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Review

SPARQL is a feature-rich query language:

Semantics of each feature is defined by specific algebra operators

Translating SPARQL to nested algebra expressions is mostly straightforward, but
involves some special cases that need to be observed (e.g., how Filter expressions in

Basic graph patterns (conjunctions of triple patterns)
Property path patterns

Filters

Union, Optional, Minus,

Subqueries, Values, Bind

Solution set modifiers

Aggregates

optional parts are treated).
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Complexity of SPARQL
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Review: Complexity of BGP matching

We had already observed the following basic result:

Theorem 4.12: Determining if a BGP has solution mappings over a graph is NP-
complete.

Our proof was by reduction from graph 3-colourability, a well-known NP-hard problem:

The problem of graph 3-colourability (3CoL) is defined as follows:

Given: An undirected graph G

Question: Can the vertices of G be assigned colours red, green and blue so that
no two adjacent vertices have the same colour?

Proof idea: Encode the given graph as a BPG and use a three-vertex colouring
template as RDF graph to match it to.
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NP-hardness another way

A typical NP-complete problem is satisfiability of propositional logic formulae:

The problem of propositional logic satisfiability (SAT) is defined as follows:
Given: An propositional logic formula ¢

Question: Is it possible to assign truth values to propositional variables in ¢ such
that the formula evaluates to true?
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NP-hardness another way

A typical NP-complete problem is satisfiability of propositional logic formulae:

The problem of propositional logic satisfiability (SAT) is defined as follows:
Given: An propositional logic formula ¢

Question: Is it possible to assign truth values to propositional variables in ¢ such
that the formula evaluates to true?

Exercise: Give a direct reduction from SAT to SPARQL query answering, without
using BGPs.

This shows (in another way) that SPARQL query answering is NP-hard. However, it is
actually harder than that.
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Beyond NP

In complexity theory, space is usually more powerful than time
(intuition: space can be reused; time, alas, cannot)

Definition 8.1: Let f : N — R* be a function. A Turing machine M is O(f)-space
bounded if there is a function g € O(f) such that M halts on every input w € X*
using < g(lw]) cells on its tapes.

DSpace(f(n)) is the class of all languages L for which there is an O(f(n))-space
bounded Turing machine deciding L.

The class PSpace of languages decidable in polynomial space is defined as
PSpace = | J,»; DSpace(n?).

Space restrictions can also be used for non-deterministic Turing machines, but by
Savitch’s Theorem, this does not give additional expressive power: PSpace = NPSpace

Indeed, it is known that P € NP C PSpaCe (and all inclusions are believed to be strict, though this remains unproven)
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Quantified Boolean Formulae

A QBF is a formula of the following form:
O]X] .OQXQ. ce O[Xg.QD[Xl, e ,Xg]

where O; € {3, ¥} are quantifiers, X; are propositional logic variables, and ¢ is a
propositional logic formula with variables Xi, ..., X, and constants T (true) and L (false)

Semantics:

® Propositional formulae without variables (only constants T and L) are evaluated as
usual

® JX.p[X]is true if either o[X/T] or ¢[X/ L] are true
® VX.o[X]is true if both ¢[X/T] and ¢[X /1] are true

(where ¢[X/TT]is “p with X replaced by T, and similar for 1)
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Hardness of QBF Evaluation

TrueQBF is the following problem:
Given: A quantified boolean formula ¢
Question: Does ¢ evaluate to true?
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Hardness of QBF Evaluation

TrueQBF is the following problem:
Given: A quantified boolean formula ¢
Question: Does ¢ evaluate to true?

This is a rather difficult question:

Example 8.2: A propositional formula ¢ with propositions py, ..., p, is satisfiable if
dp; ... dp,-¢ is a true QBF, i.e., SAT reduces to TrRueQBF (so it is NP-hard).

The QBF ¢ is a tautology if Vp; ...V¥p,.¢ is a true QBF, i.e., tautology checking
reduces to TRuEQBF (so it is coNP-hard).
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Hardness of QBF Evaluation

TrueQBF is the following problem:
Given: A quantified boolean formula ¢
Question: Does ¢ evaluate to true?

This is a rather difficult question:

Example 8.2: A propositional formula ¢ with propositions py, ..., p, is satisfiable if
dp; ... dp,-¢ is a true QBF, i.e., SAT reduces to TrRueQBF (so it is NP-hard).

The QBF ¢ is a tautology if Vp; ...V¥p,.¢ is a true QBF, i.e., tautology checking
reduces to TRuEQBF (so it is coNP-hard).

