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Motivation

Argumentation is one of the major fields in Artificial Intelligence (AI).

Applications in diverse domains (legal reasoning, multi-agent
systems, social networks, e-government, decision support).

Concept of abstract Argumentation Frameworks (AFs) [Dung, 1995]
is one of the most popular approaches.

Arguments and a binary attack relation between them, denoting
conflicts, are the only components.

Numerous semantics to solve the inherent conflicts by selecting
acceptable sets of argument.

Admissible-based versus naive-based semantics.

Development of competitive systems.
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Motivation ctd.

cf2 Semantics
is based on decomposition of the framework along its strongly
connected components (SCCs) [Baroni et al., 2005];

does not require to defend arguments against attacks;

allows to treat cycles in a more sensitive way than other semantics;

is not well studied, due to quite complicated definition.
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cf2 Semantics
is based on decomposition of the framework along its strongly
connected components (SCCs) [Baroni et al., 2005];

does not require to defend arguments against attacks;

allows to treat cycles in a more sensitive way than other semantics;

is not well studied, due to quite complicated definition.

Goals of the Thesis
Answer-set programming encodings for cf2.

Alternative characterization.

Verification of behavior on concrete instances.

Identification of possible redundancies.

Complete complexity analysis.
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Argumentation Framework

Abstract Argumentation Framework [Dung, 1995]
An abstract argumentation framework (AF) is a pair F = (A,R), where A
is a finite set of arguments and R ⊆ A× A. Then (a, b) ∈ R if a attacks b.
Argument a ∈ A is defended by S ⊆ A (in F) iff, for each b ∈ A with
(b, a) ∈ R, S attacks b.

Example

Sarah A. Gaggl, TU Vienna Comprehensive Analysis of cf2 Semantics 4



Semantics

Semantics for AFs
Let F = (A,R) and S ⊆ A, we say

S is conflict-free in F, i.e. S ∈ cf (F), if ∀a, b ∈ S: (a, b) 6∈ R;

S ∈ cf (F) is maximal conflict-free or naive (in F), i.e. S ∈ naive(F), if
∀T ∈ cf (F), S 6⊂ T.

Example

naive(F) = {{a, d, g}, {a, c, e}, {a, c, g}}.
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Semantics ctd.

Naive-based Semantics
Let F = (A,R) and S ⊆ A. Let S+R = S ∪ {b | ∃a ∈ S, s. t. (a, b) ∈ R} be
the range of S. Then, a set S ∈ cf (F) is

a stable extension (of F), i.e. S ∈ stable(F), if S+R = A;

stage in F, i.e. S ∈ stage(F), if for each T ∈ cf (F), S+R 6⊂ T+
R .

Example

stable(F) = ∅, stage(F) = {{a, d, g}, {a, c, e}, {a, c, g}}.
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Semantics ctd.

Admissible-based Semantics
Then, S ∈ cf (F) is

admissible in F, i.e. S ∈ adm(F), if each a ∈ S is defended by S;

a preferred extension (of F), i.e. S ∈ pref (F), if S ∈ adm(F) and for
each T ∈ adm(F), S 6⊂ T.

Example

adm(F) = {∅, {a}, {c}, {d}, {a, c}, {a, d}}, pref (F) = {{a, c}, {a, d}}.
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cf2 Semantics

One of the SCC-recursive semantics introduced
in [Baroni et al., 2005].

Naive-based semantics.

Handles odd- and even-length cycles in a uniform way.

Can accept arguments out of odd-length cycles.

Can accept arguments attacked by self-attacking arguments.

Satisfies most of the evaluation criteria proposed
in [Baroni and Giacomin, 2007].
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cf2 Semantics

One of the SCC-recursive semantics introduced
in [Baroni et al., 2005].

Naive-based semantics.

Handles odd- and even-length cycles in a uniform way.

Can accept arguments out of odd-length cycles.

Can accept arguments attacked by self-attacking arguments.

Satisfies most of the evaluation criteria proposed
in [Baroni and Giacomin, 2007].

