬A, A}

clash

¬A tagged with mit ∅

• tag(A) ∪ tag(¬A) = ∅
• None of the t-rules has contributed to the cotradiction
• Output false (unsatisfiable)

TU Dresden Deduction Systems

Dependency-Directed Backtracking
Example

(C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v) tagged with ∅

v

w

r

u -rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A} all with ∅

t -rule L(v) := L(v) ∪ {C1} C1 tagged with {1}
...

...
...

t -rule L(v) := L(v) ∪ {Cn} Cn tagged with {n}

∃-rule L(w) := {¬A} A, r tagged with ∅
∀-rule L(w) := {¬A, A}

clash

¬A tagged with mit ∅

• tag(A) ∪ tag(¬A) = ∅
• None of the t-rules has contributed to the cotradiction
• Output false (unsatisfiable)

TU Dresden Deduction Systems

Dependency-Directed Backtracking
Example

(C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v) tagged with ∅

v

w

r

u -rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A} all with ∅

t -rule L(v) := L(v) ∪ {C1} C1 tagged with {1}
...

...
...

t -rule L(v) := L(v) ∪ {Cn} Cn tagged with {n}
∃-rule L(w) := {¬A} A, r tagged with ∅

∀-rule L(w) := {¬A, A}

clash

¬A tagged with mit ∅

• tag(A) ∪ tag(¬A) = ∅
• None of the t-rules has contributed to the cotradiction
• Output false (unsatisfiable)

TU Dresden Deduction Systems

Dependency-Directed Backtracking
Example

(C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v) tagged with ∅

v

w

r

u -rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A} all with ∅

t -rule L(v) := L(v) ∪ {C1} C1 tagged with {1}
...

...
...

t -rule L(v) := L(v) ∪ {Cn} Cn tagged with {n}
∃-rule L(w) := {¬A} A, r tagged with ∅
∀-rule L(w) := {¬A, A}

clash

¬A tagged with mit ∅

• tag(A) ∪ tag(¬A) = ∅
• None of the t-rules has contributed to the cotradiction
• Output false (unsatisfiable)

TU Dresden Deduction Systems

Dependency-Directed Backtracking
Example

(C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v) tagged with ∅

v

w

r

u -rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A} all with ∅

t -rule L(v) := L(v) ∪ {C1} C1 tagged with {1}
...

...
...

t -rule L(v) := L(v) ∪ {Cn} Cn tagged with {n}
∃-rule L(w) := {¬A} A, r tagged with ∅
∀-rule L(w) := {¬A, A} clash ¬A tagged with mit ∅

• tag(A) ∪ tag(¬A) = ∅
• None of the t-rules has contributed to the cotradiction
• Output false (unsatisfiable)

TU Dresden Deduction Systems

Dependency-Directed Backtracking
Example

(C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v) tagged with ∅

v

w

r

u -rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A} all with ∅

t -rule L(v) := L(v) ∪ {C1} C1 tagged with {1}
...

...
...

t -rule L(v) := L(v) ∪ {Cn} Cn tagged with {n}
∃-rule L(w) := {¬A} A, r tagged with ∅
∀-rule L(w) := {¬A, A} clash ¬A tagged with mit ∅

• tag(A) ∪ tag(¬A) = ∅

• None of the t-rules has contributed to the cotradiction
• Output false (unsatisfiable)

TU Dresden Deduction Systems

Dependency-Directed Backtracking
Example

(C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v) tagged with ∅

v

w

r

u -rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A} all with ∅

t -rule L(v) := L(v) ∪ {C1} C1 tagged with {1}
...

...
...

t -rule L(v) := L(v) ∪ {Cn} Cn tagged with {n}
∃-rule L(w) := {¬A} A, r tagged with ∅
∀-rule L(w) := {¬A, A} clash ¬A tagged with mit ∅

• tag(A) ∪ tag(¬A) = ∅
• None of the t-rules has contributed to the cotradiction

• Output false (unsatisfiable)

TU Dresden Deduction Systems

Dependency-Directed Backtracking
Example

(C1 t D1) u . . . u (Cn t Dn) u ∃r.¬A u ∀r.A ∈ L(v) tagged with ∅

v

w

r

u -rule L(v) := L(v) ∪ {(C1 t D1), . . . , (Cn t Dn),
∃r.¬A, ∀r.A} all with ∅

t -rule L(v) := L(v) ∪ {C1} C1 tagged with {1}
...