In fact, it is known that TrRueQBF is harder than both NP and coNP:

Fheorem 8.3: TrueQBF is PSpace-complete. \

(without proof; see course “Complexity Theory”)
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Universal quantifiers in SPARQL

To show NP-hardness, we used the fact that SPARQL can naturally express existential
quantifiers, since we always ask “does a match for this query exist”?

Can we also express universal quantifiers?
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Universal quantifiers in SPARQL

To show NP-hardness, we used the fact that SPARQL can naturally express existential
quantifiers, since we always ask “does a match for this query exist”?

Can we also express universal quantifiers? — Yes:

Example 8.4: In Wikidata, find bands all of whose (known) members are female.

SELECT ?band

WHERE {
?band wdt:P31 wd:Q215380 . # ?band instance of: band
?band wdt:P527 [] . # ?band has part: [] (at least one known member)

FILTER NOT EXISTS {
?band wdt:P527 ?member . # 7band has part: ?member

FILTER NOT EXISTS {
?member wdt:P21 wd:Q6581072 # ?member sex or gender: female

}
3
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SPARQL is PSpace-hard

The PSpace-hardness of TRueQBF + the encoding universal quantifiers yield:

Theorem 8.5: Deciding whether a SPARQL query has any results is PSpace-
hard, even over an empty RDF graph.

Proof: We reduce QBF formulae to SPARQL queries.
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hard, even over an empty RDF graph.

Proof: We reduce QBF formulae to SPARQL queries. A QBF
01X1.0:X5. - OXp.p[ X7, ..., X,] is transformed to SPARQL in the following steps:
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hard, even over an empty RDF graph.
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SPARQL is PSpace-hard

The PSpace-hardness of TRueQBF + the encoding universal quantifiers yield:

Theorem 8.5: Deciding whether a SPARQL query has any results is PSpace-
hard, even over an empty RDF graph.

Proof: We reduce QBF formulae to SPARQL queries. A QBF
01X1.0:X5. - OXp.p[ X7, ..., X,] is transformed to SPARQL in the following steps:
1. Replace every sub-formula of the form VX;.y¢ by —=3X;.—.
2. Replace the innermost boolean formula (¢ or —¢) by an expression FILTER ()
where ¢ is (—)¢ written using SPARQL Boolean functions &&, ||, and !, and with
each propositional variable X; replaced by a unique SPARQL variable ?Xi.
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SPARQL is PSpace-hard

The PSpace-hardness of TRueQBF + the encoding universal quantifiers yield:

Theorem 8.5: Deciding whether a SPARQL query has any results is PSpace-
hard, even over an empty RDF graph.

Proof: We reduce QBF formulae to SPARQL queries. A QBF
01X1.0:X5. - OXp.p[ X7, ..., X,] is transformed to SPARQL in the following steps:

1. Replace every sub-formula of the form VX;.y¢ by —=3X;.—.

2. Replace the innermost boolean formula (¢ or —¢) by an expression FILTER ()
where ¢ is (—)¢ written using SPARQL Boolean functions &&, ||, and !, and with
each propositional variable X; replaced by a unique SPARQL variable ?Xi.

3. Replace every sub-expression of the form =3X;.4 with
FILTER NOT EXISTS { VALUES ?Xi {true false} ¢ }
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SPARQL is PSpace-hard

The PSpace-hardness of TRueQBF + the encoding universal quantifiers yield:

Theorem 8.5: Deciding whether a SPARQL query has any results is PSpace-
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FILTER EXISTS { VALUES ?Xi {true false} ¢ }
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SPARQL is PSpace-hard

The PSpace-hardness of TRueQBF + the encoding universal quantifiers yield:

Theorem 8.5: Deciding whether a SPARQL query has any results is PSpace-
hard, even over an empty RDF graph.

Proof: We reduce QBF formulae to SPARQL queries. A QBF
01X1.0:X5. - OXp.p[ X7, ..., X,] is transformed to SPARQL in the following steps:

1. Replace every sub-formula of the form VX;.y¢ by —=3X;.—.

2. Replace the innermost boolean formula (¢ or —¢) by an expression FILTER ()
where ¢ is (—)¢ written using SPARQL Boolean functions &&, ||, and !, and with
each propositional variable X; replaced by a unique SPARQL variable ?Xi.

3. Replace every sub-expression of the form =3X;.4 with
FILTER NOT EXISTS { VALUES ?Xi {true false} ¢ }

4. Replace every sub-expression of the form 3.y with
FILTER EXISTS { VALUES ?Xi {true false} ¢ }

From the resulting SPARQL expression P, create the query:
SELECT * WHERE { VALUES 7x {"QBF is true!"} P }
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SPARQL is PSpace-hard (2)

It is not hard to see that this transformation works as desired: the resulting query has a
solution mapping {x — "QBF is true!"}if and only if the QBF is true.