Further Notations, let F = (A,R)

SCCs(F): set of strongly connected components of F,

CF(a): the unique set C ∈ SCCs(F), s.t. a ∈ C,

F|S = ((A ∩ S),R ∩ (S× S)): sub-framework of F w.r.t. S,

F|S − S′ = F|S\S′ , F − S = F|A\S.
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cf2 Semantics ctd.

Definition (DF(S))

Let F = (A,R) be an AF and S ⊆ A. An argument b ∈ A is
component-defeated by S (in F), if there exists an a ∈ S, such that
(a, b) ∈ R and a /∈ CF(b). The set of arguments component-defeated by
S in F is denoted by DF(S).
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Definition (DF(S))

Let F = (A,R) be an AF and S ⊆ A. An argument b ∈ A is
component-defeated by S (in F), if there exists an a ∈ S, such that
(a, b) ∈ R and a /∈ CF(b). The set of arguments component-defeated by
S in F is denoted by DF(S).

cf2 Extensions [Baroni et al., 2005]
Let F = (A,R) be an argumentation framework and S a set of arguments.
Then, S is a cf2 extension of F, i.e. S ∈ cf2(F), iff

S ∈ naive(F), in case |SCCs(F)| = 1;

otherwise, ∀C ∈ SCCs(F), (S ∩ C) ∈ cf2(F|C − DF(S)).
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cf2 Semantics ctd.

S ∈ cf2(F) iff,

S ∈ naive(F), in case |SCCs(F)| = 1;

otherwise, ∀C ∈ SCCs(F), (S ∩ C) ∈ cf2(F|C − DF(S)).

Example
S = {a, d, e, g, i}, S ∈ cf2(F)?
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S ∈ cf2(F) iff,

S ∈ naive(F), in case |SCCs(F)| = 1;

otherwise, ∀C ∈ SCCs(F), (S ∩ C) ∈ cf2(F|C − DF(S)).

Example
S = {a, d, e, g, i}, S ∈ cf2(F)? C1 = {a, b, c}, C2 = {d},
C3 = {e, f , g, h, i} and DF(S) = {f}.
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cf2 Semantics ctd.

S ∈ cf2(F) iff,

S ∈ naive(F), in case |SCCs(F)| = 1;

otherwise, ∀C ∈ SCCs(F), (S ∩ C) ∈ cf2(F|C − DF(S)).

Example
S = {a, d, e, g, i}, S ∈ cf2(F)? C4 = {e}, C5 = {g}, C6 = {h}, C7 = {i}
and DF|{e,g,h,i}({e, g, i}) = {h}.
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Alt. Characterization of cf2

Original definition of cf2 is rather cumbersome to be directly
encoded in ASP due to the recursive computation of different
sub-frameworks.

In alternative characterization we shift the recursion to a certain set
of arguments.
This enables to directly

guess a set S;
check whether S is a naive extension of a certain instance of F.
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Alt. Characterization of cf2 ctd.

Separation
An AF F = (A,R) is called separated if for each (a, b) ∈ R, there exists a
path from b to a. We define [[F]] =

⋃
C∈SCCs(F) F|C and call [[F]] the

separation of F.

Example
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Alt. Characterization of cf2 ctd.

Reachability
Let F = (A,R) be an AF, B a set of arguments, and a, b ∈ A. We say that
b is reachable in F from a modulo B, in symbols a⇒B

F b, if there exists a
path from a to b in F|B.

Definition (∆F,S)

For an AF F = (A,R), D ⊆ A, and a set S of arguments,

∆F,S(D) = {a ∈ A | ∃b ∈ S : b 6= a, (b, a) ∈ R, a 6⇒A\D
F b},

and ∆F,S be the least fixed-point of ∆F,S(∅).
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Alt. Characterization of cf2 ctd.

cf2 Extensions [Gaggl and Woltran, 2012]
Given an AF F = (A,R).

cf2(F) = {S | S ∈ naive(F) ∩ naive([[F −∆F,S]])}.