...
...

t -rule L(v) := L(v) ∪ {Cn} Cn tagged with {n}
∃-rule L(w) := {¬A} A, r tagged with ∅
∀-rule L(w) := {¬A, A} clash ¬A tagged with mit ∅

• tag(A) ∪ tag(¬A) = ∅
• None of the t-rules has contributed to the cotradiction
• Output false (unsatisfiable)

TU Dresden Deduction Systems

Agenda

• Optimizations
– Unfolding
– Absorption
– Dependency-Directed Backtracking
– Further Optimizations

• Classification
• Summary

TU Dresden Deduction Systems

Further Optimizations

• Simplification and Normalization
– quick recognition of trivial contradictions
– normalization, z.B., A u (B u C) ≡ u{A, B, C}, ∀r.C ≡ ¬∃r.¬C
– simplification, e.g., u{A, . . . ,¬A, . . .} ≡ ⊥, ∃r.⊥ ≡ ⊥, ∀r.> ≡ >

• caching
– prevents the repeated construction of equal subtrees
– L(v) initialized with {C1, . . . , Cn} via ∃- and ∀-rules
– check if satisfiability status is cached, otherwise
– check satisfiability of C1 u . . . u Cn, update the cache

• heuristics
– try to find good orders for the “don’t care” nondeterminism
– e.g., u, ∀, t, ∃

• . . .

TU Dresden Deduction Systems

Further Optimizations

• Simplification and Normalization
– quick recognition of trivial contradictions
– normalization, z.B., A u (B u C) ≡ u{A, B, C}, ∀r.C ≡ ¬∃r.¬C
– simplification, e.g., u{A, . . . ,¬A, . . .} ≡ ⊥, ∃r.⊥ ≡ ⊥, ∀r.> ≡ >

• caching
– prevents the repeated construction of equal subtrees
– L(v) initialized with {C1, . . . , Cn} via ∃- and ∀-rules
– check if satisfiability status is cached, otherwise
– check satisfiability of C1 u . . . u Cn, update the cache

• heuristics
– try to find good orders for the “don’t care” nondeterminism
– e.g., u, ∀, t, ∃

• . . .

TU Dresden Deduction Systems

Further Optimizations

• Simplification and Normalization
– quick recognition of trivial contradictions
– normalization, z.B., A u (B u C) ≡ u{A, B, C}, ∀r.C ≡ ¬∃r.¬C
– simplification, e.g., u{A, . . . ,¬A, . . .} ≡ ⊥, ∃r.⊥ ≡ ⊥, ∀r.> ≡ >

• caching
– prevents the repeated construction of equal subtrees
– L(v) initialized with {C1, . . . , Cn} via ∃- and ∀-rules
– check if satisfiability status is cached, otherwise
– check satisfiability of C1 u . . . u Cn, update the cache

• heuristics
– try to find good orders for the “don’t care” nondeterminism
– e.g., u, ∀, t, ∃

• . . .

TU Dresden Deduction Systems

Further Optimizations

• Simplification and Normalization
– quick recognition of trivial contradictions
– normalization, z.B., A u (B u C) ≡ u{A, B, C}, ∀r.C ≡ ¬∃r.¬C
– simplification, e.g., u{A, . . . ,¬A, . . .} ≡ ⊥, ∃r.⊥ ≡ ⊥, ∀r.> ≡ >

• caching
– prevents the repeated construction of equal subtrees
– L(v) initialized with {C1, . . . , Cn} via ∃- and ∀-rules
– check if satisfiability status is cached, otherwise
– check satisfiability of C1 u . . . u Cn, update the cache

• heuristics
– try to find good orders for the “don’t care” nondeterminism
– e.g., u, ∀, t, ∃

• . . .