Example 8.6: Consider the QBF VYp.dq.((-p A q) V (p A —=q)). Eliminating V yields
—3dp.—3q.((=p A q@) V (p A =q)). We then obtain the following SPARQL query:

SELECT * WHERE {
VALUES ?x {"QBF is true!"}
FILTER NOT EXISTS { VALUES ?p {true false}
FILTER NOT EXISTS { VALUES ?q {true false}
FILTER ( (! 7p&&?q) || (?p&& ! ?q) )
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Is SPARQL practical?

PSpace-hard problems are highly intractable and hard to implement in practice.

Is SPARQL practically feasible at all?
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Is SPARQL practical?

PSpace-hard problems are highly intractable and hard to implement in practice.

Is SPARQL practically feasible at all?

Apparently yes:
® \We have seen implementations
® Other widely used query languages, such as SQL, have similar complexities
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Is SPARQL practical?

PSpace-hard problems are highly intractable and hard to implement in practice.

Is SPARQL practically feasible at all?

Apparently yes:
® \We have seen implementations
® Other widely used query languages, such as SQL, have similar complexities

Is complexity theory useless?

No, but we should measure more carefully:
® Qur proofs (for NP and PSpace) turn hard problems into hard queries
® We hardly need RDF data at all

In practice, databases grow very big, while queries are rather limited!

(Wikidata has over 5 Billion triples; typical Wikidata query have less than 100 triple patterns [Malyshev et al., ISWC 2018])
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More fine-grained complexity measures

Combined Complexity
Input: Query Q and RDF graph G
Output: Does Q have answers over G?

~» estimates complexity in terms of overall input size
~ “2KB query/2TB database” = “2TB query/2KB database”
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Combined Complexity
Input: Query Q and RDF graph G
Output: Does Q have answers over G?

~» estimates complexity in terms of overall input size
~ “2KB query/2TB database” = “2TB query/2KB database”

~» study worst-case complexity of algorithms for fixed queries:

Data Complexity
Input: RDF graph G
Output: Does Q have answers over G? (for fixed query Q)
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More fine-grained complexity measures

Combined Complexity
Input: Query Q and RDF graph G
Output: Does Q have answers over G?

~» estimates complexity in terms of overall input size
~ “2KB query/2TB database” = “2TB query/2KB database”
~» study worst-case complexity of algorithms for fixed queries:

Data Complexity
Input: RDF graph G
Output: Does Q have answers over G? (for fixed query Q)

~» we can also fix the database and vary the query:

Query Complexity
Input: SPARQL query O
Output: Does Q have answers over G? (for fixed RDF graph G)
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Below P

Our previous proofs show high query complexity (hence also high combined complexity).
For data complexity, we get much lower complexities, starting below polynomial time.

Definition 8.7: The class NL of languages decidable in logarithmic space on a
non-deterministic Turing machine is defined as NL = NSpace(log(n)).

Note: When restricting Turing machines to use less than linear space, we need to provide them with a separate read-only input tape that is not
counted (since the input of length n cannot fit into log(n) space itself).

Intuition: The memory of a logspace-bounded Turing machine (deterministic or
not) is just enough for the following:

e Store a fixed number of binary counters (with at most polynomial value)
e Store a fixed number of pointers to positions in the input
® Compare the values of counters and target symbols of pointers

It is known that NL € P € NP (and allinclusions are believed to be strict, though this remains unproven)
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Data complexity of SPARQL

The problem of directed graph reachability (also known as s-t-reachability) is de-
fined as follows:

Given: A directed graph G and two vertices s and ¢

Question: Is there a directed path from s to #?

This can be solved in NL:
e Starting from s, non-deterministically move to a successor vertex
® Terminate when moving to ¢ (success) or after making more moves than vertices in
the graph (failure)
This runs in logarithmic space: one pointer to current vertex, one counter
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Data complexity of SPARQL

The problem of directed graph reachability (also known as s-t-reachability) is de-
fined as follows:

Given: A directed graph G and two vertices s and ¢

Question: Is there a directed path from s to #?

This can be solved in NL:
e Starting from s, non-deterministically move to a successor vertex
® Terminate when moving to ¢ (success) or after making more moves than vertices in
the graph (failure)
This runs in logarithmic space: one pointer to current vertex, one counter

Directed graph reachability is furthermore known to be NL-hard, so we get:

Theorem 8.8: Deciding if a SPARQL query has any solutions is NL-hard in terms
of data complexity.
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Data complexity of SPARQL

The problem of directed graph reachability (also known as s-t-reachability) is de-
fined as follows:

Given: A directed graph G and two vertices s and ¢

Question: Is there a directed path from s to #?