Example
S = {a, d, e, g, i}, S ∈ naive(F).
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Alt. Characterization of cf2 ctd.

cf2 Extensions [Gaggl and Woltran, 2012]
Given an AF F = (A,R).

cf2(F) = {S | S ∈ naive(F) ∩ naive([[F −∆F,S]])}.

Example
S = {a, d, e, g, i}, S ∈ naive(F), ∆F,S(∅) = {f}.
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Alt. Characterization of cf2 ctd.

cf2 Extensions [Gaggl and Woltran, 2012]
Given an AF F = (A,R).

cf2(F) = {S | S ∈ naive(F) ∩ naive([[F −∆F,S]])}.

Example
S = {a, d, e, g, i}, S ∈ naive(F), ∆F,S({f}) = {f , h}.
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Alt. Characterization of cf2 ctd.

cf2 Extensions [Gaggl and Woltran, 2012]
Given an AF F = (A,R).

cf2(F) = {S | S ∈ naive(F) ∩ naive([[F −∆F,S]])}.

Example
S = {a, d, e, g, i}, S ∈ naive(F), ∆F,S({f , h}) = {f , h}.
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Alt. Characterization of cf2 ctd.

cf2 Extensions [Gaggl and Woltran, 2012]
Given an AF F = (A,R).

cf2(F) = {S | S ∈ naive(F) ∩ naive([[F −∆F,S]])}.

Example
S = {a, d, e, g, i}, S ∈ naive(F), ∆F,S = {f , h}, S ∈ naive([[F −∆F,S]]),
thus S ∈ cf2(F).
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Alt. Characterization of cf2 ctd.

cf2 Extensions [Gaggl and Woltran, 2012]
Given an AF F = (A,R).

cf2(F) = {S | S ∈ naive(F) ∩ naive([[F −∆F,S]])}.

Example
cf2(F) = {{a, d, e, g, i}, {c, d, e, g, i}, {b, f , h}, {b, g, i}}.
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Shortcomings of cf2

cf2 produces questionable results on AFs with cycles of length ≥ 6.

Example

cf2(F) = naive(F) = {{a, d}, {b, e}, {c, f}, {a, c, e}, {b, d, f}};
stage(F) = {{a, c, e}, {b, d, f}}.
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Shortcomings of cf2 and Stage

cf2 produces questionable results on AFs with cycles of length ≥ 6.
The grounded extension is not necessarily contained in every stage
extension.

Stage semantics does not satisfy directionality.

Example

stage(F) = {{a}, {b}} but cf2(F) = ground(F) = {{a}}.
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Combining cf2 and stage

We combine cf2 and stage semantics [Dvorák and Gaggl, 2012a], by

using the SCC-recursive schema of the cf2 semantics and

instantiate the base case with stage semantics.
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Combining cf2 and stage

We combine cf2 and stage semantics [Dvorák and Gaggl, 2012a], by

using the SCC-recursive schema of the cf2 semantics and

instantiate the base case with stage semantics.

stage2 Extensions
For any AF F,

stage2(F) = {S | S ∈ naive(F) ∩ stage([[F −∆F,S]])}.
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stage2 Examples

For any AF F, stage2(F) = {S | S ∈ naive(F) ∩ stage([[F −∆F,S]])}.

Example

stage2(F) = cf2(F) = {{a}}, where stage(F) = {{a}, {b}}.
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stage2 Examples

For any AF F, stage2(F) = {S | S ∈ naive(F) ∩ stage([[F −∆F,S]])}.

Example

stage2(F) = cf2(F) = {{a}}, where stage(F) = {{a}, {b}}.

stage2(G) = stage(G) = {{a, c, e}, {b, d, f}}, but
cf2(G) = naive(F) = {{a, d}, {b, e}, {c, f}, {a, c, e}, {b, d, f}}.
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Relations between Semantics
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Redundancies

Argumentation is a dynamic reasoning process.

Which effect has additional information w.r.t. a semantics?

Which information does not contribute to results no matter which
changes are performed?

Identification of kernels to remove redundant attacks
[Oikarinen and Woltran, 2011].