TU Dresden Deduction Systems

Agenda

• Optimizations
– Unfolding
– Absorption
– Dependency-Directed Backtracking
– Further Optimizations

• Classification
• Summary

TU Dresden Deduction Systems

Optimizing Classification

One of the most wide-spread tasks for automated reasoning is classification
• compute all subclass relationships between atomic concepts in T

• check for T |= C v D can be reduced to checking satisfiability of T
together with the ABox (C u ¬D)(a) (or, equivalenty: C(a), (¬D)(a))
 if > is satisfiable: subsumption does not hold (as we have

constructed a counter-model)
 if > is unsatisfiable: subsumption holds (no counter-model exists)

• naïve approach needs n2 subsumption checks for n concept names
• normally cached in the concept hierarchy graph

TU Dresden Deduction Systems

Optimizing Classification

One of the most wide-spread tasks for automated reasoning is classification
• compute all subclass relationships between atomic concepts in T
• check for T |= C v D can be reduced to checking satisfiability of T

together with the ABox (C u ¬D)(a) (or, equivalenty: C(a), (¬D)(a))
 if > is satisfiable: subsumption does not hold (as we have

constructed a counter-model)
 if > is unsatisfiable: subsumption holds (no counter-model exists)

• naïve approach needs n2 subsumption checks for n concept names
• normally cached in the concept hierarchy graph

TU Dresden Deduction Systems

Optimizing Classification

One of the most wide-spread tasks for automated reasoning is classification
• compute all subclass relationships between atomic concepts in T
• check for T |= C v D can be reduced to checking satisfiability of T

together with the ABox (C u ¬D)(a) (or, equivalenty: C(a), (¬D)(a))
 if > is satisfiable: subsumption does not hold (as we have

constructed a counter-model)
 if > is unsatisfiable: subsumption holds (no counter-model exists)

• naïve approach needs n2 subsumption checks for n concept names
• normally cached in the concept hierarchy graph

TU Dresden Deduction Systems

Concept Hierarchy Graph

>

Disease Joint

JuvDisease JointDisease

Arthritis

JuvArthritis

⊥

TU Dresden Deduction Systems

Optimizing Classification

most wide-spread technique is called enhanced traversal

• hierarchy is created incrementally by introducing concept after concept
• top-down phase: recognize direct superconcepts
• bottom-up phase: recognize direct subconcepts
• transitivity of v used to save checks

A

B C

D

only if

• If A v B and C v D hold,
• then B v C −→ A v D
• and A 6v D −→ B 6v C

TU Dresden Deduction Systems

Optimizing Classification

most wide-spread technique is called enhanced traversal
• hierarchy is created incrementally by introducing concept after concept

• top-down phase: recognize direct superconcepts
• bottom-up phase: recognize direct subconcepts
• transitivity of v used to save checks

A

B C

D

only if

• If A v B and C v D hold,
• then B v C −→ A v D
• and A 6v D −→ B 6v C

TU Dresden Deduction Systems

Optimizing Classification

most wide-spread technique is called enhanced traversal
• hierarchy is created incrementally by introducing concept after concept
• top-down phase: recognize direct superconcepts
• bottom-up phase: recognize direct subconcepts

• transitivity of v used to save checks

A

B C

D

only if

• If A v B and C v D hold,
• then B v C −→ A v D
• and A 6v D −→ B 6v C

TU Dresden Deduction Systems

Optimizing Classification

most wide-spread technique is called enhanced traversal
• hierarchy is created incrementally by introducing concept after concept
• top-down phase: recognize direct superconcepts
• bottom-up phase: recognize direct subconcepts
• transitivity of v used to save checks

A

B C

D

only if

• If A v B and C v D hold,
• then B v C −→ A v D
• and A 6v D −→ B 6v C

TU Dresden Deduction Systems

Enhanced Traversal Example

already created hierarchy:

>

Disease Joint

JuvDisease JointDisease

Arthritis

JuvArthritis

⊥

Goal: insertion of JointDisease

Top-Down Phase:

• JointDisease v Disease
• JointDisease 6v JuvDisease
• JointDisease 6v Arthritis
• JointDisease 6v Joint

Bottom-Up Phase:

• JuvArthritis v JointDisease
• JuvDisease 6v JointDisease
• Arthritis v JointDisease

TU Dresden Deduction Systems

Enhanced Traversal Example

already created hierarchy:

>

Disease Joint

JuvDisease JointDisease

Arthritis

JuvArthritis

⊥

Goal: insertion of JointDisease

Top-Down Phase:
• JointDisease v? Disease

• JointDisease 6v JuvDisease
• JointDisease 6v Arthritis
• JointDisease 6v Joint

Bottom-Up Phase:

• JuvArthritis v JointDisease
• JuvDisease 6v JointDisease
• Arthritis v JointDisease

TU Dresden Deduction Systems

Enhanced Traversal Example

already created hierarchy:

>

Disease Joint

JuvDisease JointDisease

Arthritis

JuvArthritis

⊥

Goal: insertion of JointDisease

Top-Down Phase:
• JointDisease v Disease
• JointDisease v? JuvDisease

• JointDisease 6v Arthritis
• JointDisease 6v Joint

Bottom-Up Phase:

• JuvArthritis v JointDisease
• JuvDisease 6v JointDisease
• Arthritis v JointDisease

TU Dresden Deduction Systems

Enhanced Traversal Example

already created hierarchy:

>

Disease Joint

JuvDisease JointDisease

Arthritis

JuvArthritis

⊥

Goal: insertion of JointDisease

Top-Down Phase:
• JointDisease v Disease
• JointDisease 6v JuvDisease
• JointDisease v? Arthritis

• JointDisease 6v Joint

Bottom-Up Phase:

• JuvArthritis v JointDisease
• JuvDisease 6v JointDisease
• Arthritis v JointDisease

TU Dresden Deduction Systems

Enhanced Traversal Example

already created hierarchy:

>

Disease Joint

JuvDisease JointDisease

Arthritis

JuvArthritis

⊥

Goal: insertion of JointDisease

Top-Down Phase:
• JointDisease v Disease
• JointDisease 6v JuvDisease
• JointDisease 6v Arthritis
• JointDisease v? Joint

Bottom-Up Phase:

• JuvArthritis v JointDisease
• JuvDisease 6v JointDisease
• Arthritis v JointDisease

TU Dresden Deduction Systems

Enhanced Traversal Example

already created hierarchy:

>

Disease Joint

JuvDisease JointDisease

Arthritis

JuvArthritis

⊥

Goal: insertion of JointDisease

Top-Down Phase:
• JointDisease v Disease
• JointDisease 6v JuvDisease
• JointDisease 6v Arthritis
• JointDisease 6v Joint

Bottom-Up Phase:
• JuvArthritis v? JointDisease

• JuvDisease 6v JointDisease
• Arthritis v JointDisease

TU Dresden Deduction Systems

Enhanced Traversal Example

already created hierarchy:

>

Disease Joint

JuvDisease JointDisease

Arthritis

JuvArthritis

⊥

Goal: insertion of JointDisease

Top-Down Phase:
• JointDisease v Disease
• JointDisease 6v JuvDisease
• JointDisease 6v Arthritis
• JointDisease 6v Joint

Bottom-Up Phase:
• JuvArthritis v JointDisease
• JuvDisease v? JointDisease

• Arthritis v JointDisease

TU Dresden Deduction Systems

Enhanced Traversal Example

already created hierarchy:

>

Disease Joint

JuvDisease JointDisease

Arthritis

JuvArthritis

⊥

Goal: insertion of JointDisease

Top-Down Phase:
• JointDisease v Disease
• JointDisease 6v JuvDisease
• JointDisease 6v Arthritis
• JointDisease 6v Joint

Bottom-Up Phase:
• JuvArthritis v JointDisease
• JuvDisease 6v JointDisease
• Arthritis v? JointDisease

TU Dresden Deduction Systems

Enhanced Traversal Example

already created hierarchy:

>

Disease Joint

JuvDisease JointDisease

Arthritis

JuvArthritis

⊥

Goal: insertion of JointDisease

Top-Down Phase:
• JointDisease v Disease
• JointDisease 6v JuvDisease
• JointDisease 6v Arthritis
• JointDisease 6v Joint

Bottom-Up Phase:
• JuvArthritis v JointDisease
• JuvDisease 6v JointDisease
• Arthritis v JointDisease

TU Dresden Deduction Systems

Agenda

• Optimizations
– Unfolding
– Absorption
– Dependency-Directed Backtracking
– Further Optimizations

• Classification
• Summary

TU Dresden Deduction Systems

Summary

• we have a tableau algorithm for ALCIF knowledge bases
– ABox treated like for ALC
– number restrictions are treated similar to functionality and

existential quantifiers
• termination via cycle detection

– becomes harder as the logic becomes more expressive
• naive tableau algorithm not sufficiently performant
• diverse optimizations improve average case
• specific methods for classification

– enhanced traversal
• tableaux algorithms or variants modifications thereof are the basis of

OWL reasoners

TU Dresden Deduction Systems

	Optimizations
	Unfolding
	Absorption
	Dependency-Directed Backtracking
	Further Optimizations

	Classification
	Summary