This can be solved in NL:
e Starting from s, non-deterministically move to a successor vertex
® Terminate when moving to ¢ (success) or after making more moves than vertices in
the graph (failure)
This runs in logarithmic space: one pointer to current vertex, one counter

Directed graph reachability is furthermore known to be NL-hard, so we get:

Theorem 8.8: Deciding if a SPARQL query has any solutions is NL-hard in terms
of data complexity.

Proof: Directed graph reachability is easily reduced: encode graph in RDF, and use a

single property path pattern with * to check reachability. O
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Upper bounds

Important note: All of our results so far were lower bounds, showing that SPARQL is at
least as hard as the given class. We have not shown that SPARQL queries can actually
be answered in the given bounds."

"We have not even shown that SPARQL query answers are computable at all. SQL query

answers, e.g., are not, if all SQL features are allowed.
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Upper bounds

Important note: All of our results so far were lower bounds, showing that SPARQL is at
least as hard as the given class. We have not shown that SPARQL queries can actually
be answered in the given bounds."

How to obtain upper bounds?
® Give an algorithm

e Show that it can run within the required bounds (with respect to query size and/or data size)

Problem: SPARQL has a large number of features that an algorithm would need to
consider, making algorithms rather complex and harder to verify

~» sketch algorithms for basic cases only

"We have not even shown that SPARQL query answers are computable at all. SQL query

answers, e.g., are not, if all SQL features are allowed.
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Answering queries in PSpace

Note: A single query can have exponentially many solutions, so the result does not fit
into polynomial space. But a polynomial space algorithm could still discover all solutions
(and stream them to an output).
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Answering queries in PSpace

Note: A single query can have exponentially many solutions, so the result does not fit
into polynomial space. But a polynomial space algorithm could still discover all solutions
(and stream them to an output).

Algorithm sketch:

o |terate over all possible variable and bnode bindings, storing them one by
one (possible in polynomial space)

e \erify query conditions for the given binding (possible in polynomial space for
most features, e.g., triple patterns, property path patterns, filters, union,
minus, ...)
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Answering queries in PSpace

Note: A single query can have exponentially many solutions, so the result does not fit
into polynomial space. But a polynomial space algorithm could still discover all solutions
(and stream them to an output).

Algorithm sketch:

o |terate over all possible variable and bnode bindings, storing them one by
one (possible in polynomial space)

e \erify query conditions for the given binding (possible in polynomial space for
most features, e.g., triple patterns, property path patterns, filters, union,
minus, ...)

Where this sketch is lacking:
® We should check complexity of all filter conditions and functions
* We did not clarify how to handle subqueries and aggregates

® Result values can become exponentially large (e.g., by repeated string doubling
using BIND), so a smarter representation of values has to be used

Markus Krétzsch, 4th Dec 2018 Knowledge Graphs slide 17 of 22



Answering queries in NL for data

We can use the same approach for worst-case optimal query answering with respect to
the size of the RDF graph (data complexity):

Algorithm sketch:
® |terate over all possible variable and bnode bindings, storing one at a time
® \Verify query conditions for the given binding

~> If the query is fixed, the bindings can be stored using a fixed number of pointers.
~» For most operations, it is again clear that they are possible to verify in NL

This includes many numeric aggregates and arithmetic operations.

Again, we omit many details here that would need careful discussion.

Note: In terms of the size of the data, values can not be exponentially but merely
polynomially large, since the query is constant now; but one still needs to explain how to
represent this.
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Outlook
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SPARQL: QOutlook

A number of SPARQL features have not been discussed:
® Graphs: SPARQL supports querying RDF datasets with multiple graphs, and
queries can retrieve graph names as variable bindings
e Updates: SPARQL has a set of features for inserting and deleting data

Example 8.9: The following query replaces all uses of the hasSister prop-
erty with a different encoding of the same information:

DELETE { ?person eg:hasSister ?sister }
INSERT {
?person eg:hasSibling ?sister .
?sister eg:sex eg:female .

}
WHERE { ?person eg:hasSister ?sister }

® Result formats: SPARQL has several encodings for sending results, and it can also
encode results as RDF graphs (CONSTRUCT).
® Federated queries: SPARQL can get sub-query results from other SPARQL services
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Teaching evaluation
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Summary

SPARQL is PSpace-complete for query and combined complexity'

SPARQL is NL-complete for data complexity, hence practically tractable and well
parallelisable’

SPARQL expressivity is still limited, partly by design.

What’s next?
® Property graph: another popular graph data model
® The Cypher query language
® Quality assurance in knowledge graphs

"The matching upper bound has not been proven with the full set of features.
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