Definition
Two AFs F and G are strongly equivalent to each other w.r.t. a semantics
σ, in symbols F ≡σs G, iff for each AF H, σ(F ∪ H) = σ(G ∪ H).
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Strong Equivalence w.r.t. cf2

Theorem

For any AFs F and G, F ≡cf2
s G iff F = G.
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Strong Equivalence w.r.t. cf2

Theorem

For any AFs F and G, F ≡cf2
s G iff F = G.

H = (A ∪ {d, x, y, z},
{(a, a), (b, b), (b, x), (x, a), (a, y), (y, z), (z, a),

(d, c) | c ∈ A \ {a, b}}).
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Strong Equivalence w.r.t. cf2

Theorem

For any AFs F and G, F ≡cf2
s G iff F = G.

Let E = {d, x, z}, E ∈ cf2(F ∪ H) but E 6∈ cf2(G ∪ H).
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SE w.r.t. cf2 and stage2

Theorem

For any AFs F and G, F ≡cf2
s G iff F = G.

No matter which AFs F 6= G, one can always construct an H s.t.
cf2(F ∪ H) 6= cf2(G ∪ H);
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SE w.r.t. cf2 and stage2

Theorem

For any AFs F and G, F ≡cf2
s G iff F = G.

No matter which AFs F 6= G, one can always construct an H s.t.
cf2(F ∪ H) 6= cf2(G ∪ H);

For stage2 semantics also strong equivalence coincides with
syntactic equivalence.

Sarah A. Gaggl, TU Vienna Comprehensive Analysis of cf2 Semantics 22



SE w.r.t. cf2 and stage2

No matter which AFs F 6= G, one can always construct an H s.t.
cf2(F ∪ H) 6= cf2(G ∪ H);

For stage2 semantics also strong equivalence coincides with
syntactic equivalence.

Succinctness Property
An argumentation semantics σ satisfies the succinctness property or is
maximal succinct iff no AF contains a redundant attack w.r.t. σ.
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Comparing Semantics w.r.t. SE
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Complexity Analysis

Ver Cred Skept Exists¬∅

naive in P in P in P in P

stable in P NP-c coNP-c NP-c

cf2 in P NP-c coNP-c in P

stage coNP-c ΣP
2-c ΠP

2-c in P

stage2 coNP-c ΣP
2-c ΠP

2-c in P

Table: Computational complexity of naive-based semantics.
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Implementation

Reduction-based Approach
Answer-set Programming (ASP) encodings for cf2 and stage2.

Saturation vs. metasp encodings for stage2.

All encodings incorporated in the system
ASPARTIX [Egly et al., 2010].

Direct Approach
Labeling-based algorithms for cf2 and stage2.

Web-Application
http://rull.dbai.tuwien.ac.at:8080/ASPARTIX
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Conclusion

Alternative characterization for cf2 to avoid the recursive
computation of sub-frameworks.

stage2 semantics overcomes problems of cf2.

Strong equivalence w.r.t. cf2 (resp. stage2) coincides with syntactic
equivalence.

Provided the missing complexity results for cf2 (resp. stage2).

Implementation in terms of ASP and labeling-based algorithms.
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Future Work

Further relations to other semantics like intertranslatability.

Optimizations of ASP encodings.

Development of appropriate instantiation methods for naive-based
semantics.

Other combinations of semantics in the alternative characterization,
like sem(F) = {S | σ(F) ∩ τ([[F −∆F,S]])}.
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Tractable Fragments

cf2 stage2 stable stage

Credσacycl in P in P P-c P-c

Skeptσ
acycl in P in P P-c P-c

Credσeven−free NP-c coNP-h P-c ΣP
2-c

Skeptσ
even−free coNP-c coNP-h P-c ΠP

2-c

Credσbipart in P in P P-c P-c

Skeptσ
bipart in P in P P-c P-c

Credσsym in P in P/ΣP
2∗ in P in P/ΣP

2∗
Skeptσ

sym in P in P/ΠP
2∗ in P in P/ΠP

2∗

Table: Complexity results for special AFs (∗ with self-attacking arguments).
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